Characterization of Phenolic Compounds in Extra Virgin Olive Oil from Granada (Spain) and Evaluation of Its Neuroprotective Action
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative and Quantitative Characterization of EVOO Samples by LC-MS
2.2. Determination of AChE Inhibitory Activity of EVOOs
2.3. Determination of COX-2 Inhibitory Activity of EVOOs
2.4. Correlation Analysis between Phenolic Composition and Neuroprotective/Antiinflammatory Activity of EVOOs
2.5. Similarities and Differences among EVOO Analyzed
3. Materials and Methods
3.1. Samples
3.2. Reagents and Equipment
3.3. Sample Preparation
3.4. LC−MS Analysis of Phenolic Compounds
3.4.1. Identification of Phenolic Compounds by LC−MS/MS
3.4.2. Quantification of Phenolic Compounds by LC−MS
3.5. AChE Inhibition Assay
3.6. COX-2 Inhibition Assay
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Olive Conseil. Newsletter. Nº 175. 2022. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2022/08/ioc-newsletter-175-ENG.pdf (accessed on 4 March 2024).
- International Oleic Conseil. Estudio Internacional Sobre los Costes de Producción del Aceite de Oliva: Resultados, Conclusiones y Recomendaciones. 2015; pp. 1–40. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/ESTUDIO-INTERNACIONAL-SOBRE-COSTES-DE-PRODUCCI%C3%93N-DEL-ACEITE-DE-OLIVA.pdf (accessed on 29 February 2024).
- Ministerio de Agricultura, Pesca y Alimentación. Aceite de Oliva y Aceituna de Mesa. Available online: https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/aceite.aspx (accessed on 29 February 2024).
- Consejería de Agricultura y Pesca. El Sector del Aceite de Oliva y de la Aceituna de Mesa en Andalucía. Junta de Andalucía. 2008. Available online: https://www.juntadeandalucia.es/export/drupaljda/estudios_informes/15/11/sect_ac_oliva-mesa.pdf (accessed on 29 February 2024).
- Ministerio de Agricultura, Pesca y Alimentación. Encuesta Sobre Superficies y Rendimientos de Cultivos. 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/olivar2019_tcm30-122331.pdf (accessed on 29 February 2024).
- Sanchez-Rodríguez, E.; Mesa, M.D. Compuestos bioactivos del aceite de oliva. Nutr. Clínica Med. 2018, 12, 80–94. [Google Scholar] [CrossRef]
- Martínez-Huélamo, M.; Rodríguez-Morató, J.; Boronat, A.; de la Torre, R. Modulation of Nrf2 by olive oil and wine polyphenols and neuroprotection. Antioxidants 2017, 6, 73. [Google Scholar] [CrossRef]
- Sánchez-Quesada, A.; López-Biedma, A.; Warleta, F.; Campos, M.; Beltrán, G.; Gaforio, J.J. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of olea europaea. J. Agric. Food Chem. 2013, 61, 12173–12182. [Google Scholar] [CrossRef]
- European Comission. EC Regulation No. 432/2012. Establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union 2012, L136, 1–40. [Google Scholar]
- Rojas-García, A.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.L.; Arráez-Román, D.; Segura-Carretero, A. Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023, 15, 449. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Social Report 2023: Leaving No One behind in an Ageing World. 2023. Available online: https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2023/01/WSR_2023_Chapter_Key_Messages.pdf (accessed on 4 March 2024).
