Effect of Poly(propylene carbonate) on Properties of Polylactic Acid-Based Composite Films
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Structural Properties of Composite Film
2.2. Thermal Analysis of Laminated Films
2.3. Composting Degradation and Bacteriostasis Analysis of Composite Film
3. Materials and Methods
3.1. Materials
3.2. Preparation of Composite Films
3.3. Characterization
3.3.1. Fourier Transform Infrared Spectroscopy Analysis
3.3.2. Mechanical Properties Test
3.3.3. Scanning Electron Microscopic Analysis
3.3.4. Water Absorption Test
3.3.5. Water Vapor Permeability Test
3.3.6. Oxygen Permeability Test
3.3.7. Differential Scanning Calorimetry Test
3.3.8. Dynamic Thermomechanical Analysis
3.3.9. Thermogravimetric Analysis
3.3.10. Compost Degradability Analysis
3.3.11. Antibacterial Properties Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Meng, L.; Zhang, Y.; Qin, Z.; Meng, L.; Li, C.; Liu, M. Research and Application of Polypropylene Carbonate Composite Materials: A Review. Polymers 2022, 14, 2159. [Google Scholar] [CrossRef]
- Barreto, C.; Hansen, E.; Fredriksen, S. Novel solventless purification of poly(propylene carbonate): Tailoring the composition and thermal properties of PPC. Polym. Degrad. Stab. 2012, 97, 893–904. [Google Scholar] [CrossRef]
- Muthuraj, R.; Mekonnen, T. Carbon Dioxide–Derived Poly(propylene carbonate) as a Matrix for Composites and Nanocomposites: Performances and Applications. Macromol. Mater. Eng. 2018, 303, 1800366. [Google Scholar] [CrossRef]
- Barreto, C.; Altskär, A.; Fredriksen, S.; Hansen, E.; Rychwalski, R.W. Multiwall carbon nanotube/PPC composites: Preparation, structural analysis and thermal stability. Eur. Polym. J. 2013, 49, 2149–2161. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Wang, X.; Wang, F. Thermal degradation kinetics of poly(propylene carbonate) obtained from the copolymerization of carbon dioxide and propylene oxide. J. Appl. Polym. Sci. 2003, 90, 947–953. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Wilson, S.J. What’s new with CO2? Recent advances in its copolymerization with oxiranes. Green Chem. 2012, 14, 2665–2671. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Weng, Y.-X.; Wang, W.; Huang, Z.-G.; Wang, Y.-Z. Modification of poly(propylene carbonate) with chain extender ADR-4368 to improve its thermal, barrier, and mechanical properties. Polym. Test. 2016, 54, 301–307. [Google Scholar] [CrossRef]
- Barreto, C.; Proppe, J.; Fredriksen, S.; Hansen, E.; Rychwalski, R.W. Graphite nanoplatelet/pyromellitic dianhydride melt modified PPC composites: Preparation and characterization. Polymer 2013, 54, 3574–3585. [Google Scholar] [CrossRef]
- Dong, X.; Liu, L.; Wang, Y.; Li, T.; Wu, Z.; Yuan, H.; Ma, P.; Shi, D.; Chen, M.; Dong, W. The compatibilization of poly (propylene carbonate)/poly (lactic acid) blends in presence of core-shell starch nanoparticles. Carbohydr. Polym. 2021, 254, 117321. [Google Scholar] [CrossRef]
- Tao, J.; Song, C.; Cao, M.; Hu, D.; Liu, L.; Liu, N.; Wang, S. Thermal properties and degradability of poly(propylene carbonate)/poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PPC/PHBV) blends. Polym. Degrad. Stab. 2009, 94, 575–583. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, F.; Zhang, S.; Huang, H. Structure and improved properties of PPC/PBAT blends via controlling phase morphology based on melt viscosity. J. Appl. Polym. Sci. 2020, 137, 48924. [Google Scholar] [CrossRef]
- Xia, M.; Shi, K.; Zhou, M.; Shen, Y.; Wang, T. Effects of chain extender and uniaxial stretching on the properties of PLA/PPC/mica composites. Polym. Adv. Technol. 2019, 30, 2436–2446. [Google Scholar] [CrossRef]
- Hashemi, M.; Rostami, A.; Ghasemi, I.; Omrani, A. Incorporation of Modified Graphene Nanoplatelets for Development of Bio-based Shape Memory Polymer of Polypropylene Carbonate (PPC)/Polycaprolactone (PCL). J. Polym. Environ. 2023, 31, 2715–2726. [Google Scholar] [CrossRef]
