Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi (Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment
Abstract
:1. Introduction
2. Results
2.1. Effect of Exogenous D-Arg Application on the Proliferation of EC and Somatic Embryo Induction of Litchi
2.2. Effect of Exogenous D-Arg Application on PA Metabolism in Litchi EC
2.3. Effect of Exogenous D-Arg Application on Endogenous Hormone Level in Litchi
2.4. Investigation of DEGs and Functional Categorization
2.5. Differentially Expressed TFs
2.6. Identification of Genes Related to PA Metabolism
2.7. Expression Analysis of PA Metabolism Genes from the Litchi Genome in EC
3. Discussion
3.1. Exogenous D-Arg Treatment Regulates EC Proliferation and Somatic Embryo Induction in Litchi by Changing PA Levels
3.2. Exogenous D-Arg Regulates EC Proliferation and Somatic Embryo Induction in Litchi by Altering Endogenous Hormone Levels
3.3. Exogenous D-Arg Affects the Expression of Genes Related to SE in Litchi
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Determination of PAs
4.3. Determination of Key Enzyme Activity for Polyamine Synthesis and Metabolism
4.4. Determination of Hormone Levels
4.5. RNA-Seq Transcriptomics Sequence and Analysis
4.6. Identification of Genes Involved in PA Metabolism in Litchi
4.7. RNA Extraction and Reverse Quantitative Transcriptase-Polymerase Chain Reaction (qRT-PCR)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mustafavi, S.H.; Badi, H.N.; Sękara, A.; Mehrafarin, A.; Janda, T.; Ghorbanpour, M.; Rafiee, H. Polyamines and Their Possible Mechanisms Involved in Plant Physiological Processes and Elicitation of Secondary Metabolites. Acta Physiol. Plant. 2018, 40, 102. [Google Scholar] [CrossRef]
- Lai, C.; Zhou, X.; Zhang, S.; Zhang, X.; Liu, M.; Zhang, C.; Xu, X.; Xu, X.; Chen, X.; Chen, Y.; et al. PAs Regulate Early Somatic Embryo Development by Changing the Gene Expression Level and the Hormonal Balance in Dimocarpus Longan Lour. Genes 2022, 13, 317. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front. Plant Sci. 2019, 9, 1945. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Alhaithloul, H.A.S.; Parvin, K.; Bhuyan, M.H.M.B.; Tanveer, M.; Mohsin, S.M.; Nahar, K.; Soliman, M.H.; Mahmud, J.A.; Fujita, M. Polyamine Action under Metal/Metalloid Stress: Regulation of Biosynthesis, Metabolism, and Molecular Interactions. Int. J. Mol. Sci. 2019, 20, 3215. [Google Scholar] [CrossRef] [PubMed]
- Bajguz, A.; Piotrowska-Niczyporuk, A. Biosynthetic Pathways of Hormones in Plants. Metabolites 2023, 13, 884. [Google Scholar] [CrossRef] [PubMed]
- Docimo, T.; Reichelt, M.; Schneider, B.; Kai, M.; Kunert, G.; Gershenzon, J.; D’Auria, J.C. The First Step in the Biosynthesis of Cocaine in Erythroxylum coca: The Characterization of Arginine and Ornithine Decarboxylases. Plant Mol. Biol. 2012, 78, 599–615. [Google Scholar] [CrossRef] [PubMed]
- Anwar, R.; Mattoo, A.K.; Handa, A.K. Polyamine Interactions with Plant Hormones: Crosstalk at Several Levels. In Polyamines; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Benkő, P.; Gémes, K.; Fehér, A. Polyamine Oxidase-Generated Reactive Oxygen Species in Plant Development and Adaptation: The Polyamine Oxidase—NADPH Oxidase Nexus. Antioxidants 2022, 11, 2488. [Google Scholar] [CrossRef] [PubMed]
