Biosynthesis of Hesperetin, Homoeriodictyol, and Homohesperetin in a Transcriptomics-Driven Engineered Strain of Streptomyces albidoflavus
Abstract
:1. Introduction
2. Results
2.1. Transcriptomic Assay in S. albidoflavus When Feeding with l-tyrosine
2.2. Effect of a Knock-Out for the hppD Gene in the Biosynthesis of Naringenin
2.3. Heterologous Biosynthesis of Hesperetin and Homoeriodictyol
2.4. Identification of a di-Methylated Flavanone in the Extracts of the S. albidoflavus UO-FLAV-005-∆hppD-HES/HOM Strain
3. Discussion
4. Materials and Methods
4.1. Reagents and Biochemicals
4.2. Genes and Enzymes
4.3. Bacterial Strains and Culture Conditions
4.4. Engineering of the S. albidoflavus Strains
4.4.1. Construction of the Flavonoid-Producing Strains
4.4.2. The Deletion of BGC Number 20 and Generation of the hppD Knock-Out Mutant Strain
4.4.3. Construction of the Plasmids for the Biosynthesis of Hesperetin and Homoeriodictyol
4.5. Transcriptomic Analysis
4.5.1. Total RNA Extraction
4.5.2. Transcriptomic Data Analysis
4.6. Flavonoid Extraction and HPLC-DAD Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaushal, N.; Singh, M.; Singh Sangwan, R. Flavonoids: Food Associations, Therapeutic Mechanisms, Metabolism and Nanoformulations. Food Res. Int. 2022, 157, 111442. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M.R. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. BioMed Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Pollard, S.E.; Whiteman, M.; Spencer, J.P.E. Modulation of Peroxynitrite-Induced Fibroblast Injury by Hesperetin: A Role for Intracellular Scavenging and Modulation of ERK Signalling. Biochem. Biophys. Res. Commun. 2006, 347, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Rainey-Smith, S.; Schroetke, L.-W.; Bahia, P.; Fahmi, A.; Skilton, R.; Spencer, J.P.E.; Rice-Evans, C.; Rattray, M.; Williams, R.J. Neuroprotective Effects of Hesperetin in Mouse Primary Neurones Are Independent of CREB Activation. Neurosci. Lett. 2008, 438, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Ahn, W.S. Neuroprotective Effects of Chronic Hesperetin Administration in Mice. Arch. Pharm. Res. 2008, 31, 1457–1462. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Cruz-Martins, N.; Butnariu, M.; Sarac, I.; Bagiu, I.C.; Ezzat, S.M.; Wang, J.; Koay, A.; Sheridan, H.; Adetunji, C.O.; et al. Hesperetin’s Health Potential: Moving from Preclinical to Clinical Evidence and Bioavailability Issues, to Upcoming Strategies to Overcome Current Limitations. Crit. Rev. Food Sci. Nutr. 2022, 62, 4449–4464. [Google Scholar] [CrossRef] [PubMed]
- Hochkogler, C.M.; Liszt, K.; Lieder, B.; Stöger, V.; Stübler, A.; Pignitter, M.; Hans, J.; Widder, S.; Ley, J.P.; Krammer, G.E.; et al. Appetite-Inducing Effects of Homoeriodictyol: Two Randomized, Cross-Over Interventions. Mol. Nutr. Food Res. 2017, 61, 1700459. [Google Scholar] [CrossRef]
- Lieder, B.; Hoi, J.K.; Holik, A.-K.; Geissler, K.; Hans, J.; Friedl, B.; Liszt, K.; Krammer, G.E.; Ley, J.P.; Somoza, V. The Flavanone Homoeriodictyol Increases SGLT-1-Mediated Glucose Uptake but Decreases Serotonin Release in Differentiated Caco-2 Cells. PLoS ONE 2017, 12, e0171580. [Google Scholar] [CrossRef]
