Feasibility and Preliminary Efficacy of American Elderberry Juice for Improving Cognition and Inflammation in Patients with Mild Cognitive Impairment
Abstract
:1. Introduction
2. Results
2.1. Participant Characteristics
2.2. Feasibility
2.3. Preliminary Efficacy
2.4. Cognitive Outcomes
2.5. Blood-Based Inflammatory Markers
3. Discussion
3.1. Clinical Implications
3.2. Limitations and Future Directions
4. Materials and Methods
4.1. Participants
4.2. Procedure and Study Design
4.3. Measures
4.3.1. Clinical Assessments
4.3.2. Cognitive Assessments
4.3.3. Blood-Based Biomarkers of Inflammation (Proteomic Outcomes)
4.4. Data Analysis
4.4.1. Baseline Demographics and Clinical Characteristics
4.4.2. Feasibility
4.4.3. Preliminary Efficacy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandra, A.; Valkimadi, P.E.; Pagano, G.; Cousins, O.; Dervenoulas, G.; Politis, M.; Initiative, A.s.D.N. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer’s disease and mild cognitive impairment. Hum. Brain Mapp. 2019, 40, 5424–5442. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild Cognitive Impairment: Aging to Alzheimer’s Disease; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Alexopoulos, P.; Grimmer, T.; Perneczky, R.; Domes, G.; Kurz, A. Progression to dementia in clinical subtypes of mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 2006, 22, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Sartori, A.C.; Vance, D.E.; Slater, L.Z.; Crowe, M. The impact of inflammation on cognitive function in older adults: Implications for health care practice and research. J. Neurosci. Nurs. 2012, 44, 206. [Google Scholar] [CrossRef] [PubMed]
- Tangestani Fard, M.; Stough, C. A review and hypothesized model of the mechanisms that underpin the relationship between inflammation and cognition in the elderly. Front. Aging Neurosci. 2019, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Schram, M.T.; Euser, S.M.; De Craen, A.J.; Witteman, J.C.; Frölich, M.; Hofman, A.; Jolles, J.; Breteler, M.M.; Westendorp, R.G. Systemic markers of inflammation and cognitive decline in old age. J. Am. Geriatr. Soc. 2007, 55, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Murkovic, M.; Abuja, P.; Bergmann, A.; Zirngast, A.; Adam, U.; Winklhofer-Roob, B.; Toplak, H. Effects of elderberry juice on fasting and postprandial serum lipids and low-density lipoprotein oxidation in healthy volunteers: A randomized, double-blind, placebo-controlled study. Eur. J. Clin. Nutr. 2004, 58, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—A review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Zafra-Stone, S.; Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J.A.; Bagchi, D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 2007, 51, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. Oxidative Med. Cell. Longev. 2019, 2019, 8512048. [Google Scholar] [CrossRef]
- Micek, A.; Owczarek, M.; Jurek, J.; Guerrera, I.; Torrisi, S.A.; Grosso, G.; Alshatwi, A.A.; Godos, J. Anthocyanin-rich fruits and mental health outcomes in an Italian cohort. J. Berry Res. 2022, 12, 551–564. [Google Scholar] [CrossRef]
- Mestrom, A.; Charlton, K.E.; Thomas, S.J.; Larkin, T.A.; Walton, K.L.; Elgellaie, A.; Kent, K. Higher anthocyanin intake is associated with lower depressive symptoms in adults with and without major depressive disorder. Food Sci. Nutr. 2024, 12, 2202–2209. [Google Scholar] [CrossRef] [PubMed]