- Flores, H.E.M.; Galston, A.W. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves: I. Physiological Parameters of the Response. Plant Physiol. 1984, 75, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xu, S.; Hu, Q.; Mao, W.; Gong, Y. Putrescine Plays a Positive Role in Salt-Tolerance Mechanisms by Reducing Oxidative Damage in Roots of Vegetable Soybean. J. Integr. Agric. 2014, 13, 349–357. [Google Scholar] [CrossRef]
- Cheng, W.-H.; Wang, F.; Cheng, X.; Zhu, Q.; Sun, Y.; Zhu, H.-G.; Sun, J. Polyamine and Its Metabolite H2O2 Play a Key Role in the Conversion of Embryogenic Callus into Somatic Embryos in Upland Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2015, 6, 164063. [Google Scholar] [CrossRef]
- He, X.; Hao, J.; Fan, S.; Liu, C.; Han, Y. Role of Spermidine in Photosynthesis and Polyamine Metabolism in Lettuce Seedlings under High-Temperature Stress. Plants 2022, 11, 1385. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Chen, J.; Sun, J.; Dong, Z.; Yang, X.; Wang, Y.; Xu, H.; Zhang, X.; Chen, F.; Cui, D. De Novo Assembly and Comparative Analysis of the Transcriptome of Embryogenic Callus Formation in Bread Wheat (Triticum aestivum L.). BMC Plant Biol. 2017, 17, 244. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, Y.-T.; Gao, Z.-Y.; Li, H.-L.; Wang, S.-J.; Li, F.; Wang, J.-B. Changes in Structure and Polyamine Metabolism of Litchi Callus during Subculture and Somatic Embryo Development. J. Fruit Trees 2021, 38, 1911–1920. [Google Scholar]
- Wu, X.-B.; Wang, J.; Liu, J.-H.; Deng, X.-X. Involvement of Polyamine Biosynthesis in Somatic Embryogenesis of Valencia Sweet Orange (Citrus sinensis) Induced by Glycerol. J. Plant Physiol. 2009, 166, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Dong, Y.; Du, C.; Shi, Y.; Teng, Y. Transcriptomic and Physiological Analyses Reveal the Acquisition of Somatic Embryogenesis Potential in Agapanthus praecox. Sci. Hortic. 2022, 305, 111362. [Google Scholar] [CrossRef]
- Salo, H.M.; Sarjala, T.; Jokela, A.; Häggman, H.; Vuosku, J. Moderate Stress Responses and Specific Changes in Polyamine Metabolism Characterize Scots Pine Somatic Embryogenesis. Tree Physiol 2016, 36, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Niemi, K.; Sarjala, T.; Chen, X.; Häggman, H. Spermidine and Methylglyoxal Bis(Guanylhydrazone) Affect Maturation and Endogenous Polyamine Content of Scots Pine Embryogenic Cultures. J. Plant Physiol. 2002, 159, 1155–1158. [Google Scholar] [CrossRef]
- Montague, M.J.; Armstrong, T.A.; Jaworski, E.G. Polyamine Metabolism in Embryogenic Cells of Daucus carota: II. Changes in Arginine Decarboxylase Activity. Plant Physiol. 1979, 63, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.-Y.; Chen, W. Relation Ship Between Embryonic Develpoment and Change of Endogenous Polymaines in Longan (Dimocarpus longan Lour.) Ovules. Chin. J. Appl. Environ. Biol. 2005, 11, 286–288. [Google Scholar]
- Takeda, T.; Hayakawa, F.; Oe, K.; Matsuoka, H. Effects of Exogenous Polyamines on Embryogenic Carrot Cells. Biochem. Eng. J. 2002, 12, 21–28. [Google Scholar] [CrossRef]
