Optimizing Neural Networks for Chemical Reaction Prediction: Insights from Methylene Blue Reduction Reactions
Abstract
:1. Introduction
2. Results
2.1. Spectroscopic Analysis Results
2.2. Exponential Fitting
2.3. Hyperparameters Optimization Pipeline
- A model with 1 hidden layer containing 256 neurons, utilizing the ELU activation function, and trained for 100 epochs. For this model, the NMSE values for coefficients A, B, and C were 0.011391, 0.019457, and 0.124704, respectively.
- A model with 1 hidden layer containing 64 neurons, utilizing the ELU activation function, and trained for 100 epochs. For this model, the NMSE values for coefficients A, B, and C were 0.152417, 0.083142, and 0.110623, respectively.
- A model with 5 hidden layers containing 16 neurons each, utilizing the Swish activation function, and trained for 100 epochs. For this model, the NMSE values for coefficients A, B, and C were 0.053186, 0.033048, and 0.037663, respectively.
3. Discussion
3.1. Optimization of Neural Network Hyperparameters for Chemical Reaction Prediction
3.2. Exploring Architectural Choices and Model Performance
4. Materials and Methods
4.1. Preparation of Chemical Reactions
- MB (dissolved in ) + AA (dissolved in ) → Products
- MB (dissolved in a SDS of ) + AA (dissolved in a SDS of ) → Products
- MB (dissolved in a SDS of MB) + AA (dissolved in a SDS of AA) → Products
- MB (dissolved in a SDS of AA) + AA (dissolved in a SDS of MB) → Products
- SDS MB/SDS water/water (in a volume ratio of 1:1)
- SDS MB/SDS water/water (in a volume ratio of 9:1)
- SDS MB/SDS water/water (in a volume ratio of 99:1)
4.2. Processing of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghaedi, M.; Nasab, A.G.; Khodadoust, S.; Rajabi, M.; Azizian, S. Application of activated carbon as adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study. J. Ind. Eng. Chem. 2014, 20, 2317–2324. [Google Scholar] [CrossRef]
- Mowry, S.; Ogren, P.J. Kinetics of methylene blue reduction by ascorbic acid. J. Chem. Educ. 1999, 76, 970. [Google Scholar] [CrossRef]
- Ayad, M.M.; El-Nasr, A.A. Adsorption of cationic dye (methylene blue) from water using polyaniline nanotubes base. J. Phys. Chem. C 2010, 114, 14377–14383. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Mouni, L.; Belkhiri, L.; Bollinger, J.C.; Bouzaza, A.; Assadi, A.; Tirri, A.; Dahmoune, F.; Madani, K.; Remini, H. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 2018, 153, 38–45. [Google Scholar] [CrossRef]
- Weiland, E. Reduction of methylene blue by ascorbic acid in light. Biochem. Ztschr. 1944, 317, 168–170. [Google Scholar]
- Seno, M.; Kousaka, K.; Kise, H. Reduction of methylene blue with L-ascorbic acid or L-cysteine in micellar systems. Bull. Chem. Soc. Jpn. 1979, 52, 2970–2974. [Google Scholar] [CrossRef]
- Ramimoghadam, D.; Hussein, M.Z.B.; Taufiq-Yap, Y.H. The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int. J. Mol. Sci. 2012, 13, 13275–13293. [Google Scholar] [CrossRef]
- Hallock, A.J.; Berman, E.S.; Zare, R.N. Ultratrace kinetic measurements of the reduction of methylene blue. J. Am. Chem. Soc. 2003, 125, 1158–1159. [Google Scholar] [CrossRef]
- Bellido-Pedraza, C.M.; Calatrava, V.; Llamas, A.; Fernandez, E.; Sanz-Luque, E.; Galvan, A. Nitrous oxide emissions from nitrite are highly dependent on nitrate reductase in the microalga Chlamydomonas reinhardtii. Int. J. Mol. Sci. 2022, 23, 9412. [Google Scholar] [CrossRef]