- Rangseekajee, P.; Piyavhatkul, N.; Wattanathorn, J.; Thukham-Mee, W.; Paholpak, P. Positive effects of anthocyanin-rich mulberry milk on mental health problems in the working population: An open-label study. Nutr. Res. Pract. 2024, 18, 110. [Google Scholar] [CrossRef] [PubMed]
- Pigeon, W.R.; Carr, M.; Gorman, C.; Perlis, M.L. Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: A pilot study. J. Med. Food 2010, 13, 579–583. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Sicari, V.; Ursino, C.; Manfredi, I.; Conidi, C.; Figoli, A.; Cassano, A. Concentration of bioactive compounds from elderberry (Sambucus nigra L.) juice by nanofiltration membranes. Plant Foods Hum. Nutr. 2018, 73, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Ofek, I.; Goldhar, J.; Sharon, N. Anti-Escherichia Coli Adhesin Activity of Cranberry and Blueberry Juices; Springer: New York City, NY, USA, 1996; pp. 179–183. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Anthocyanins and other flavonoids. Nat. Prod. Rep. 2001, 18, 310–333. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.; Ba, G.N.; Mathe, G. Polyphenols: Do they play a role in the prevention of human pathologies? Biomed. Pharmacother. 2002, 56, 200–207. [Google Scholar] [CrossRef]
- Bagchi, D.; Garg, A.; Krohn, R.; Bagchi, M.; Tran, M.; Stohs, S. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res. Commun. Mol. Pathol. Pharmacol. 1997, 95, 179–189. [Google Scholar] [PubMed]
- Ngamlerst, C.; Udomkasemsab, A.; Kongkachuichai, R.; Kwanbunjan, K.; Chupeerach, C.; Prangthip, P. The potential of antioxidant-rich Maoberry (Antidesma bunius) extract on fat metabolism in liver tissues of rats fed a high-fat diet. BMC Complement. Altern. Med. 2019, 19, 294. [Google Scholar] [CrossRef]
- Kelsey, N.; Hulick, W.; Winter, A.; Ross, E.; Linseman, D. Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress. Nutr. Neurosci. 2011, 14, 249–259. [Google Scholar] [CrossRef]
- Pacheco, S.M.; Soares, M.S.P.; Gutierres, J.M.; Gerzson, M.F.B.; Carvalho, F.B.; Azambuja, J.H.; Schetinger, M.R.C.; Stefanello, F.M.; Spanevello, R.M. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer’s type. J. Nutr. Biochem. 2018, 56, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Winter, A.N.; Bickford, P.C. Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease. Antioxidants 2019, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Drake, J.; Pocernich, C.; Castegna, A. Evidence of oxidative damage in Alzheimer’s disease brain: Central role for amyloid β-peptide. Trends Mol. Med. 2001, 7, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Casadesus, G.; Petersen, R.B.; Perry, G.; Smith, M.A. Oxidative stress and redox-active iron in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2004, 1012, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Markesbery, W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med. 1997, 23, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Kim, T.; Rehman, S.U.; Khan, M.S.; Amin, F.U.; Khan, M.; Ikram, M.; Kim, M.O. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol. Neurobiol. 2018, 55, 6076–6093. [Google Scholar] [CrossRef]
- Dai, Q.; Borenstein, A.R.; Wu, Y.; Jackson, J.C.; Larson, E.B. Fruit and vegetable juices and Alzheimer’s disease: The Kame Project. Am. J. Med. 2006, 119, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Salo, I.; Plaza, M.; Björck, I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults. PLoS ONE 2017, 12, e0188173. [Google Scholar] [CrossRef]