- Dai, Y.-N.; Chen, X.-Y.; Yang, M.; Cheng, W.-H.; Wang, F.-L.; Zhu, H.-G. A Prelimiary Study on Pr Omoting Cotton Embryogenic Callus Differentiation Using Putrescine. J. Shihezi Univ. (Nat. Sci.) 2015, 32, 667–671. [Google Scholar]
- Huang, M.; Guo, W.; Wu XQin, Y.; Sabir, I.A.; Zhang, Z.; Zhao, J. Somatic Embryogenesis and Plant Regeneration of Litchi chinensis Sonn. Cv. ‘Zili’ from Immature Zygotic Embryos. Plant Cell Tissue Organ Cult. 2014, 156, 39. [Google Scholar] [CrossRef]
- Raharjo, S.; Litz, R.E. Somatic Embryogenesis and Plant Regeneration of Litchi (Litchi chinensis Sonn.) from Leaves of Mature Phase Trees. Plant Cell Tissue Organ Cult. 2007, 89, 113–119. [Google Scholar] [CrossRef]
- Aboshama, H.M.; El-Sayed, G.A.; Al-Dremly, N.I. Somatic Embryogenesis Induction of Litchi (Litchi chinensis Sonn.) from Leaves of Mature Trees. J. Sci. Innov. Res. 2018, 7, 78–84. [Google Scholar]
- Wang, G.; Liu, Y.-T.; Li, H.-L.; Li, F.; Wang, S.-J.; Wang, J.-B. Effects of Exogenous Polyamine Application on Callus Proliferation and Somatic Embryogenesis in Litchi chinensis ‘Feizixiao’. J. Fruit Trees 2021, 38, 2135–2147. [Google Scholar]
- Hashem, A.M.; Moore, S.; Chen, S.; Hu, C.; Zhao, Q.-H.; Elesawi, I.E.; Feng, Y.; Topping, J.F.; Liu, J.; Lindsey, K.; et al. Putrescine Depletion Affects Arabidopsis Root Meristem Size by Modulating Auxin and Cytokinin Signaling and ROS Accumulation. Int. J. Mol. Sci. 2021, 22, 4094. [Google Scholar] [CrossRef] [PubMed]
- Neill, S.; Desikan, R.; Hancock, J. Hydrogen Peroxide Signalling. Curr. Opin. Plant Biol. 2002, 5, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Sheteiwy, M.S.; Han, J.; Dong, Z.; Pan, R.; Guan, Y.; Alhaj Hamoud, Y.; Hu, J. Polyamine Biosynthetic Pathways and Their Relation with the Cold Tolerance of Maize (Zea mays L.) Seedlings. Plant Signal. Behav. 2020, 15, 1807722. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Wang, J.-H.; Ma, J.-W. The Way Change of Somatic Embryogenesis at the Late Stage of Embryogenic Callus Proliferation of Picea Asperata Mast. Plant Physiol. J. 2014, 50, 197–202. [Google Scholar]
- Tyagi, A.; Ali, S.; Ramakrishna, G.; Singh, A.K.; Park, S.; Mahmoudi, H.; Bae, H. Revisiting the Role of Polyamines in Plant Growth and Abiotic Stress Resilience: Mechanisms, Crosstalk, and Future Perspectives. J. Plant Growth Regul. 2022, 42, 5074–5098. [Google Scholar] [CrossRef]
- Corredoira, E.; Merkle, S.A.; Martínez, M.T.; Toribio, M.; Canhoto, J.M.; Correia, S.; Ballester, A.; Viéitez, A.M. Non-Zygotic Embryogenesis in Hardwood Species. Crit. Rev. Plant Sci. 2019, 38, 29–97. [Google Scholar] [CrossRef]
- Mikuła, A.; Tomaszewicz, W.; Dziurka, M.; Kaźmierczak, A.; Grzyb, M.; Sobczak, M.; Zdańkowski, P.; Rybczyński, J. The Origin of the Cyathea Delgadii Sternb. Somatic Embryos Is Determined by the Developmental State of Donor Tissue and Mutual Balance of Selected Metabolites. Cells 2021, 10, 1388. [Google Scholar] [CrossRef] [PubMed]