- Sen, P.K.; Mukherjee, P.; Pal, B. Effects of pre-micelles of anionic surfactant SDS on the electron transfer reaction between methylene blue and ascorbic acid. J. Mol. Liq. 2016, 224, 472–479. [Google Scholar] [CrossRef]
- Snehalatha, T.; Rajanna, K.; Saiprakash, P. Methylene blue-ascorbic acid: An undergraduate experiment in kinetics. J. Chem. Educ. 1997, 74, 228. [Google Scholar] [CrossRef]
- Kooh, M.R.R.; Thotagamuge, R.; Chau, Y.F.C.; Mahadi, A.H.; Lim, C.M. Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue. J. Taiwan Inst. Chem. Eng. 2022, 132, 104134. [Google Scholar] [CrossRef]
- Cannavò, S.; Bertoldi, A.; Valeri, M.C.; Damiani, F.; Reale, L.; Brilli, F.; Paolocci, F. Impact of High Light Intensity and Low Temperature on the Growth and Phenylpropanoid Profile of Azolla filiculoides. Int. J. Mol. Sci. 2023, 24, 8554. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Holoven, R.; Shavarskyi, M.; Bukin, S.; Shevchuk, I. Multistage SVR-RBF-based model for heart rate prediction of individuals. In Proceedings of the International Conference of Artificial Intelligence, Medical Engineering, Education, Wuhan, China, 19–21 August 2022; pp. 211–220. [Google Scholar]
- Marzban, N.; Moheb, A.; Filonenko, S.; Hosseini, S.H.; Nouri, M.J.; Libra, J.A.; Farru, G. Intelligent modeling and experimental study on methylene blue adsorption by sodium alginate-kaolin beads. Int. J. Biol. Macromol. 2021, 186, 79–91. [Google Scholar] [CrossRef]
- Cherkasov, A. Inductive QSAR descriptors. Distinguishing compounds with antibacterial activity by artificial neural networks. Int. J. Mol. Sci. 2005, 6, 63–86. [Google Scholar] [CrossRef]
- Fisher, K.S.; Vreugdenhil, A.J. Adsorption of chromium (VI) using an activated carbon derived from petroleum coke feedstock. Int. J. Mol. Sci. 2022, 23, 16172. [Google Scholar] [CrossRef]
- Asfaram, A.; Ghaedi, M.; Azqhandi, M.A.; Goudarzi, A.; Dastkhoon, M. Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye. RSC Adv. 2016, 6, 40502–40516. [Google Scholar] [CrossRef]
- Kalantari, K.; Ahmad, M.B.; Masoumi, H.R.F.; Shameli, K.; Basri, M.; Khandanlou, R. Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology. Int. J. Mol. Sci. 2014, 15, 12913–12927. [Google Scholar] [CrossRef]
- Bao, Y.; Kong, W.; Liu, F.; Qiu, Z.; He, Y. Detection of glutamic acid in oilseed rape leaves using near infrared spectroscopy and the least squares-support vector machine. Int. J. Mol. Sci. 2012, 13, 14106–14114. [Google Scholar] [CrossRef]
- Luna, J.M.; Rufino, R.D.; Albuquerque, C.D.; Sarubbo, L.A.; Campos-Takaki, G.M. Economic optimized medium for tensio-active agent production by Candida sphaerica UCP0995 and application in the removal of hydrophobic contaminant from sand. Int. J. Mol. Sci. 2011, 12, 2463–2476. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.S.; Jamaly, S.; Farjana, F.; Begum, N.; Zenat, E.A. A review on ethnomedicinal, pharmacological, phytochemical and pharmaceutical profile of lady’s finger (Abelmoschus esculentus L.) plant. Pharmacol. Pharm. 2019, 10, 94–108. [Google Scholar] [CrossRef]