- Krikorian, R.; Shidler, M.D.; Nash, T.A.; Kalt, W.; Vinqvist-Tymchuk, M.R.; Shukitt-Hale, B.; Joseph, J.A. Blueberry Supplementation Improves Memory in Older Adults. J. Agric. Food Chem. 2010, 58, 3996–4000. [Google Scholar] [CrossRef]
- Krikorian, R.; Nash, T.A.; Shidler, M.D.; Shukitt-Hale, B.; Joseph, J.A. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br. J. Nutr. 2010, 103, 730–734. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Smith, S.J.; Pouchieu, C.; Pourtau, L.; Gaudout, D.; Pallet, V.; Drummond, P.D. Effects of a polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment: A randomized, double-blind, placebo-controlled study. Front. Psychol. 2023, 14, 1144231. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, C.L.; Canipe, L.G., III; Millsap, G.; Stegall, J.M.; Chai, S.C.; Sheppard, K.W.; Lila, M.A. Six-month intervention with wild blueberries improved speed of processing in mild cognitive decline: A double-blind, placebo-controlled, randomized clinical trial. Nutr. Neurosci. 2023, 26, 1019–1033. [Google Scholar] [CrossRef] [PubMed]
- Kryscio, R.J.; Abner, E.L.; Caban-Holt, A.; Lovell, M.; Goodman, P.; Darke, A.K.; Yee, M.; Crowley, J.; Schmitt, F.A. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol. 2017, 74, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, MI, USA, 1988. [Google Scholar]
- Correll, J.; Mellinger, C.; Pedersen, E.J. Flexible approaches for estimating partial eta squared in mixed-effects models with crossed random factors. Behav. Res. Methods 2022, 54, 1626–1642. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.A.; Tippett, L.J. Effects of focal brain lesions on visual problem-solving. Neuropsychologia 1996, 34, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Parisi, J.E.; Dickson, D.W.; Johnson, K.A.; Knopman, D.S.; Boeve, B.F.; Jicha, G.A.; Ivnik, R.J.; Smith, G.E.; Tangalos, E.G. Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. 2006, 63, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Beversdorf, D.Q.; Nagaraja, H.N.; Bornstein, R.A.; Scharre, D.W. The effect of donepezil on problem-solving ability in individuals with amnestic mild cognitive impairment: A pilot study. Cogn. Behav. Neurol. Off. J. Soc. Behav. Cogn. Neurol. 2021, 34, 182. [Google Scholar] [CrossRef] [PubMed]
- Poulose, S.M.; Rabin, B.M.; Bielinski, D.F.; Kelly, M.E.; Miller, M.G.; Thanthaeng, N.; Shukitt-Hale, B. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles. Life Sci. Space Res. 2017, 12, 16–23. [Google Scholar] [CrossRef]
- Beversdorf, D.Q.; Ferguson, J.L.; Hillier, A.; Sharma, U.K.; Nagaraja, H.N.; Bornstein, R.A.; Scharre, D.W. Problem solving ability in patients with mild cognitive impairment. Cogn. Behav. Neurol. 2007, 20, 44–47. [Google Scholar] [CrossRef]
- Bowtell, J.L.; Aboo-Bakkar, Z.; Conway, M.E.; Adlam, A.-L.R.; Fulford, J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl. Physiol. Nutr. Metab. 2017, 42, 773–779. [Google Scholar] [CrossRef]
- Ikeda, Y.; Imai, Y.; Kumagai, H.; Nosaka, T.; Morikawa, Y.; Hisaoka, T.; Manabe, I.; Maemura, K.; Nakaoka, T.; Imamura, T. Vasorin, a transforming growth factor β-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Proc. Natl. Acad. Sci. USA 2004, 101, 10732–10737. [Google Scholar] [CrossRef]
- Banfi, C.; Baetta, R.; Barbieri, S.; Brioschi, M.; Guarino, A.; Ghilardi, S.; Sandrini, L.; Eligini, S.; Polvani, G.; Bergman, O. Prenylcysteine oxidase 1, an emerging player in atherosclerosis. Commun. Biol. 2021, 4, 1109. [Google Scholar] [CrossRef]