- Wan, H.; Sun, C.; Xu, C.; Wang, B.; Chen, Y.; Yang, Y.; Tan, H.; Zhang, Y. Synergistic reinforcement of polylactic acid/wood fiber composites by cellulase and reactive extrusion. J. Clean. Prod. 2024, 434, 140207. [Google Scholar] [CrossRef]
- Sun, C.; Wei, S.; Tan, H.; Huang, Y.; Zhang, Y. Progress in upcycling polylactic acid waste as an alternative carbon source: A review. Chem. Eng. J. 2022, 446, 136881. [Google Scholar] [CrossRef]
- Song, L.; Chi, W.; Hao, Y.; Ren, J.; Yang, B.; Cong, F.; Li, Y.; Yu, L.; Li, X.; Wang, Y. Improving the properties of polylactic acid/polypropylene carbonate blends through cardanol-induced compatibility enhancement. Int. J. Biol. Macromol. 2024, 258, 128886. [Google Scholar] [CrossRef]
- Song, L.; Zhang, Q.; Hao, Y.; Li, Y.; Chi, W.; Cong, F.; Shi, Y.; Liu, L.-Z. Effect of Different Comonomers Added to Graft Copolymers on the Properties of PLA/PPC/PLA-g-GMA Blends. Polymers 2022, 14, 4088. [Google Scholar] [CrossRef]
- Song, L.; Chi, W.; Zhang, Q.; Ren, J.; Yang, B.; Cong, F.; Li, Y.; Wang, W.; Li, X.; Wang, Y. High-performance and functional fully bio-based polylactic acid/polypropylene carbonate blends by in situ multistep reaction-induced interfacial control. Int. J. Biol. Macromol. 2024, 258, 128799. [Google Scholar] [CrossRef]
- Choo, J.E.; Park, T.H.; Jeon, S.M.; Hwang, S.W. The Effect of Epoxidized Soybean Oil on the Physical and Mechanical Properties of PLA/PBAT/PPC Blends by the Reactive Compatibilization. J. Polym. Environ. 2023, 31, 4007–4021. [Google Scholar] [CrossRef]
- Park, D.H.; Kan, T.G.; Lee, Y.K.; Kim, W.N. Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites. J. Mater. Sci. 2013, 48, 481–488. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.J.; Xu, H.J.; Yao, L.U.; Wang, Y.M. Preparation and Properties of Poly(propylene carbonate)-Polylactic Acid Melt Blend Spun Fibers. Synth. Fiber China 2014, 43, 7–11. [Google Scholar]
- Yang, G.; Geng, C.; Su, J.; Yao, W.; Zhang, Q.; Fu, Q. Property reinforcement of poly(propylene carbonate) by simultaneous incorporation of poly(lactic acid) and multiwalled carbon nanotubes. Compos. Sci. Technol. 2013, 87, 196–203. [Google Scholar] [CrossRef]
- Lin, S.; Li, B.; Chen, T.; Yu, W.; Wang, X. Mechanical reinforcement in poly(propylene carbonate) nanocomposites using double percolation networks by dual volume exclusions. Compos. Sci. Technol. 2018, 167, 364–370. [Google Scholar] [CrossRef]
- Cvek, M.; Paul, U.C.; Zia, J.; Mancini, G.; Sedlarik, V.; Athanassiou, A. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces 2022, 14, 14654–14667. [Google Scholar] [CrossRef]
- Hao, S.; Feng, D.; Wu, F.; Xie, Y.; Xu, Z.; Zhao, W.; Xie, D. Highly transparent and fire-safe polypropylene carbonate composites via guanidine phosphate hydrogen bonding complexation. Polym. Degrad. Stab. 2023, 218, 110548. [Google Scholar] [CrossRef]
- Han, D.; Chen, G.; Xiao, M.; Wang, S.; Chen, S.; Peng, X.; Meng, Y. Biodegradable and Toughened Composite of Poly(Propylene Carbonate)/Thermoplastic Polyurethane (PPC/TPU): Effect of Hydrogen Bonding. Int. J. Mol. Sci. 2018, 19, 2032. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Fernando, A.L.; Pires, J.R.A.; Rodrigues, P.F.; Lopes, A.A.S.; Fernandes, F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crop. Prod. 2017, 107, 565–572. [Google Scholar] [CrossRef]
- Mallegni, N.; Phuong, T.V.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A. Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion. Materials 2018, 11, 148. [Google Scholar] [CrossRef]
- Wu, D.; Tan, Y.; Han, L.; Zhang, H.; Dong, L. Preparation and characterization of acetylated maltodextrin and its blend with poly(butylene adipate-co-terephthalate). Carbohydr. Polym. 2018, 181, 701–709. [Google Scholar] [CrossRef] [PubMed]
- GB1040.3-2006; Plastics. Determination of Tensile Properties. Part 3: Test Conditions for Films and Sheets. Standardization Administration of the People’s Republic of China: Beijing, China, 2006.