- Nayak, A.K.; Pal, A. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling. J. Environ. Manag. 2017, 200, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, S.; Heydari, A.; Fattahi, M.; Motamedisade, A. Calcium alginate hydrogels reinforced with cellulose nanocrystals for methylene blue adsorption: Synthesis, characterization, and modelling. Ind. Crop. Prod. 2023, 192, 115999. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mahmoodi-Babolan, N.; Heydari, A.; Nematollahzadeh, A. Removal of methylene blue via bioinspired catecholamine/starch superadsorbent and the efficiency prediction by response surface methodology and artificial neural network-particle swarm optimization. Bioresour. Technol. 2019, 294, 122084. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Alibak, A.H.; Khodarahmi, M.; Fayyazsanavi, P.; Alizadeh, S.M.; Hadi, A.J.; Aminzadehsarikhanbeglou, E. Simulation the adsorption capacity of polyvinyl alcohol/carboxymethyl cellulose based hydrogels towards methylene blue in aqueous solutions using cascade correlation neural network (CCNN) technique. J. Clean. Prod. 2022, 337, 130509. [Google Scholar] [CrossRef]
- Mohamed, S.A.E.M.; Mohamed, M.H.; Farghally, M.F. A new cascade-correlation growing deep learning neural network algorithm. Algorithms 2021, 14, 158. [Google Scholar] [CrossRef]
- Safarik, J.; Jalowiczor, J.; Gresak, E.; Rozhon, J. Genetic algorithm for automatic tuning of neural network hyperparameters. In Proceedings of the Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything, Orlando, FL, USA, 16–18 April 2018; Volume 10643, pp. 168–174. [Google Scholar]
- Kandel, I.; Castelli, M. How deeply to fine-tune a convolutional neural network: A case study using a histopathology dataset. Appl. Sci. 2020, 10, 3359. [Google Scholar] [CrossRef]
- Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Salzmann, M. Learning the number of neurons in deep networks. Adv. Neural Inf. Process. Syst. 2016, 29, 1–9. [Google Scholar]
- Daubechies, I.; DeVore, R.; Foucart, S.; Hanin, B.; Petrova, G. Nonlinear approximation and (deep) ReLU networks. Constr. Approx. 2022, 55, 127–172. [Google Scholar] [CrossRef]
- Yin, X.; Goudriaan, J.; Lantinga, E.A.; Vos, J.; Spiertz, H.J. A flexible sigmoid function of determinate growth. Ann. Bot. 2003, 91, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Kalman, B.L.; Kwasny, S.C. Why tanh: Choosing a sigmoidal function. In Proceedings of the [Proceedings 1992] IJCNN International Joint Conference on Neural Networks, Baltimore, MD, USA, 7–11 June 1992; Volume 4, pp. 578–581. [Google Scholar]
- Xu, J.; Li, Z.; Du, B.; Zhang, M.; Liu, J. Reluplex made more practical: Leaky ReLU. In Proceedings of the 2020 IEEE Symposium on Computers and communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [Google Scholar]
- Rönnberg, J.; Lunner, T.; Zekveld, A.; Sörqvist, P.; Danielsson, H.; Lyxell, B.; Dahlström, Ö.; Signoret, C.; Stenfelt, S.; Pichora-Fuller, M.K.; et al. The Ease of Language Understanding (ELU) model: Theoretical, empirical, and clinical advances. Front. Syst. Neurosci. 2013, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Oliver, N.; Smith, G.; Thakkar, C.; Surendran, A.C. SWISH: Semantic analysis of window titles and switching history. In Proceedings of the 11th International Conference on Intelligent User Interfaces, Sydney, Australia, 29 January–1 February 2006; pp. 194–201. [Google Scholar]
- Schmeiser, B. Batch size effects in the analysis of simulation output. Oper. Res. 1982, 30, 556–568. [Google Scholar] [CrossRef]