- Banfi, C.; Mallia, A.; Ghilardi, S.; Brioschi, M.; Gianazza, E.; Eligini, S.; Sahlén, P.; Baetta, R. Prenylcysteine Oxidase 1 Is a Key Regulator of Adipogenesis. Antioxidants 2023, 12, 542. [Google Scholar] [CrossRef]
- Karim, S.; Mirza, Z.; Ansari, S.A.; Rasool, M.; Iqbal, Z.; Sohrab, S.S.; Kamal, M.A.; Abuzenadah, A.M.; Al-Qahtani, M.H. Transcriptomics study of neurodegenerative disease: Emphasis on synaptic dysfunction mechanism in Alzheimer’s disease. CNS Neurol. Disord.-Drug Targets (Former. Curr. Drug Targets-CNS Neurol. Disord.) 2014, 13, 1202–1212. [Google Scholar] [CrossRef]
- Jin, S.; Eussen, S.J.; Schalkwijk, C.G.; Stehouwer, C.D.; van Greevenbroek, M.M. Plasma factor D is cross-sectionally associated with low-grade inflammation, endothelial dysfunction and cardiovascular disease: The Maastricht study. Atherosclerosis 2023, 377, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-C.; Han, S.-H.; Mook-Jung, I. Peripheral inflammatory biomarkers in Alzheimer’s disease: A brief review. BMB Rep. 2020, 53, 10. [Google Scholar] [CrossRef] [PubMed]
- Delaby, C.; Gabelle, A.; Blum, D.; Schraen-Maschke, S.; Moulinier, A.; Boulanghien, J.; Séverac, D.; Buée, L.; Rème, T.; Lehmann, S. Central nervous system and peripheral inflammatory processes in Alzheimer’s disease: Biomarker profiling approach. Front. Neurol. 2015, 6, 181. [Google Scholar] [CrossRef] [PubMed]
- Koychev, I.; Jansen, K.; Dette, A.; Shi, L.; Holling, H. Blood-based ATN biomarkers of Alzheimer’s disease: A meta-analysis. J. Alzheimer’s Dis. 2021, 79, 177–195. [Google Scholar] [CrossRef]
- Franceschi, M.; Caffarra, P.; De Vreese, L.; Pelati, O.; Pradelli, S.; Savarè, R.; Cerutti, R.; Grossi, E. Visuospatial planning and problem solving in Alzheimer’s disease patients: A study with the Tower of London Test. Dement. Geriatr. Cogn. Disord. 2007, 24, 424–428. [Google Scholar] [CrossRef]
- Fraenkel, J.; Wallen, N.; Hyun, H. How to Design and Evaluate Research in Education, 10th ed.; McGraw-Hill: New York City, NY, USA, 2018. [Google Scholar]
- Lin, Y.; Shan, P.-Y.; Jiang, W.-J.; Sheng, C.; Ma, L. Subjective cognitive decline: Preclinical manifestation of Alzheimer’s disease. Neurol. Sci. 2019, 40, 41–49. [Google Scholar] [CrossRef]
- Rabin, L.A.; Smart, C.M.; Amariglio, R.E. Subjective cognitive decline in preclinical Alzheimer’s disease. Annu. Rev. Clin. Psychol. 2017, 13, 369–396. [Google Scholar] [CrossRef] [PubMed]
- Frisardi, V.; Panza, F.; Seripa, D.; Imbimbo, B.P.; Vendemiale, G.; Pilotto, A.; Solfrizzi, V. Nutraceutical properties of Mediterranean diet and cognitive decline: Possible underlying mechanisms. J. Alzheimer’s Dis. 2010, 22, 715–740. [Google Scholar] [CrossRef]
- Jelic, V.; Kivipelto, M.; Winblad, B. Clinical trials in mild cognitive impairment: Lessons for the future. J. Neurol. Neurosurg. Psychiatry 2006, 77, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Fotuhi, M.; Zandi, P.P.; Hayden, K.M.; Khachaturian, A.S.; Szekely, C.A.; Wengreen, H.; Munger, R.G.; Norton, M.C.; Tschanz, J.T.; Lyketsos, C.G. Better cognitive performance in elderly taking antioxidant vitamins E and C supplements in combination with nonsteroidal anti-inflammatory drugs: The Cache County Study. Alzheimer’s Dement. 2008, 4, 223–227. [Google Scholar] [CrossRef]
- Lin, K.A.; Choudhury, K.R.; Rathakrishnan, B.G.; Marks, D.M.; Petrella, J.R.; Doraiswamy, P.M.; Initiative, A.s.D.N. Marked gender differences in progression of mild cognitive impairment over 8 years. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2015, 1, 103–110. [Google Scholar] [CrossRef]