- Ikeuchi, M.; Favero, D.S.; Sakamoto, Y.; Iwase, A.; Coleman, D.; Rymen, B.; Sugimoto, K. Molecular Mechanisms of Plant Regeneration. Annu. Rev. Plant Biol. 2019, 70, 377–406. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Sharma, I.; Kaur, N.; Pati, P.K. Auxin: A Master Regulator in Plant Root Development. Plant Cell Rep. 2013, 32, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.J.; Gunnerås, S.A.; Petersson, S.V.; Tarkowski, P.; Graham, N.S.; May, S.T.; Doležal, K.; Sandberg, G.; Ljung, K. Cytokinin Regulation of Auxin Synthesis in Arabidopsis Involves a Homeostatic Feedback Loop Regulated via Auxin and Cytokinin Signal Transduction[W][OA]. Plant Cell 2010, 22, 2956–2969. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Wei, S.; Yang, C. Effect of Putrescine on the Conversion of Protocorm-like Bodies of Dendrobium Officinale to Shoots. Plant Cell Tissue Organ Cult. (PCTOC) 2010, 102, 145–151. [Google Scholar] [CrossRef]
- Pescador, R.; Kerbauy, G.B.; Ferreira, W.M.; Purgatto, E.; Suzuki, R.M.; Guerra, M.P. A Hormonal Misunderstanding in Acca Sellowiana Embryogenesis: Levels of Zygotic Embryogenesis Do Not Match Those of Somatic Embryogenesis. Plant Growth Regul. 2012, 68, 67–76. [Google Scholar] [CrossRef]
- Cheng, W.-H.; Zhu, H.-G.; Tian, W.; Zhu, S.; Xiong, X.-P.; Sun, Y.; Zhu, Q.; Sun, J. De Novo Transcriptome Analysis Reveals Insights into Dynamic Homeostasis Regulation of Somatic Embryogenesis in Upland Cotton (G. hirsutum L.). Plant Mol. Biol. 2016, 92, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Vondráková, Z.; Dobrev, P.I.; Pešek, B.; Fischerová, L.; Vágner, M.; Motyka, V. Profiles of Endogenous Phytohormones Over the Course of Norway Spruce Somatic Embryogenesis. Front. Plant Sci. 2018, 9, 385031. [Google Scholar] [CrossRef]
- Tokuji, Y.; Kuriyama, K. Involvement of Gibberellin and Cytokinin in the Formation of Embryogenic Cell Clumps in Carrot (Daucus carota). J. Plant Physiol. 2003, 160, 133–141. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Cantero-Navarro, E.; Acosta, M.; Cos-Terrer, J.E. Relationships between Endogenous Hormonal Content and Direct Somatic Embryogenesis in Prunus persica L. Batsch Cotyledons. Plant Growth Regul. 2013, 71, 219–224. [Google Scholar] [CrossRef]
- Żur, I.; Dubas, E.; Krzewska, M.; Waligórski, P.; Dziurka, M.; Janowiak, F. Hormonal Requirements for Effective Induction of Microspore Embryogenesis in Triticale (×Triticosecale Wittm.) Anther Cultures. Plant Cell Rep. 2014, 34, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Juzoń-Sikora, K.; Nowicka, A.M.; Plačková, L.; Doležal, K.; Żur, I. Hormonal Homeostasis Associated with Effective Induction of Triticale Microspore Embryogenesis. Plant Cell Tissue Organ Cult. (PCTOC) 2022, 152, 583–604. [Google Scholar] [CrossRef]
- Tajti, J.; Hamow, K.Á.; Majláth, I.; Gierczik, K.; Németh, E.; Janda, T.; Pál, M. Polyamine-Induced Hormonal Changes in Eds5 and Sid2 Mutant Arabidopsis Plants. Int. J. Mol. Sci. 2019, 20, 5746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Atanasov, K.E.; Murillo, E.; Vives-Peris, V.; Zhao, J.; Deng, C.; Gómez-Cádenas, A.; Alcázar, R. Spermine Deficiency Shifts the Balance between Jasmonic Acid and Salicylic Acid-Mediated Defence Responses in Arabidopsis. Plant Cell Environ. 2023, 46, 3949–3970. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, B.; Shariatpanahi, M.E.; da Silva, J.A.T. Efficient Induction of Microspore Embryogenesis Using Abscisic Acid, Jasmonic Acid and Salicylic Acid in Brassica napus L. Plant Cell Tissue Organ Cult. (PCTOC) 2014, 116, 343–351. [Google Scholar] [CrossRef]