- Iranshahi, M.; Rezaee, R.; Parhiz, H.; Roohbakhsh, A.; Soltani, F. Protective Effects of Flavonoids against Microbes and Toxins: The Cases of Hesperidin and Hesperetin. Life Sci. 2015, 137, 125–132. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Ho, D.K.; Cassady, J.M.; Cook, V.M.; Baird, W.M. Isolation of Potential Cancer Chemopreventive Agents from Eriodictyon Californicum. J. Nat. Prod. 1992, 55, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Brunton, N.P.; Rai, D.K. Recent Advances on Application of Ultrasound and Pulsed Electric Field Technologies in the Extraction of Bioactives from Agro-Industrial By-Products. Food Bioprocess Technol. 2018, 11, 223–241. [Google Scholar] [CrossRef]
- Trantas, E.A.; Koffas, M.A.G.; Xu, P.; Ververidis, F. When plants produce not enough or at all: Metabolic engineering of flavonoids in microbial hosts. Front. Plant Sci. 2015, 6, 7. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Zhang, L.; Zhao, G.-R. Modular Engineering of Saccharomyces Cerevisiae for De Novo Biosynthesis of Genistein. Microorganisms 2022, 10, 1402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Hao, T.; Zhou, J. Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in Escherichia Coli. J. Microbiol. Biotechnol. 2020, 30, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Magadán-Corpas, P.; Ye, S.; Pérez-Valero, Á.; McAlpine, P.L.; Valdés-Chiara, P.; Torres-Bacete, J.; Nogales, J.; Villar, C.J.; Lombó, F. Optimized De Novo Eriodictyol Biosynthesis in Streptomyces Albidoflavus Using an Expansion of the Golden Standard Toolkit for Its Use in Actinomycetes. Int. J. Mol. Sci. 2023, 24, 8879. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Álvarez, R.; Botas, A.; Albillos, S.M.; Rumbero, A.; Martín, J.F.; Liras, P. Molecular Genetics of Naringenin Biosynthesis, a Typical Plant Secondary Metabolite Produced by Streptomyces Clavuligerus. Microb. Cell Factories 2015, 14, 178. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.F.; Liras, P. Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics 2022, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, X.; Wang, T.; van Gulik, W.; Noorman, H.J.; Zhuang, Y.; Chu, J.; Zhang, S. Comparative Fluxome and Metabolome Analysis of Formate as an Auxiliary Substrate for Penicillin Production in Glucose-Limited Cultivation of Penicillium Chrysogenum. Biotechnol. J. 2019, 14, e1900009. [Google Scholar] [CrossRef]
- Kim, M.; Park, B.G.; Kim, J.; Kim, J.Y.; Kim, B.G. Exploiting Transcriptomic Data for Metabolic Engineering: Toward a Systematic Strain Design. Curr. Opin. Biotechnol. 2018, 54, 26–32. [Google Scholar] [CrossRef]
- Kim, M.; Yi, J.S.; Lakshmanan, M.; Lee, D.Y.; Kim, B.G. Transcriptomics-Based Strain Optimization Tool for Designing Secondary Metabolite Overproducing Strains of Streptomyces Coelicolor. Biotechnol. Bioeng. 2016, 113, 651–660. [Google Scholar] [CrossRef]
- Ahmed, Y.; Rebets, Y.; Tokovenko, B.; Brötz, E.; Luzhetskyy, A. Identification of Butenolide Regulatory System Controlling Secondary Metabolism in Streptomyces Albus J1074. Sci. Rep. 2017, 7, 9784. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, X.F.; Bu, Q.T.; Zheng, Y.; Chen, X.A.; Li, Y.Q.; Mao, X.M. Transcriptome-Based Identification of a Strong Promoter for Hyper-Production of Natamycin in Streptomyces. Curr. Microbiol. 2019, 76, 95–99. [Google Scholar] [CrossRef]
- Lyu, X.; Ng, K.R.; Lee, J.L.; Mark, R.; Chen, W.N. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces Cerevisiae. J. Agric. Food Chem. 2017, 65, 6638–6646. [Google Scholar] [CrossRef]