- Selkoe, D. Folding proteins in fatal ways. Nature 2003, 426, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Tavan, M.; Hanachi, P.; de la Luz Cádiz-Gurrea, M.L.; Segura Carretero, A.; Hossein Mirjalili, M. Natural phenolic compounds with neuroprotective effects. Neurochem. Res. 2004, 49, 306–326. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Godos, J.; Privitera, A.; Lanza, G.; Castellano, S.; Chillemi, A.; Bruni, O.; Ferri, R.; Caraci, F.; Grosso, G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer’s Disease. Nutrients 2022, 14, 819. [Google Scholar] [CrossRef]
- Rigacci, S.; Stefani, M. Nutraceuticals and amyloid neurodegenerative diseases: A focus on natural phenols. Expert Rev. Neurother. 2015, 15, 41–52. [Google Scholar] [CrossRef]
- Martorell, M.; Forman, K.; Castro, N.; Capó, X.; Tejada, S.; Sureda, A. Potential Therapeutic Effects of Oleuropein Aglycone in Alzheimer’s Disease. Curr. Pharm. Biotech. 2016, 17, 994–1001. [Google Scholar] [CrossRef]
- Omar, S.H.; Scott, C.J.; Hamlin, A.S.; Obied, H.K. The protective role of plant biophenols in mechanisms of Alzheimer’s disease. J. Nutr. Biochem. 2017, 47, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Costanzo, P.; Masullo, M.; D’Errico, A.; Nasso, R.; Bonacci, S.; Mollace, V.; Oliverio, M.; Arcone, R. Hydroxytyrosol-Donepezil Hybrids Play a Protective Role in an In Vitro Induced Alzheimer’s Disease Model and in Neuronal Differentiated Human SH-SY5Y Neuroblastoma Cells. Int. J. Mol. Sci. 2023, 24, 13461. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Ho, L.; Pompl, P.N.; Peng, Y.; Zhao, Z.; Xiang, Z.; Robakis, N.K.; Shioi, J.; Suh, J.; Pasinetti, G.M. Cyclooxygenase (COX)-2 and COX-1 potentiate beta-amyloid peptide generation through mechanisms that involve γ-secretase activity. J. Biol. Chem. 2003, 278, 50970–50977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, S. COX-2 as a novel target of CRF family peptides’ participating in inflammation. Biochem. Biophys. Res. Commun. 2009, 382, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Liu, H.; Guo, K.; Chen, L.; Yang, M.; Chen, Q. Research Advances and Detection Methodologies for Microbe-Derived Acetylcholinesterase Inhibitors: A Systemic Review. Molecules 2017, 22, 176. [Google Scholar] [CrossRef]
- Veneziani, G.; Sordini, B.; Taticchi, A.; Esposto, S.; Selvaggini, R.; Urbani, S.; Di Maio, I.; Servili, M. Improvement of olive oil mechanical extraction: New technologies, process efficiency, and extra virgin olive oil quality. In Products from Olive Tree; IntechOpen: London, UK, 2016; pp. 21–42. [Google Scholar] [CrossRef]
- Ministerio de la Presidencia, Justicia y Relaciones con las Cortes. Organic Law 6/2015, 12th May, Denominaciones de Origen e Indicaciones Geográficas Protegidas de ámbito territorial supraautonómico. BOE 2015, 114, 41158–41187. Available online: https://www.boe.es/eli/es/l/2015/05/12/6 (accessed on 1 March 2024).