- McCarrey, A.C.; An, Y.; Kitner-Triolo, M.H.; Ferrucci, L.; Resnick, S.M. Sex differences in cognitive trajectories in clinically normal older adults. Psychol. Aging 2016, 31, 166. [Google Scholar] [CrossRef] [PubMed]
- Dolsen, M.R.; Crosswell, A.D.; Prather, A.A. Links between stress, sleep, and inflammation: Are there sex differences? Curr. Psychiatry Rep. 2019, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Hartnett, K.B.; Ferguson, B.J.; Hecht, P.M.; Schuster, L.E.; Shenker, J.I.; Mehr, D.R.; Fritsche, K.L.; Belury, M.A.; Scharre, D.W.; Horwitz, A.J. Potential Neuroprotective Effects of Dietary Omega-3 Fatty Acids on Stress in Alzheimer’s Disease. Biomolecules 2023, 13, 1096. [Google Scholar] [CrossRef]
- Beversdorf, D.Q.; Crosby, H.W.; Shenker, J.I. Complementary and Alternative Medicine Approaches in Alzheimer Disease and Other Neurocognitive Disorders. Mo. Med. 2023, 120, 70. [Google Scholar]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef]
- Hughes, C.P.; Berg, L.; Danziger, W.L.; Coben, L.A.; Martin, R.L. A new clinical scale for the staging of dementia. Br. J. Psychiatry 1982, 140, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Tseng, Y.M.; Chen, Y.C.; Chen, P.Y.; Chiu, H.Y. Diagnostic accuracy of the Clinical Dementia Rating Scale for detecting mild cognitive impairment and dementia: A bivariate meta-analysis. Int. J. Geriatr. Psychiatry 2021, 36, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.S.; Olin, J.T.; Doody, R.S.; Clark, C.M.; Morris, J.C.; Reisberg, B.; Ferris, S.H.; Schmitt, F.A.; Grundman, M.; Thomas, R.G. Validity and reliability of the Alzheimer’s Disease Cooperative Study-Clinical global impression of change (ADCS-CGIC). In Alzheimer Disease; Springer: Berlin/Heidelberg, Germany, 1997; pp. 425–429. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Salis, F.; Costaggiu, D.; Mandas, A. Mini-mental state examination: Optimal cut-off levels for mild and severe cognitive impairment. Geriatrics 2023, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J. The Hopkins Verbal Learning Test: Development of a new memory test with six equivalent forms. Clin. Neuropsychol. 1991, 5, 125–142. [Google Scholar] [CrossRef]
- Kaplan, E.; Goodglass, H.; Weintraub, S. Boston Naming Test; McGraw-Hill: New York City, NY, USA, 2001. [Google Scholar]
- Rey, A. L’examen psychologique dans les cas d’encéphalopathie traumatique. (Les problems.). [The psychological examination in cases of traumatic encepholopathy. Problems.]. Arch. Psychol. 1941, 28, 215–285. [Google Scholar]
- Alexander, J.K.; Hillier, A.; Smith, R.M.; Tivarus, M.E.; Beversdorf, D.Q. Beta-adrenergic modulation of cognitive flexibility during stress. J. Cogn. Neurosci. 2007, 19, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumari, S. Problem solving as a function of creativity and personality. Psychol. Stud. 1988, 33, 157–161. [Google Scholar]
- Guilford, J.P. The Nature of Human Intelligence; McGraw-Hill: New York City, NY, USA, 1967. [Google Scholar]
- R: A Language and Environment for Statistical Computing. Vienna, Austria. 2022. Available online: http://www.R-project.org/ (accessed on 22 August 2022).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2014, 67, 1–48. [Google Scholar] [CrossRef]