- Pérez-Valero, Á.; Ye, S.; Magadán-Corpas, P.; Villar, C.J.; Lombó, F. Metabolic Engineering in Streptomyces Albidoflavus for the Biosynthesis of the Methylated Flavonoids Sakuranetin, Acacetin, and Genkwanin. Microb. Cell Factories 2023, 22, 234. [Google Scholar] [CrossRef] [PubMed]
- Wils, C.R.; Brandt, W.; Manke, K.; Vogt, T. A Single Amino Acid Determines Position Specificity of an Arabidopsis Thaliana CCoAOMT-like O-Methyltransferase. FEBS Lett. 2013, 587, 683–689. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, H.; Wu, B. Structure-Based Drug Design of Catechol-O-Methyltransferase Inhibitors for CNS Disorders. Br. J. Clin. Pharmacol. 2014, 77, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-G.; Jung, B.-R.; Lee, Y.; Hur, H.-G.; Lim, Y.; Ahn, J.-H. Regiospecific Flavonoid 7-O-Methylation with Streptomyces Avermitilis O -Methyltransferase Expressed in Escherichia Coli. J. Agric. Food Chem. 2006, 54, 823–828. [Google Scholar] [CrossRef]
- Parajuli, P.; Pandey, R.P.; Nguyen, T.H.T.; Dhakal, D.; Sohng, J.K. Substrate Scope of O-Methyltransferase from Streptomyces Peucetius for Biosynthesis of Diverse Natural Products Methoxides. Appl. Biochem. Biotechnol. 2018, 184, 1404–1420. [Google Scholar] [CrossRef]
- Darsandhari, S.; Dhakal, D.; Shrestha, B.; Parajuli, P.; Seo, J.-H.; Kim, T.-S.; Sohng, J.K. Characterization of Regioselective Flavonoid O- Methyltransferase from the Streptomyces Sp. KCTC 0041BP. Enzym. Microb. Technol. 2018, 113, 29–36. [Google Scholar] [CrossRef]
- Yoon, Y. Characterization of an O-Methyltransferase from Streptomyces Avermitilis MA-4680. J. Microbiol. Biotechnol. 2010, 20, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Yi, Y.S.; Lee, Y.; Kim, S.; Kim, B.G.; Ahn, J.-H.; Lim, Y. Characterization of O-Methyltransferase ScOMT1 Cloned from Streptomyces Coelicolor A3(2). Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 2005, 1730, 85–95. [Google Scholar] [CrossRef]
- Flydal, M.I.; Martinez, A. Phenylalanine Hydroxylase: Function, Structure, and Regulation. IUBMB Life 2013, 65, 341–349. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Xie, Z.; Tian, Y.; Liu, G.; Tan, H. The Tyrosine Degradation Gene HppD Is Transcriptionally Activated by HpdA and Repressed by HpdR in Streptomyces Coelicolor, While HpdA Is Negatively Autoregulated and Repressed by HpdR. Mol. Microbiol. 2007, 65, 1064–1077. [Google Scholar] [CrossRef]
- Kuzuyama, T. Biosynthetic Studies on Terpenoids Produced by Streptomyces. J. Antibiot. 2017, 70, 811–818. [Google Scholar] [CrossRef]
- Rodríguez, E.; Banchio, C.; Diacovich, L.; Bibb, M.J.; Gramajo, H. Role of an Essential Acyl Coenzyme A Carboxylase in the Primary and Secondary Metabolism of Streptomyces Coelicolor A3(2). Appl. Environ. Microbiol. 2001, 67, 4166–4176. [Google Scholar] [CrossRef] [PubMed]
- Verhoef, S.; Ballerstedt, H.; Volkers, R.J.M.; De Winde, J.H.; Ruijssenaars, H.J. Comparative Transcriptomics and Proteomics of P-Hydroxybenzoate Producing Pseudomonas Putida S12: Novel Responses and Implications for Strain Improvement. Appl. Microbiol. Biotechnol. 2010, 87, 679–690. [Google Scholar] [CrossRef]
- Liu, J.; Tian, M.; Wang, Z.; Xiao, F.; Huang, X.; Shan, Y. Production of Hesperetin from Naringenin in an Engineered Escherichia Coli Consortium. J. Biotechnol. 2022, 347, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Song, M.C.; Lee, J.Y.; Yoon, Y.J. Microbial Production of O-Methylated Flavanones from Methylated Phenylpropanoic Acids in Engineered Escherichia Coli. J. Ind. Microbiol. Biotechnol. 2019, 46, 1707–1713. [Google Scholar] [CrossRef]