- Ministerio de Agricultura, Pesca y Alimentación. D.O.P. Poniente de Granada. Available online: https://www.mapa.gob.es/es/alimentacion/temas/calidad-diferenciada/dop-igp/aceite/Copia_de_poniente_granada.aspx (accessed on 1 March 2024).
- Ministerio de Agricultura, Pesca y Alimentación. D.O.P. Montes de Granada. Available online: https://www.mapa.gob.es/es/alimentacion/temas/calidad-diferenciada/dop-igp/aceite/Copia_de_Montes_de_Granada.aspx (accessed on 1 March 2024).
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules. 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-González, M.; Reboredo-Rodríguez, P.; González-Barreiro, C.; Simal-Gándara, J.; Valentão, P.; Carrasco-Pancorbo, A.; Andrade, P.B.; Cancho-Grande, B. Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Res. Int. 2018, 106, 558–567. [Google Scholar] [CrossRef]
- Criado-Navarro, I.; López-Bascón, M.A.; Priego-Capote, F. Evaluating the Variability in the Phenolic Concentration of Extra Virgin Olive Oil According to the Commission Regulation (EU) 432/2012 Health Claim. J. Agric. Food Chem. 2020, 68, 9070–9080. [Google Scholar] [CrossRef]
- Fanali, C.; Della Posta, S.; Vilmercati, A.; Dugo, L.; Russo, M.; Petitti, T.; Mondello, L.; De Gara, L. Extraction, Analysis, and Antioxidant Activity Evaluation of Phenolic Compounds in Different Italian Extra-Virgin Olive Oils. Molecules 2018, 23, 3249. [Google Scholar] [CrossRef] [PubMed]
- D’Errico, A.; Nasso, R.; Di Maro, A.; Landi, N.; Chambery, A.; Russo, R.; D’Angelo, S.; Masullo, M.; Arcone, R. Identification and Characterization of Neuroprotective Properties of Thaumatin-like Protein 1a from Annurca Apple Flesh Polyphenol Extract. Nutrients 2024, 16, 307. [Google Scholar] [CrossRef]
- Da Silva, G.G.; Pimenta, L.P.S.; Melo, J.O.F.; Mendonça, H.D.O.P.; Augusti, R.; Takahashi, J.A. Phytochemicals of Avocado Residues as Potential Acetylcholinesterase Inhibitors, Antioxidants, and Neuroprotective Agents. Molecules 2022, 27, 1892. [Google Scholar] [CrossRef]
- Oboh, G.; Odubanjo, V.O.; Bello, F.; Ademosun, A.O.; Oyeleye, S.I.; Nwanna, E.E.; Ademiluyi, A.O. Aqueous extracts of avocado pear (Persea americana Mill.) leaves and seeds exhibit anti-cholinesterases and antioxidant activities in vitro. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 131–140. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, G.; Ramón Vidal, D.; Martorell, P.; Plaza, M.; Marina, M.L. Composition of Nonextractable Polyphenols from Sweet Cherry Pomace Determined by DART-Orbitrap-HRMS and Their In Vitro and In Vivo Potential Antioxidant, Antiaging, and Neuroprotective Activities. J. Agric. Food Chem. 2022, 70, 7993–8009. [Google Scholar] [CrossRef]
- Khokar, R.; Hachani, K.; Hasan, M.; Othmani, F.; Essam, M.; Al Mamari, A.; UM, D.; Khan, S.A. Anti-Alzheimer potential of a waste by-product (peel) of Omani pomegranate fruits: Quantification of phenolic compounds, in-vitro antioxidant, anticholinesterase and in-silico studies. Biocatal. Agric. Biotechnol. 2021, 38, 102223. [Google Scholar] [CrossRef]