- Muth, C.; Bales, K.L.; Hinde, K.; Maninger, N.; Mendoza, S.P.; Ferrer, E. Alternative models for small samples in psychological research: Applying linear mixed effects models and generalized estimating equations to repeated measures data. Educ. Psychol. Meas. 2016, 76, 64–87. [Google Scholar] [CrossRef]
- McNeish, D. Small sample methods for multilevel modeling: A colloquial elucidation of REML and the Kenward-Roger correction. Multivar. Behav. Res. 2017, 52, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, M.A. Considerations in determining sample size for pilot studies. Res. Nurs. Health 2008, 31, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Bender, R.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349. [Google Scholar] [CrossRef]
- Johnson, M.C.; Dela Libera Tres, M.; Thomas, A.L.; Rottinghaus, G.E.; Greenlief, C.M. Discriminant Analyses of Anthocyanin and Polyphenol Content of American Elderberry Juice from Multiple Environments Provide Genotype Fingerprint. J. Agric. Food Chem. 2017, 65, 4044–4050. [Google Scholar] [CrossRef]
Elderberry (n = 11) | Placebo–Control (n = 13) | Group Comparisons at Baseline | |
---|---|---|---|
Variable | M (SD) | M (SD) | p |
Age | 76.45 (8.47) | 76.23 (7.73) | 0.94 |
Sex (M:F) | 3:8 | 7:6 | 0.37 |
Race/Ethnicity (n, %) | 0.99 | ||
White/Caucasian | (11, 100%) | (13, 100%) | -- |
Black/African American | (0, 0%) | (0, 0%) | -- |
Native American/ American Indian | (0, 0%) | (0, 0%) | -- |
Education (n, %) | 0.36 | ||
Less than High School | (0, 0%) | (0, 0%) | -- |
High School or Equivalent | (5, 46%) | (3, 23%) | -- |
Associates’ Degree | (1, 9%) | (0, 0%) | |
Bachelor’s Degree | (1, 9%) | (4, 31%) | -- |
Master’s Degree | (3, 27%) | (5, 38%) | -- |
Doctoral Degree | (1, 9%) | (1, 8%) | -- |
Household Income (n, %) | 0.21 | ||
Less than USD 5000 | (0, 0%) | (0, 0%) | -- |
USD 5000 to USD 11,999 | (0, 0%) | (0, 0%) | -- |
USD 12,000–USD 15,999 | (0, 0%) | (1, 8%) | -- |
USD 16,000–USD 24,999 | (3, 28%) | (1, 8%) | -- |
USD 25,000–USD 34,999 | (2, 18%) | (0, 0%) | -- |
USD 35,000–USD 49,999 | (2, 18%) | (2, 15%) | -- |
USD 50,000–USD 74,999 | (1, 9%) | (3, 23%) | -- |
USD 75,000 to USD 99,999 | (1, 9%) | (1, 8%) | -- |
USD 100,000 and greater | (1, 9%) | (5, 38%) | -- |
Not reported | (1, 9%) | -- | -- |
Currently employed (n, %) | (2, 18%) | (1, 8%) | 0.88 |
Dosages taken (%) | 97.07% (2.79%) | 97.17% (2.30%) | 0.46 |
CDR a | 0.5 (0.00) | 0.5 (0.00) | -- |
Baseline | 3 Months | 6 Months | Time | Condition | Time x Condition | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | M | SD | M | SD | M | SD | F | p | F | p | F | p | η2 |
MMSE | 0.72 | 0.40 | 0.54 | 0.63 | 0.84 | 0.37 | 0.02 | ||||||
Elderberry | 25.27 | 3.29 | 25.00 | 2.65 | 24.00 | 4.61 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 24.62 | 3.31 | 25.27 | 3.93 | 25.00 | 2.79 | -- | -- | -- | -- | -- | -- | -- |
HVLT—Free Recall | 0.75 | 0.39 | 0.05 | 0.83 | 0.00 | 0.99 | 0.01 | ||||||
Elderberry | 4.48 | 1.25 | 3.74 | 1.27 | 4.00 | 1.01 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 4.04 | 1.63 | 4.54 | 2.09 | 3.83 | 1.77 | -- | -- | -- | -- | -- | -- | -- |
HVLT—Delayed Free Recall | 0.15 | 0.70 | 0.50 | 0.48 | 0.41 | 0.52 | 0.01 | ||||||
Elderberry | 2.18 | 2.60 | 2.56 | 2.83 | 1.67 | 2.29 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 1.46 | 1.98 | 2.45 | 3.39 | 1.90 | 3.03 | -- | -- | -- | -- | -- | -- | -- |
HVLT—Recognition # Hits | 3.35 | 0.08 * | 0.00 | 0.96 | 2.32 | 0.14 | 0.05 | ||||||
Elderberry | 11.27 | 0.79 | 11.38 | 0.74 | 11.14 | 1.07 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 10.42 | 1.62 | 10.73 | 1.10 | 9.25 | 1.91 | -- | -- | -- | -- | -- | -- | -- |