- Händel, P. Understanding normalized mean squared error in power amplifier linearization. IEEE Microw. Wirel. Components Lett. 2018, 28, 1047–1049. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Liashchynskyi, P.; Liashchynskyi, P. Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv 2019, arXiv:1912.06059. [Google Scholar]
- Koutsoukas, A.; Monaghan, K.J.; Li, X.; Huan, J. Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J. Cheminform. 2017, 9, 1–13. [Google Scholar] [CrossRef]
- Singh, A.R.; Rohr, B.A.; Gauthier, J.A.; Nørskov, J.K. Predicting chemical reaction barriers with a machine learning model. Catal. Lett. 2019, 149, 2347–2354. [Google Scholar] [CrossRef]
- Schwaller, P.; Probst, D.; Vaucher, A.C.; Nair, V.H.; Kreutter, D.; Laino, T.; Reymond, J.L. Mapping the space of chemical reactions using attention-based neural networks. Nat. Mach. Intell. 2021, 3, 144–152. [Google Scholar] [CrossRef]
- Doelling, M.; Nasrollahi, F. Building performance modeling in non-simplified architectural design. In Proceedings of the 30th CAAD Curricullum, Taipei, Taiwan, 27–30 June 2011; Volume 1, pp. 97–106. [Google Scholar]
- Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 2022, 503, 92–108. [Google Scholar] [CrossRef]
- Grossberg, S. Recurrent neural networks. Scholarpedia 2013, 8, 1888. [Google Scholar] [CrossRef]
- Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
Hidden Layers | Neurons | Activation | Epochs | Batch Size | NMSE_A | NMSE_B | NMSE_C |
---|---|---|---|---|---|---|---|
1 | 256 | ELU | 100 | 16 | 0.01 ± 0.005 | 0.02 ± 0.008 | 0.12 ± 0.03 |
2 | 64 | ELU | 100 | 32 | 0.15 ± 0.02 | 0.08 ± 0.01 | 0.11 ± 0.02 |
2 | 128 | Leaky ReLU | 100 | 16 | 0.25 ± 0.03 | 0.18 ± 0.02 | 0.01 ± 0.005 |
2 | 256 | ELU | 100 | 32 | 0.14 ± 0.02 | 0.21 ± 0.03 | 0.09 ± 0.015 |
3 | 128 | ELU | 100 | 16 | 0.21 ± 0.02 | 0.20 ± 0.03 | 0.03 ± 0.01 |
4 | 128 | ReLU | 50 | 16 | 0.18 ± 0.02 | 0.20 ± 0.03 | 0.03 ± 0.01 |
5 | 16 | Swish | 100 | 32 | 0.05 ± 0.01 | 0.03 ± 0.005 | 0.04 ± 0.008 |
5 | 128 | ReLU | 100 | 16 | 0.25 ± 0.03 | 0.22 ± 0.02 | 0.06 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malashin, I.; Tynchenko, V.; Gantimurov, A.; Nelyub, V.; Borodulin, A. Optimizing Neural Networks for Chemical Reaction Prediction: Insights from Methylene Blue Reduction Reactions. Int. J. Mol. Sci. 2024, 25, 3860. https://doi.org/10.3390/ijms25073860
Malashin I, Tynchenko V, Gantimurov A, Nelyub V, Borodulin A. Optimizing Neural Networks for Chemical Reaction Prediction: Insights from Methylene Blue Reduction Reactions. International Journal of Molecular Sciences. 2024; 25(7):3860. https://doi.org/10.3390/ijms25073860
Chicago/Turabian StyleMalashin, Ivan, Vadim Tynchenko, Andrei Gantimurov, Vladimir Nelyub, and Aleksei Borodulin. 2024. "Optimizing Neural Networks for Chemical Reaction Prediction: Insights from Methylene Blue Reduction Reactions" International Journal of Molecular Sciences 25, no. 7: 3860. https://doi.org/10.3390/ijms25073860
APA StyleMalashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V., & Borodulin, A. (2024). Optimizing Neural Networks for Chemical Reaction Prediction: Insights from Methylene Blue Reduction Reactions. International Journal of Molecular Sciences, 25(7), 3860. https://doi.org/10.3390/ijms25073860