- Savi’c, A.; Aradski, A.A.; Živkovi´c, J.; Šavikin, K.; Jari´c, S.; Marin, P.D.; Duleti´c-Lauševi´c, S. Phenolic composition, and antioxidant and antineurodegenerative potential of methanolic extracts of fruit peel and flesh of pear varieties from Serbia. Pol. J. Food Nutr. Sci. 2021, 71, 225–236. [Google Scholar] [CrossRef]
- Ben Rejeb, I.; Dhen, N.; Gargouri, M.; Boulila, A. Chemical Composition, Antioxidant Potential and Enzymes Inhibitory Properties of Globe Artichoke By-Products. Chem. Biodivers. 2020, 17, e2000073. [Google Scholar] [CrossRef]
- Ruiz-Domínguez, M.C.; Mendiola, J.A.; Sánchez-Martínez, J.D.; Bueno, M.; Cerezal-Mezquita, P.; Ibáñez, E. Evaluation of the antioxidant and neuroprotective activity of the seaweed Durvillaea antarctica (cochayuyo) extracts using pressurized liquids. J. Appl. Phycol. 2023, 35, 835–847. [Google Scholar] [CrossRef]
- Hung, N.H.; Quan, P.M.; Satyal, P.; Dai, D.N.; Hoa, V.V.; Huy, N.G.; Giang, L.D.; Ha, N.T.; Huong, L.T.; Hie, V.T.; et al. Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules 2022, 27, 7092. [Google Scholar] [CrossRef] [PubMed]
- Vanin, A.P.; Tamagno, W.A.; Alves, C.; Mesacasa, L.; Santin, L.F.; Sutorillo, N.T.; Bilibio, D.; Müller, C.; Galon, L.; Kaizer, R.R. Neuroprotective potential of Cannabis sativa-based oils in Caenorhabditis elegans. Sci. Rep. 2022, 12, 15376. [Google Scholar] [CrossRef] [PubMed]
- Asuku, A. Neuroprotective Effects of Virgin Coconut Oil Supplemented Diet against Sodium Benzoate-induced Acetylcholinesterase Dysfunction and Cognitive Impairment: Role of Nrf2/NfKb Signaling Pathway. Niger. J. Physiol. Sci. 2022, 37, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Suárez Montenegro, Z.J.; Álvarez-Rivera, G.; Sánchez-Martínez, J.D.; Gallego, R.; Valdés, A.; Bueno, M.; Cifuentes, A.; Ibáñez, E. Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods. 2021, 10, 1507. [Google Scholar] [CrossRef] [PubMed]
- Amel, N.; Wafa, T.; Samia, D.; Yousra, B.; Issam, C.; Cheraif, I.; Attia, N.; Mohamed, H. Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats. J. Food Sci. Technol. 2016, 53, 1454–1464. [Google Scholar] [CrossRef]
- Figueiredo-González, M.; Reboredo-Rodríguez, P.; González-Barreiro, C.; Carrasco-Pancorbo, A.; Simal-Gándara, J.; Cancho-Grande, B. Nutraceutical Potential of Phenolics from ‘Brava’ and ‘Mansa’ Extra-Virgin Olive Oils on the Inhibition of Enzymes Associated to Neurodegenerative Disorders in Comparison with Those of ‘Picual’ and ‘Cornicabra’. Molecules 2018, 23, 722. [Google Scholar] [CrossRef] [PubMed]