- Hanko, E.K.R.; Correia, J.; Souza, C.S.; Green, A.; Chromy, J.; Stoney, R.; Yan, C.; Takano, E.; Lousa, D.; Soares, C.M.; et al. Microbial Production of the Plant Flavanone Hesperetin from Caffeic Acid. BMC Res. Notes 2023, 16, 343. [Google Scholar] [CrossRef]
- Macneil, D.J.; Gewain, K.M.; Ruby, C.L.; Dezeny, G.; Gibbons, P.H.; Maeneil, T. Analysis of Streptomyces Avermitilis Genes Required for Avermectin Biosynthesis Utilizing a Novel Inte-Gration Vector. Gene 1992, 111, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; John Innes Foundation: Norwich, UK, 2000. [Google Scholar]
- Fernández, E.; Weißbach, U.; Reillo, C.S.; Braña, A.F.; Méndez, C.; Rohr, J.; Salas, J.A. Identification of Two Genes from Streptomyces Argillaceus Encoding Glycosyltransferases Involved in Transfer of a Disaccharide during Biosynthesis of the Antitumor Drug Mithramycin. J. Bacteriol. 1998, 180, 4929–4937. [Google Scholar] [CrossRef] [PubMed]
- Myronovskyi, M.; Tokovenko, B.; Brötz, E.; Rückert, C.; Kalinowski, J.; Luzhetskyy, A. Genome Rearrangements of Streptomyces Albus J1074 Lead to the Carotenoid Gene Cluster Activation. Appl. Microbiol. Biotechnol. 2014, 98, 795–806. [Google Scholar] [CrossRef] [PubMed]
- García-Gutiérrez, C.; Aparicio, T.; Torres-Sánchez, L.; Martínez-García, E.; de Lorenzo, V.; Villar, C.J.; Lombó, F. Multifunctional SEVA Shuttle Vectors for Actinomycetes and Gram-Negative Bacteria. Microbiologyopen 2020, 9, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Magadán-Corpas, P.; Pérez-Valero, Á.; Villar, C.J.; Lombó, F. Metabolic Engineering Strategies for Naringenin Production Enhancement in Streptomyces Albidoflavus J1074. Microb. Cell Factories 2023, 22, 167. [Google Scholar] [CrossRef] [PubMed]
- Chater, K.F.; Wilde, L.C. Streptomyces Albus G Mutants Defective in the SalGI Restriction-Modification System. J. Gen. Microbiol. 1980, 116, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Iverson, S.V.; Haddock, T.L.; Beal, J.; Densmore, D.M. CIDAR MoClo: Improved MoClo Assembly Standard and New E. Coli Part Library Enable Rapid Combinatorial Design for Synthetic and Traditional Biology. ACS Synth. Biol. 2016, 5, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Väremo, L.; Nielsen, J.; Nookaew, I. Enriching the Gene Set Analysis of Genome-Wide Data by Incorporating Directionality of Gene Expression and Combining Statistical Hypotheses and Methods. Nucleic Acids Res. 2013, 41, 4378–4391. [Google Scholar] [CrossRef]
- Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Marín, L.; Gutiérrez-del-Río, I.; Villar, C.J.; Lombó, F. De Novo Biosynthesis of Garbanzol and Fustin in Streptomyces Albus Based on a Potential Flavanone 3-hydroxylase with 2-hydroxylase Side Activity. Microb. Biotechnol. 2021, 14, 2009–2024. [Google Scholar] [CrossRef] [PubMed]
Plasmids | Description | Source |
---|---|---|
pSEVA88c1 | Replicative shuttle vector | [45] |
pSEVA88c1-BGC20 | pSEVA88c1 harboring homologous arms for BGC20 deletion | This study |
pSEVA88c1-∆hppD | pSEVA88c1 harboring homologous arms for hppD deletion | This study |
pSEVAUO-C41012 | Replicative shuttle vector harboring the nuclease cas9 | [16] |
pSEVAUO-C41012-Spacer-BGC20 | pSEVAUO-C41012 harboring the protospacer for BGC20 deletion | This study |
pSEVAUO-C41012-Spacer-∆hppD | pSEVAUO-C41012 harboring the protospacer for hppD deletion | This study |