- Białecka, B.; Kępczyński, J. Regulation of α-Amylase Activity in Amaranthus Caudatus Seeds by Methyl Jasmonate, Gibberellin A3, Benzyladenine and Ethylene. Plant Growth Regul. 2004, 39, 51–56. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Yuan, D.; Jin, F.; Zhang, Y.; Xu, J. Transcript Profiling Reveals Complex Auxin Signalling Pathway and Transcription Regulation Involved in Dedifferentiation and Redifferentiation during Somatic Embryogenesis in Cotton. BMC Plant Biol. 2012, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, J.; Bao, Y.; Liu, L.; Jiang, H.; An, X.; Dai, L.; Wang, B.; Peng, D. Transcript Profiling Reveals Auxin and Cytokinin Signaling Pathways and Transcription Regulation during In Vitro Organogenesis of Ramie (Boehmeria nivea L. Gaud). PLoS ONE 2014, 9, e113768. [Google Scholar] [CrossRef]
- Lagacé, M.; Matton, D.P. Characterization of a WRKY Transcription Factor Expressed in Late Torpedo-Stage Embryos of Solanum Chacoense. Planta 2004, 219, 185–189. [Google Scholar] [CrossRef]
- Zhou, R.; Zhao, Y.; Cheng, P.; Zhang, B.; Liu, Z.; Wang, S.; Li, H.; Chen, Q.; Zhao, Y.; Li, S.; et al. GmBBM7 Promotes Callus and Root Growth during Somatic Embryogenesis of Soybean (Glycine max). Biotechnol. Biotechnol. Equip. 2023, 37, 2238833. [Google Scholar] [CrossRef]
- Xie, X.; Shen, S.; Yin, X.; Xu, Q.; Sun, C.; Grierson, D.; Ferguson, I.; Chen, K. Isolation, Classification and Transcription Profiles of the AP2/ERF Transcription Factor Superfamily in Citrus. Mol. Biol. Rep. 2014, 41, 4261–4271. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.-H.; Xu, Y.; Yin, Z.-P.; Wu, X.-M.; Qing, M.; Fan, Y.-J.; Song, X.; Xie, K.-D.; Xie, Z.; Xu, Q.; et al. Transcriptomes and DNA Methylomes in Apomictic Cells Delineate Nucellar Embryogenesis Initiation in Citrus. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 2021, 28, dsab014. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, S.; Hussain, M.; Iqbal, S.; Shafiq, M.; Balal, R.M.; Seleiman, M.F.; Chater, J.; Shahid, M.A. Genome-Wide Identification and Characterization of the Biosynthesis of the Polyamine Gene Family in Citrus unshiu. Genes 2023, 14, 1527. [Google Scholar] [CrossRef]
- de Silva, K.K.; Dunwell, J.M.; Wickramasuriya, A.M. Weighted Gene Correlation Network Analysis (WGCNA) of Arabidopsis Somatic Embryogenesis (SE) and Identification of Key Gene Modules to Uncover SE-Associated Hub Genes. Int. J. Genom. 2022, 2022, 7471063. [Google Scholar] [CrossRef]
Family | Pfam | Description | Gene ID |
---|---|---|---|
ODC | PF00728 | C-terminal sheet domain | LITCHI001849.m1 |
PF02784 | Pyridoxal-dependent decarboxylase, pyridoxal binding domain | LITCHI010045.m1 | |
ADC | PF02784 | Pyridoxal-dependent decarboxylase, pyridoxal binding domain | LITCHI001935.m1 |
SAMDC | PF01536 | Adenosylmethionine decarboxylase | LITCHI014637.m1 |
LITCHI005415.m1 | |||
LITCHI019298.m1 | |||
SPDS/SPMS | PF01564 | Spermine/spermidine synthase domain | LITCHI014771.m5 |
PF17284 | Spermidine synthase tetramerisation domain | LITCHI014771.m1 | |
LITCHI017380.m2 | |||
LITCHI017380.m1 | |||
LITCHI009625.m1 | |||
LITCHI009625.m3 | |||