- Collado-González, J.; Grosso, C.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Durand, T.; Guy, A.; Galano, J.M.; Torrecillas, A.; Gil-Izquierdo, Á. Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chem. 2017, 235, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Infante, R.; Infante, M.; Pastore, D.; Pacifici, F.; Chiereghin, F.; Malatesta, G.; Donadel, G.; Tesauro, M.; Della-Morte, D. An Appraisal of the Oleocanthal-Rich Extra Virgin Olive Oil (EVOO) and Its Potential Anticancer and Neuroprotective Properties. Int. J. Mol. Sci. 2023, 24, 17323. [Google Scholar] [CrossRef] [PubMed]
- Cuffaro, D.; Bertini, S.; Macchia, M.; Digiacomo, M. Enhanced Nutraceutical Properties of Extra Virgin Olive Oil Extract by Olive Leaf Enrichment. Nutrients 2023, 15, 1073. [Google Scholar] [CrossRef] [PubMed]
- Lakhder, I.O.; Suromo, L.; Djamiantun, K. The effects of Extra Virgin Olive Oil on Lox-1 and COX-2 in high fat diet rats. J. Biomed. Transl. Res. 2016, 1, 1–4. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E.; PREDIMED INVESTIGATORS. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef]
- Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv. Nutr. 2014, 5, 330S–336S. [Google Scholar] [CrossRef] [PubMed]
- Rosillo, M.A.; Sánzchez-Hidalgo, M.; Castejón, M.L.; Montoya, T.; González-Benjumea, A.; Fernández-Bolaños, J.G.; Alarcón-de-la-Lastra, C. Extra virgin olive oil phenols hydroxytyrosol and hyroxytyrsol acetate, down-regulate the production of mediators involved in joint erosion in human synovial cells. J. Funct. Foods 2017, 36, 27–33. [Google Scholar] [CrossRef]
- Montoya, T.; Alarcón-de-la-Lastra, C.; Castejón, M.L.; Ortega-Vidal, J.; Altarejos, J.; Sánchez-Hidalgo, M. Methyl- Oleocanthal, a New Oleocanthal Metabolite Reduces LPS-Induced Inflammatory and Oxidative Response: Molecular Signaling Pathways and Histones Epigenetic Modulation. Antioxidants 2022, 11, 56. [Google Scholar] [CrossRef]
- Carpi, S.; Scoditti, E.; Massaro, M.; Polini, B.; Manera, C.; Digiacomo, M.; Esposito Salsano, J.; Poli, G.; Tuccinardi, T.; Doccini, S.; et al. The Extra-Virgin Olive Oil Polyphenols Oleocanthal and Oleacein Counteract Inflammation-Related Gene and miRNA Expression in Adipocytes by Attenuating NF-κB Activation. Nutrients 2019, 11, 2855. [Google Scholar] [CrossRef]
- Teismann, P.; Ferger, B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-Mouse Model of Parkinson’s Disease. Synapse 2001, 39, 167–174. [Google Scholar] [PubMed]
- Alkhalifa, A.E.; Al-Ghraiybah, N.F.; Kaddoumi, A. Extra-Virgin Olive Oil in Alzheimer’s Disease: A Comprehensive Review of Cellular, Animal, and Clinical Studies. Int. J. Mol. Sci. 2024, 25, 1914. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.Y.; Kim, M.Y.; Cho, J.Y. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef] [PubMed]
- During, A.; Debouche, C.; Raas, T.; Larondelle, Y. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells. J. Nutr. 2012, 142, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Feng, Z.; Xiang, J.; Deng, M.; Zhou, Z. Anti-inflammatory compounds from the rhizome of Acorus calamus var. angustatus Besser and their mechanism. Nat. Prod. Res. 2023, 1–7. [Google Scholar] [CrossRef]