pSEVAUO-C41012-BGC20 | pSEVAUO-C41012-Spacer-BGC20 harboring homologous arms for BGC20 deletion | This study |
pSEVAUO-C41012-∆hppD | pSEVAUO-C41012-Spacer-∆hppD harboring homologous arms for hppD deletion | This study |
pSEVAUO-M21703–NarBGC | Level 2 MoClo plasmid harboring TAL, 4CL, CHS, and CHI | [46] |
pSEVA181-At4g26220 | Source of At4g26220 (level 0 MoClo) | This study |
pSEVA181SP25 | Source of SP25 (level 0 MoClo) | [16] |
pSEVA181RiboJ-RBS | Source of RiboJ-RBS (level 0 MoClo) | [16] |
pIDTSMARTttsbib | Source of ttsbib (level 0 MoClo) | [16] |
pSEVAUO-M21206F3′H-CPR | Level 1 MoClo harboring F3′H-CPR gene | [16] |
pSEVAUO-M21102 | Level 1 MoClo receptor | [16] |
pSEVAUO-M21102-At4g26220 | Level 1 MoClo harboring At4g26220 | This study |
pSEVAUO-M11501 | Level 2 MoClo receptor | [16] |
pSEVAUO-M11501pSEVAUO-M11501-HES/HOM | Level 2 MoClo plasmid harboring F3′H-CPR and At4g26220 genes | This study |
Strains | ||
E. coli TOP10 | Strain used for routine subcloning | Invitrogen |
E. coli ET12567/pUZ8002 | Strain used for conjugation | [41] |
Streptomyces albidoflavus J1074 | S. albidoflavus mutant of the S. albidoflavus G strain that lacks an active SalI restriction-modification system | [47] |
S. albidoflavus UO-FLAV-004 | S. albidoflavus strain used for BGC20 deletion | [25] |
S. albidoflavus UO-FLAV-005 | S. albidoflavus UO-FLAV-004 lacking BGC20 | This study |
S. albidoflavus UO-FLAV-005-NAR | S. albidoflavus UO-FLAV-005 harboring TAL, 4CL, CHS, and CHI | This study |
S. albidoflavus UO-FLAV-005-∆hppD-NAR | S. albidoflavus UO-FLAV-005-∆hppD harboring TAL, 4CL, CHS, and CHI | This study |
S. albidoflavus UO-FLAV-005-∆hppD-ERI | S. albidoflavus UO-FLAV-005-∆hppD harboring TAL, 4CL, CHS, CHI, and F3′H-CPR genes | This study |
S. albidoflavus UO-FLAV-005-∆hppD-HES/HOM | S. albidoflavus UO-FLAV-005-∆hppD harboring TAL, 4CL, CHS, CHI, F3′H-CPR, and At4g26220 genes | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Valero, Á.; Serna-Diestro, J.; Tafur Rangel, A.; Barbuto Ferraiuolo, S.; Schiraldi, C.; Kerkhoven, E.J.; Villar, C.J.; Lombó, F. Biosynthesis of Hesperetin, Homoeriodictyol, and Homohesperetin in a Transcriptomics-Driven Engineered Strain of Streptomyces albidoflavus. Int. J. Mol. Sci. 2024, 25, 4053. https://doi.org/10.3390/ijms25074053
Pérez-Valero Á, Serna-Diestro J, Tafur Rangel A, Barbuto Ferraiuolo S, Schiraldi C, Kerkhoven EJ, Villar CJ, Lombó F. Biosynthesis of Hesperetin, Homoeriodictyol, and Homohesperetin in a Transcriptomics-Driven Engineered Strain of Streptomyces albidoflavus. International Journal of Molecular Sciences. 2024; 25(7):4053. https://doi.org/10.3390/ijms25074053
Chicago/Turabian StylePérez-Valero, Álvaro, Juan Serna-Diestro, Albert Tafur Rangel, Simona Barbuto Ferraiuolo, Chiara Schiraldi, Eduard J. Kerkhoven, Claudio J. Villar, and Felipe Lombó. 2024. "Biosynthesis of Hesperetin, Homoeriodictyol, and Homohesperetin in a Transcriptomics-Driven Engineered Strain of Streptomyces albidoflavus" International Journal of Molecular Sciences 25, no. 7: 4053. https://doi.org/10.3390/ijms25074053
APA StylePérez-Valero, Á., Serna-Diestro, J., Tafur Rangel, A., Barbuto Ferraiuolo, S., Schiraldi, C., Kerkhoven, E. J., Villar, C. J., & Lombó, F. (2024). Biosynthesis of Hesperetin, Homoeriodictyol, and Homohesperetin in a Transcriptomics-Driven Engineered Strain of Streptomyces albidoflavus. International Journal of Molecular Sciences, 25(7), 4053. https://doi.org/10.3390/ijms25074053