HVLT—Recognition FA-Related | 0.56 | 0.46 | 0.01 | 0.91 | 0.13 | 0.73 | 0.01 | ||||||
Elderberry | 2.27 | 1.79 | 2.38 | 2.13 | 2.86 | 1.95 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 1.92 | 2.27 | 2.55 | 2.02 | 1.88 | 2.10 | -- | -- | -- | -- | -- | -- | -- |
HVLT—Recognition FA-Unrelated | 2.08 | 0.16 | 0.46 | 0.50 | 0.39 | 0.54 | 0.01 | ||||||
Elderberry | 0.64 | 0.81 | 1.25 | 1.28 | 1.29 | 1.38 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 0.92 | 1.31 | 1.27 | 2.00 | 1.12 | 1.73 | -- | -- | -- | -- | -- | -- | -- |
HVLT—Discrimination Index | 3.69 | 0.06 * | 0.16 | 0.99 | 0.02 | 0.89 | 0.01 | ||||||
Elderberry | 8.36 | 2.58 | 7.75 | 3.06 | 7.00 | 2.08 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 7.58 | 3.45 | 6.91 | 3.24 | 6.25 | 3.45 | -- | -- | -- | -- | -- | -- | -- |
BNT—Total Correct | 8.48 | 0.006 *** | 0.84 | 0.36 | 0.53 | 0.47 | 0.01 | ||||||
Elderberry | 56.45 | 3.14 | 57.56 | 2.30 | 57.11 | 3.55 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 55.23 | 2.83 | 55.91 | 4.44 | 56.55 | 3.67 | -- | -- | -- | -- | -- | -- | -- |
REY CFT—Copy Total | 0.55 | 0.47 | 0.17 | 0.68 | 0.12 | 0.74 | 0.01 | ||||||
Elderberry | 30.55 | 3.70 | 29.06 | 8.15 | 29.21 | 3.91 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 27.21 | 8.84 | 28.17 | 6.90 | 24.81 | 10.13 | -- | -- | -- | -- | -- | -- | -- |
REY CFT—Delayed Copy Total | 0.31 | 0.58 | 0.46 | 0.50 | 0.58 | 0.45 | 0.02 | ||||||
Elderberry | 4.32 | 7.43 | 5.12 | 4.63 | 3.93 | 5.56 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 3.29 | 5.30 | 2.50 | 4.89 | 4.12 | 5.42 | -- | -- | -- | -- | -- | -- | -- |
Anagrams—Total | 0.66 | 0.42 | 1.60 | 0.21 | 1.72 | 0.20 | 0.04 | ||||||
Elderberry | 9.91 | 6.53 | 8.88 | 6.81 | 9.67 | 6.10 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 6.85 | 3.85 | 10.18 | 3.74 | 9.18 | 4.29 | -- | -- | -- | -- | -- | -- | -- |
Anagrams—Latency Total | 0.13 | 0.72 | 0.73 | 0.99 | 1.06 | 0.31 | 0.02 | ||||||
Elderberry | 18.54 | 12.49 | 15.10 | 6.76 | 16.91 | 9.89 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 16.52 | 14.11 | 14.43 | 6.53 | 21.44 | 13.87 | -- | -- | -- | -- | -- | -- | -- |
VPS—Total Correct | 0.84 | 0.37 | 0.33 | 0.99 | 0.60 | 0.44 | 0.02 | ||||||
Elderberry | 2.73 | 2.20 | 3.22 | 2.22 | 3.25 | 2.19 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 2.46 | 1.85 | 3.00 | 2.00 | 3.27 | 2.05 | -- | -- | -- | -- | -- | -- | -- |
VPS—Mean Latency Correct | 0.77 | 0.38 | 2.11 | 0.15 | 3.33 | 0.07 * | 0.06 | ||||||
Elderberry | 43.31 | 34.41 | 33.71 | 25.05 | 23.20 | 14.45 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 31.73 | 42.74 | 35.79 | 31.26 | 41.42 | 34.78 | -- | -- | -- | -- | -- | -- | -- |
Baseline | 3 Months | 6 Months | Time | Condition | Time x Condition | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | M | SD | M | SD | M | SD | F | p | F | p | F | p | η2 |
LDHA | 7.68 | 0.01 ** | 6.71 | 0.02 ** | 5.63 | 0.03 ** | 0.11 | ||||||
Elderberry | 2.35 | 1.45 | 2.06 | 0.62 | 2.14 | 1.17 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 4.78 | 2.34 | 2.70 | 1.08 | 2.07 | 0.89 | -- | -- | -- | -- | -- | -- | -- |
LDHB | 5.70 | 0.03 ** | 2.52 | 0.12 | 4.27 | 0.05 * | 0.10 | ||||||
Elderberry | 2.45 | 1.34 | 3.44 | 0.94 | 3.36 | 1.58 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 4.12 | 1.41 | 3.50 | 1.63 | 1.88 | 1.03 | -- | -- | -- | -- | -- | -- | -- |