- Moral, R.; Escrich, E. Influence of Olive Oil and Its Components on Breast Cancer: Molecular Mechanisms. Molecules 2022, 27, 477. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Deng, B.; Yan, L. Syringaresinol attenuates osteoarthritis via regulating the NF-κB pathway. Int. Immunopharmacol. 2023, 118, 109982. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, L.; Hu, D.; He, S.; Cui, L.; Zhao, J.; Zhuo, Y.; Zhang, L.; Wang, X. Syringaresinol alleviates IgG immune complex induced acute lung injury via activating PPARγ and suppressing pyroptosis. Int. Immunopharmacol. 2023, 124 Pt B, 111071. [Google Scholar] [CrossRef]
- Wei, A.; Liu, J.; Li, D.; Lu, Y.; Yang, L.; Zhuo, Y.; Tian, W.; Cong, H. Syringaresinol attenuates sepsis-induced cardiac dysfunction by inhibiting inflammation and pyroptosis in mice. Eur. J. Pharmacol. 2021, 913, 174644. [Google Scholar] [CrossRef]
- Miho, H. Olive Oil Phenolic Composition: Cultivar Variability, Effects of Technological Factors and Oxidative Stability. Ph.D. Thesis, Universidad de Córdoba, Córdoba, Spain, 2021; pp. 1–322. [Google Scholar]
- López-Huertas, E.; Lozano-Sánchez, J.; Segura-Carretero, A. Olive oil varieties and ripening stages containing the antioxidants hydroxytyrosol and derivatives in compliance with EFSA health claim. Food Chem. 2021, 342, 128291. [Google Scholar] [CrossRef]
- Becerra-Herrera, M.; Vélez-Martín, A.; Ramos-Merchante, A.; Richter, P.; Beltrán, R.; Sayago, A. Characterization and evaluation of phenolic profiles and color as potential discriminating features among Spanish extra virgin olive oils with protected designation of origin. Food Chem. 2018, 241, 328–337. [Google Scholar] [CrossRef]
- European Comission. EC Regulation No. 2022/2014. supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for olive oil, and repealing Commission Regulation (EEC) No 2568/91 and Implementing Regulation (EU) No 29/2012 of the Commission. Off. J. Eur. Union 2014, L 284, 1–22. [Google Scholar]
- Ballus, C.A.; Quirantes-Piné, R.; Bakhouche, A.; da Silva, L.F.O.; de Oliveira, A.F.; Coutinho, E.F.; da Croce, D.M.; Segura-Carretero, A.; Teixeira Godoy, H. Profile phenolic compounds of Brazilian virgin olive oils by rapid resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. Food Chem. 2015, 170, 366–377. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | Sample 7 | Sample 8 | Sample 9 | Sample 10 | Sample 11 | Sample 12 | Sample 13 | Sample 14 | Sample 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PDO | PG | PG | MG | PG | PG | PG | PG | PG | MG | PG | PG | MG | MG | MG | PG |
Variety | Hojiblanca | Picudo | Picual | Chorreao | Hojiblanca | Manzanillo | Picudo | Chorreao | Picual | Hojiblanca | Hojiblanca | Picual | Picual | Coupage | Picual |
Concentration of the compounds expressed as µg of compounds g−1 of EVOO | |||||||||||||||