- GB1034-98; Plastics—Determination of Water Absorption. Standardization Administration of the People’s Republic of China: Beijing, China, 1998.
- ASTME96-1995; ASTM E96-95 Standard Test Methods for Water Vapor Transmission of Materials. American Society of Testing and Materials: West Conshohocken, PA, USA, 1995.
- GB/T 19789-2021; Packaging Material Standard Test Method for Oxygen Gas Permeability Characteristics of Plastic Film and Sheeting Using a Coulometric Sensor. National Standards of People’s Republic of China: Beijing, China, 2021.
- Ludwiczak, J.; Frąckowiak, S.; Leluk, K. Study of Thermal, Mechanical and Barrier Properties of Biodegradable PLA/PBAT Films with Highly Oriented MMT. Materials 2021, 14, 7189. [Google Scholar] [CrossRef] [PubMed]
- GB/T16716.7-2012; Packaging and Packaging Waste—Part 7: Recoverable by Composting and Biodegradation. Standardization Administration of the People’s Republic of China: Beijing, China, 2012.
- GB/T31402-2015; Plastics—Measurement of Antibacterial Activity on Plastics Surfaces. Standardization Administration of the People’s Republic of China: Beijing, China, 2015.
PPC Addition Ratio | Tg/°C | Tc/°C | Tm/°C | ∆Hc/(J/g) | ∆Hm/(J/g) | Xc/% |
---|---|---|---|---|---|---|
0 | 61.4 | 96.9 | 166.9 | 15.4 | 29.9 | 23.1 |
10% | 61.6 | 102.8 | 167.1 | 15.9 | 27.2 | 20.1 |
20% | 61.7 | 103.2 | 167.2 | 16.3 | 25.7 | 18.9 |
30% | 61.9 | 104.2 | 167.6 | 16.5 | 23.2 | 15.3 |
40% | 62.1 | 104.8 | 167.9 | 17.1 | 22.1 | 13.4 |
PPC Addition Ratio | 0 Days | 20 Days | 40 Days | 60 Days | 80 Days | 100 Days |
---|---|---|---|---|---|---|
0 | 0 | 4.69% | 12.17% | 23.47% | 35.39% | 46.58% |
10% | 0 | 5.49% | 17.54% | 33.76% | 48.96% | 63.9% |
20% | 0 | 5.96% | 18.03% | 34.74% | 49.95% | 64.76% |
30% | 0 | 6.37% | 18.52% | 36.4% | 53.38% | 69.93% |
40% | 0 | 6.59% | 18.86% | 37.23% | 54.7% | 71.57% |
PPC Addition Ratio (PPC/(PLA + PPC)) | 0 | 10% | 20% | 30% | 40% |
---|---|---|---|---|---|
PLA | 66.53 wt% | 59.88 wt% | 53.22 wt% | 46.57 wt% | 39.92 wt% |
PPC | 0 | 6.65 wt% | 13.31 wt% | 19.96 wt% | 26.61 wt% |
PBAT | 28.51 wt% | 28.51 wt% | 28.51 wt% | 28.51 wt% | 28.51 wt% |
CS | 3.96 wt% | 3.96 wt% | 3.96 wt% | 3.96 wt% | 3.96 wt% |
ADR | 1 wt% | 1 wt% | 1 wt% | 1 wt% | 1 wt% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Zhang, X.; Wang, Z.; Sun, C.; Tan, H.; Zhang, Y. Effect of Poly(propylene carbonate) on Properties of Polylactic Acid-Based Composite Films. Int. J. Mol. Sci. 2024, 25, 4730. https://doi.org/10.3390/ijms25094730
Chen K, Zhang X, Wang Z, Sun C, Tan H, Zhang Y. Effect of Poly(propylene carbonate) on Properties of Polylactic Acid-Based Composite Films. International Journal of Molecular Sciences. 2024; 25(9):4730. https://doi.org/10.3390/ijms25094730
Chicago/Turabian StyleChen, Kang, Xinyu Zhang, Zanru Wang, Ce Sun, Haiyan Tan, and Yanhua Zhang. 2024. "Effect of Poly(propylene carbonate) on Properties of Polylactic Acid-Based Composite Films" International Journal of Molecular Sciences 25, no. 9: 4730. https://doi.org/10.3390/ijms25094730
APA StyleChen, K., Zhang, X., Wang, Z., Sun, C., Tan, H., & Zhang, Y. (2024). Effect of Poly(propylene carbonate) on Properties of Polylactic Acid-Based Composite Films. International Journal of Molecular Sciences, 25(9), 4730. https://doi.org/10.3390/ijms25094730