A2M | 2.58 | 0.12 | 3.55 | 0.07 * | 3.59 | 0.07 * | 0.11 | ||||||
Elderberry | 3119.87 | 492.68 | 3242.41 | 408.57 | 3573.79 | 514.29 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 3872.48 | 656.22 | 4080.46 | 795.04 | 3834.99 | 645.91 | -- | -- | -- | -- | -- | -- | -- |
Vasorin | 2.63 | 0.12 | 3.22 | 0.08 * | 4.26 | 0.05 * | 0.12 | ||||||
Elderberry | 5.44 | 2.20 | 3.71 | 1.08 | 3.53 | 2.38 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 3.66 | 0.82 | 3.45 | 1.17 | 3.89 | .85 | -- | -- | -- | -- | -- | -- | -- |
PEDF | 0.00 | 0.99 | 3.67 | 0.07 * | 3.58 | 0.07 * | 0.11 | ||||||
Elderberry | 48.19 | 7.77 | 54.11 | 4.83 | 52.64 | 8.61 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 58.37 | 4.03 | 56.13 | 7.32 | 53.90 | 7.30 | -- | -- | -- | -- | -- | -- | -- |
C4-A | 17.07 | <0.001 *** | 0.72 | 0.40 | 0.72 | 0.40 | 0.02 | ||||||
Elderberry | 646.44 | 75.07 | 712.56 | 58.83 | 724.76 | 63.32 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 736.38 | 104.29 | 777.38 | 92.29 | 788.00 | 67.93 | -- | -- | -- | -- | -- | -- | -- |
C4-B | 14.74 | <0.001 *** | 0.64 | 0.43 | 0.58 | 0.45 | 0.02 | ||||||
Elderberry | 650.23 | 80.51 | 719.45 | 71.09 | 727.34 | 68.83 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 742.91 | 106.47 | 784.59 | 88.91 | 794.49 | 70.93 | -- | -- | -- | -- | -- | -- | -- |
PCYOX1 | 1.41 | 0.25 | 3.58 | 0.07 * | 3.02 | 0.096 * | 0.08 | ||||||
Elderberry | 22.15 | 4.50 | 20.26 | 3.24 | 16.15 | 7.88 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 16.19 | 5.25 | 15.42 | 2.22 | 17.32 | 5.02 | -- | -- | -- | -- | -- | -- | -- |
Factor D | 0.11 | 0.75 | 3.59 | 0.99 | 5.35 | 0.03 ** | 0.13 | ||||||
Elderberry | 6.80 | 2.35 | 5.23 | 2.28 | 4.34 | 2.95 | -- | -- | -- | -- | -- | -- | -- |
Placebo | 5.67 | 1.60 | 4.52 | 1.37 | 7.52 | 1.79 | -- | -- | -- | -- | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtis, A.F.; Musich, M.; Costa, A.N.; Gonzales, J.; Gonzales, H.; Ferguson, B.J.; Kille, B.; Thomas, A.L.; Wei, X.; Liu, P.; et al. Feasibility and Preliminary Efficacy of American Elderberry Juice for Improving Cognition and Inflammation in Patients with Mild Cognitive Impairment. Int. J. Mol. Sci. 2024, 25, 4352. https://doi.org/10.3390/ijms25084352
Curtis AF, Musich M, Costa AN, Gonzales J, Gonzales H, Ferguson BJ, Kille B, Thomas AL, Wei X, Liu P, et al. Feasibility and Preliminary Efficacy of American Elderberry Juice for Improving Cognition and Inflammation in Patients with Mild Cognitive Impairment. International Journal of Molecular Sciences. 2024; 25(8):4352. https://doi.org/10.3390/ijms25084352
Chicago/Turabian StyleCurtis, Ashley F., Madison Musich, Amy N. Costa, Joshua Gonzales, Hyeri Gonzales, Bradley J. Ferguson, Briana Kille, Andrew L. Thomas, Xing Wei, Pei Liu, and et al. 2024. "Feasibility and Preliminary Efficacy of American Elderberry Juice for Improving Cognition and Inflammation in Patients with Mild Cognitive Impairment" International Journal of Molecular Sciences 25, no. 8: 4352. https://doi.org/10.3390/ijms25084352
APA StyleCurtis, A. F., Musich, M., Costa, A. N., Gonzales, J., Gonzales, H., Ferguson, B. J., Kille, B., Thomas, A. L., Wei, X., Liu, P., Greenlief, C. M., Shenker, J. I., & Beversdorf, D. Q. (2024). Feasibility and Preliminary Efficacy of American Elderberry Juice for Improving Cognition and Inflammation in Patients with Mild Cognitive Impairment. International Journal of Molecular Sciences, 25(8), 4352. https://doi.org/10.3390/ijms25084352