DiHyGli | 1.4 ± 0.2 | 1.0 ± 0.1 | 0.67 ± 0.03 | 0.10 ± 0.01 | 0.13 ± 0.01 | 0.09 ± 0.01 | 0.25 ± 0.02 | 0.12 ± 0.01 | 0.25 ± 0.02 | 0.38 ± 0.04 | 0.47 ± 0.04 | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.18 ± 0.01 | 0.5 ± 0.1 |
ForP | 1.6 ± 0.2 | 7.8 ± 0.1 | 0.53 ± 0.04 | 0.010 ± 0.004 | 0.77 ± 0.03 | 0.08 ± 0.01 | 0.68 ± 0.04 | 2.07 ± 0.03 | 1.1 ± 0.2 | 0.67 ± 0.04 | 1.4 ± 0.1 | 0.009 ± 0.002 | 0.20 ± 0.02 | 0.31 ± 0.04 | 0.9 ± 0.1 |
TMP-Ac | 2.4 ± 0.3 | 2.83 ± 0.2 | 0.35 ± 0.04 | 2.4 ± 0.1 | 1.04 ± 0.05 | 2.6 ± 0.1 | 1.7 ± 0.1 | 5.4 ± 0.3 | 2.0 ± 0.2 | 0.6 ± 0.1 | 0.57 ± 0.04 | 1.70 ± 0.04 | 0.54 ± 0.02 | 1.8 ± 0.1 | 0.8 ± 0.1 |
DEDA-Ac | 0.5 ± 0.1 | 0.38 ± 0.05 | 0.88 ± 0.06 | 1.4 ± 0.1 | 0.08 ± 0.01 | 1.3 ± 0.1 | 0.9 ± 0.1 | 1.34 ± 0.04 | 0.83 ± 0.02 | 0.25 ± 0.04 | 0.22 ± 0.01 | 0.12 ± 0.02 | 0.19 ± 0.02 | 0.49 ± 0.04 | 0.49 ± 0.02 |
Ac-Pin | 0.3 ± 0.0 | 0.50 ± 0.01 | 0.026 ± 0.004 | 0.068 ± 0.002 | 0.78 ± 0.02 | 0.12 ± 0.01 | 0.033 ± 0.004 | 0.164 ± 0.005 | 0.070 ± 0.003 | 0.18 ± 0.01 | 0.282 ± 0.004 | 0.20 ± 0.01 | 2.7 ± 0.01 | 0.82 ± 0.02 | 0.17 ± 0.01 |
Api | 1.3 ± 0.1 | 1.56 ± 0.1 | 0.28 ± 0.02 | 0.70 ± 0.04 | 1.27 ± 0.03 | 0.62 ± 0.02 | 0.95 ± 0.04 | 0.13 ± 0.01 | 0.52 ± 0.05 | 1.0 ± 0.1 | 0.47 ± 0.03 | 0.64 ± 0.04 | 0.77 ± 0.01 | 0.8 ± 0.1 | 1.39 ± 0.03 |
DEDA | <LOQ | <LOQ | 0.82 ± 0.04 | 0.41 ± 0.02 | 1.5 ± 0.1 | 0.8 ± 0.1 | 2.2 ± 0.1 | 5.1 ± 0.1 | 4 ± 1 | 2.9 ± 0.1 | 0.30 ± 0.02 | 0.39 ± 0.04 | 0.35 ± 0.05 | 0.5 ± 0.1 | 4.2 ± 0.2 |
EA 1 | 2.4 ± 0.1 | 3.2 ± 0.1 | 0.36 ± 0.02 | 0.77 ± 0.02 | 1.4 ± 0.3 | 1.2 ± 0.4 | 0.9 ± 0.1 | 0.7 ± 0.2 | 1.4 ± 0.1 | 1.1 ± 0.4 | 1.9 ± 0.1 | 1.4 ± 0.2 | 0.4 ± 0.1 | 1.2 ± 0.1 | 0.9 ± 0.1 |
EA 2 | 37.1 ± 1.0 | 28 ± 2 | 34 ± 2 | 51 ± 2 | 38 ± 2 | 21 ± 1 | 45 ± 3 | 56 ± 3 | 45 ± 1 | 64 ± 5 | 115 ± 3 | 79 ± 2 | 6.5 ± 0.3 | 26 ± 1 | 15.0 ± 0.3 |
Hy-D-Li-Agl | 79 ± 3 | 63 ± 2 | 199 ± 4 | 387 ± 9 | 37 ± 2 | 341 ± 4 | 111 ± 1 | 232 ± 7 | 104 ± 3 | 55 ± 2 | 90 ± 4 | 43 ± 1 | 93 ± 3 | 83 ± 3 | 58 ± 1 |
HyDec Ol Ag (I1) | 1.4 ± 0.2 | 0.9 ± 0.1 | 1.5 ± 0.1 | 3.0 ± 0.1 | 1.2 ± 0.1 | 2.2 ± 0.2 | 1.8 ± 0.1 | 2.4 ± 0.1 | 1.4 ± 0.1 | 5.4 ± 0.3 | 1.22 ± 0.04 | 0.61 ± 0.03 | 0.66 ± 0.04 | 1.1 ± 0.1 | 3.0 ± 0.3 |
HyDec Ol Ag (I2) | 3.3 ± 0.4 | 3.9 ± 0.2 | 3.9 ± 0.2 | 4.9 ± 0.4 | 2.2 ± 0.3 | 8.3 ± 0.2 | 7.6 ± 0.2 | 14 ± 1 | 5.5 ± 0.5 | 1.8 ± 0.1 | 1.9 ± 0.1 | 2.1 ± 0.1 | 4.2 ± 0.2 | 4.7 ± 0.2 | 2.4 ± 0.1 |
Hy-EA | 2.4 ± 0.4 | 4.2 ± 0.1 | 1.2 ± 0.1 | 0.28 ± 0.04 | 2.5 ± 0.2 | 1.49 ± 0.04 | 1.6 ± 0.1 | 2.2 ± 0.1 | 2.6 ± 0.3 | 0.7 ± 0.1 | 1.8 ± 0.1 | 1.56 ± 0.04 | 0.6 ± 0.1 | 2.3 ± 0.2 | 0.62 ± 0.03 |
Hy-Ol-Ag 1 | 0.9 ± 0.1 | 1.4 ± 0.2 | 2.8 ± 0.1 | 0.8 ± 0.1 | 0.4 ± 0.1 | 1.1 ± 0.1 | 0.6 ± 0.1 | 1.9 ± 0.1 | 5.2 ± 0.4 | 0.3 ± 0.1 | 1.1 ± 0.1 | 3.2 ± 0.3 | 0.09 ± 0.03 | 0.6 ± 0.1 | 0.9 ± 0.1 |
Hy-Ol-Ag 2 | 0.5 ± 0.1 | 1.2 ± 0.1 | 2.6 ± 0.2 | 0.6 ± 0.1 | <LOD | 0.8 ± 0.1 | 0.34 ± 0.04 | 1.7 ± 0.1 | 5.2 ± 0.5 | <LOQ | 0.5 ± 0.1 | 3.1 ± 0.1 | 0.04 ± 0.01 | 0.34 ± 0.04 | 0.42 ± 0.03 |