LITCHI022355.m1 | |||
LITCHI004977.m1 | |||
DAO | PF01179 | Copper amine oxidase, enzyme domain | LITCHI014772.m1 |
PF02727 | Copper amine oxidase, N2 domain | LITCHI014780.m1 | |
PF02728 | Copper amine oxidase, N3 domain | LITCHI014775.m1 | |
LITCHI014781.m1 | |||
LITCHI022471.m2 | |||
LITCHI022850.m1 | |||
LITCHI004876.m1 | |||
PAO | PF01593 | Flavin containing amine oxidoreductase | LITCHI015688.m7 |
LITCHI015688.m1 | |||
LITCHI017627.m1 | |||
LITCHI013235.m1 | |||
LITCHI026697.m1 | |||
LITCHI027276.m2 | |||
LITCHI027276.m5 | |||
LITCHI001171.m1 | |||
LITCHI000635.m2 | |||
LITCHI000635.m1 | |||
LITCHI002066.m1 | |||
LITCHI003677.m1 | |||
LITCHI009613.m1 | |||
LITCHI008116.m1 | |||
LITCHI008116.m2 | |||
LITCHI010016.m1 | |||
LITCHI010183.m1 | |||
LITCHI022368.m1 | |||
LITCHI020715.m1 | |||
LITCHI020181.m4 | |||
LITCHI020181.m1 | |||
LITCHI004421.m1 | |||
LITCHI019019.m1 |
Gene Name | Primer Sequences (5′ to 3′) | Produce Size (bp) | |
---|---|---|---|
F | R | ||
LITCHI009273.m1 | AGTAAGGGAGCCGAACAAGAAGTC | CAAGCCGAGTCAGCAAAGTTGAG | 138 |
LITCHI011747.m2 | TGCCAACAAGTCGCCGAAGG | TCCAAGTCCAACTACTGCTGCTC | 107 |
LITCHI013074.m1 | ATTCCAACGAGATCCGATACAGAGG | CGAAGGTTCCGAGCCAGACAC | 108 |
LITCHI014933.m1 | AGATGGTGACTGGATGCTGGTTG | GCCTCTTGCTTCTGTTCCTTTCATG | 97 |
LITCHI022471.m2 | GCTGCTGCTGTCACTCTTCTTG | GGTTGGATGAGGGAGGCGATAG | 89 |
LITCHI022746.m1 | AGCGGCGATTTGGGACTTGG | AACGGCGGATGAGGCGATAAC | 90 |
LITCHI027327.m1 | CACCATCACCACCAACAGCAAAC | TCTCACCAAGGAATTAACCCAGGAC | 83 |
LITCHI001849.m1 | CTGACAACCTCACCACCAACAC | CTCGCAGTAAAGGAAGCCATCG | 74 |
LITCHI001935.m1 | GGAGTGGTGGTGATTCTGATGATG | ACACGATGACGGCACAACAAG | 137 |
LITCHI019298.m1 | TTGCTAGGGCTGATGGCTCTG | ACTTCCTCGTCCTTCTCGTCTTC | 79 |
LITCHI004977.m1 | AGGTTCTGGTTATTGGTGGAGGAG | AAAGCCCACAGCCACACTAGG | 146 |
LITCHI022850.m1 | GCTTCCTCTGCCTTACCATCGG | GTTTAGCGTGGAAAGGGTTCTTGG | 150 |
LITCHI017627.m1 | GGCAGGAATGGCTGGTCTCAC | TGACCCACCTTCCACAACACATAG | 94 |
β-actin | TTGGATTCTGGTGATGGTGTG | CAGCAAGGTCCAACCGAAG | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Wang, G.; Ye, X.; Li, F.; Wang, S.; Li, H.; Wang, P.; Wang, J. Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi (Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment. Int. J. Mol. Sci. 2024, 25, 3965. https://doi.org/10.3390/ijms25073965
Cao L, Wang G, Ye X, Li F, Wang S, Li H, Wang P, Wang J. Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi (Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment. International Journal of Molecular Sciences. 2024; 25(7):3965. https://doi.org/10.3390/ijms25073965
Chicago/Turabian StyleCao, Ludan, Guo Wang, Xiuxu Ye, Fang Li, Shujun Wang, Huanling Li, Peng Wang, and Jiabao Wang. 2024. "Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi (Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment" International Journal of Molecular Sciences 25, no. 7: 3965. https://doi.org/10.3390/ijms25073965
APA StyleCao, L., Wang, G., Ye, X., Li, F., Wang, S., Li, H., Wang, P., & Wang, J. (2024). Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi (Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment. International Journal of Molecular Sciences, 25(7), 3965. https://doi.org/10.3390/ijms25073965