Hy-Ol-Ag 3 | 1.4 ± 0.2 | 2.2 ± 0.1 | 5.4 ± 0.3 | 1.5 ± 0.2 | 1.02 ± 0.03 | 4.1 ± 0.2 | 3.8 ± 0.1 | 4.2 ± 0.3 | 7 ± 1 | 1.6 ± 0.2 | 2.4 ± 0.1 | 3.3 ± 0.1 | 0.87 ± 0.02 | 2.8 ± 0.2 | 1.3 ± 0.1 |
Hy-Ol-Ag 4 | 0.7 ± 0.1 | 1.24 ± 0.04 | 0.07 ± 0.02 | 0.16 ± 0.01 | 0.36 ± 0.01 | 0.37 ± 0.03 | 0.77 ± 0.02 | 0.60 ± 0.05 | 0.7 ± 0.1 | 0.28 ± 0.04 | 0.31 ± 0.01 | 0.57 ± 0.04 | 0.16 ± 0.01 | 0.4 ± 0.1 | 0.16 ± 0.01 |
Hyty | 2.1 ± 0.2 | 2.8 ± 0.1 | 6.5 ± 0.1 | 3.5 ± 0.1 | 2.3 ± 0.1 | 3.7 ± 0.2 | 7.7 ± 0.1 | 9.3 ± 0.2 | 12 ± 2 | 3.3 ± 0.2 | 7.1 ± 0.1 | 4.4 ± 0.2 | 3.9 ± 0.2 | 3.8 ± 0.1 | 5.6 ± 0.1 |
Hyty-Ac | <LOD | <LOD | 0.93 ± 0.02 | <LOD | 0.02 ± 0.01 | <LOD | <LOD | <LOD | 0.12 ± 0.02 | <LOD | 0.118 ± 0.004 | 0.34 ± 0.03 | 1.1 ± 0.1 | 0.71 ± 0.03 | 0.54 ± 0.02 |
Li-Ag 1 | 39 ± 5 | 26 ± 2 | 4 ± 0.2 | 7 ± 1 | 7.5 ± 0.2 | 31 ± 3 | 8 ± 1 | 5.6 ± 0.3 | 58 ± 4 | 6 ± 1 | 21 ± 1 | 39 ± 2 | 0.23 ± 0.01 | 6.3 ± 0.2 | 7.1 ± 0.3 |
Li-Ag 2 | 17 ± 3 | 12 ± 1 | 9.2 ± 0.4 | 10.8 ± 0.4 | 8.8 ± 0.4 | 21 ± 2 | 15 ± 1 | 6.4 ± 0.3 | 33 ± 2 | 11 ± 1 | 8 ± 1 | 17 ± 0.5 | 0.47 ± 0.02 | 6.3 ± 0.2 | 6.5 ± 0.3 |
Li-Ag 3 | 10 ± 1 | 8.0 ± 0.4 | 8 ± 1 | 8.1 ± 0.5 | 6.2 ± 0.6 | 15 ± 1 | 10 ± 1 | 5 ± 1 | 16 ± 2 | 8 ± 1 | 9 ± 2 | 12 ± 1 | 0.14 ± 0.04 | 3.82 ± 0.04 | 4.2 ± 0.1 |
Li-Ag 4 | 54 ± 5 | 74 ± 2 | 246 ± 5 | 118 ± 4 | 45 ± 1 | 348 ± 4 | 127 ± 4 | 94 ± 2 | 219 ± 6 | 74 ± 1 | 74 ± 1 | 50 ± 3 | 14 ± 2 | 61 ± 1 | 49 ± 1 |
Li-Ag 5 | 4.5 ± 0.2 | 3.9 ± 0.1 | 33 ± 0.1 | 7.9 ± 0.7 | 4.7 ± 0.2 | 9 ± 1 | 7.5 ± 0.3 | 7.6 ± 0.2 | 9.6 ± 0.4 | 5.8 ± 0.3 | 6 ± 1 | 6.3 ± 0.2 | 1.12 ± 0.03 | 5.6 ± 0.2 | <LOQ |
Li-Ag 6 | 6.6 ± 0.2 | 5.3 ± 0.1 | 11.9 ± 0.4 | 13 ± 2 | 7.8 ± 0.3 | 21 ± 2 | 6.7 ± 0.3 | 13 ± 1 | 11 ± 1 | 10 ± 1 | 6.3 ± 0.4 | 9 ± 1 | 4.2 ± 0.3 | 10.9 ± 0.3 | 9.1 ± 0.3 |
Li-Ag 7 | 2.4 ± 0.1 | 1.9 ± 0.1 | 1.81 ± 0.04 | 2.8 ± 0.2 | 2.1 ± 0.1 | 3.0 ± 0.1 | 3.1 ± 0.2 | 2.2 ± 0.1 | 2.7 ± 0.3 | 2.6 ± 0.2 | 1.4 ± 0.2 | 2.3 ± 0.1 | 0.13 ± 0.02 | 1.58 ± 0.58 | 2.4 ± 0.1 |
Lut | 2.3 ± 0.3 | 2.7 ± 0.1 | 1.00 ± 0.04 | 1.00 ± 0.03 | 2.34 ± 0.03 | 0.80 ± 0.03 | 1.0 ± 0.1 | 0.55 ± 0.02 | 1.9 ± 0.1 | 1.9 ± 0.1 | 1.10 ± 0.05 | 1.2 ± 0.1 | 2.14 ± 0.03 | 1.5 ± 0.1 | 2.8 ± 0.1 |
Me-Ol-Ag 1 | <LOQ | <LOQ | 1.6 ± 0.1 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 1.2 ± 0.2 | 0.7 ± 0.1 | 2.58 ± 0.05 | 0.4 ± 0.05 | <LOQ | <LOQ | <LOQ |
Me-Ol-Ag 2 | <LOQ | <LOQ | 0.7 ± 0.2 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 0.8 ± 0.1 | 0.11 ± 0.03 | 1.9 ± 0.1 | 0.20 ± 0.01 | <LOQ | <LOQ | <LOQ |
Me-Ol-Ag 3 | <LOQ | <LOQ | 1.2 ± 0.1 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 0.6 ± 0.1 | <LOQ | 1.3 ± 0.1 | <LOQ | <LOQ | <LOQ | <LOQ |
Me-Ol-Ag 4 | <LOQ | 0.32 ± 0.01 | 0.64 ± 0.2 | 0.16 ± 0.02 | 0.21 ± 0.03 | <LOQ | 0.14 ± 0.01 | <LOQ | 0.15 ± 0.04 | 0.29 ± 0.04 | 0.6 ± 0.1 | 0.07 ± 0.03 | 0.36 ± 0.04 | 0.32 ± 0.03 | <LOQ |
Me-Ol-Ag 5 | 0.30 ± 0.03 | 0.2 ± 0.01 | 24 ± 2 | 0.9 ± 0.1 | <LOQ | 0.39 ± 0.02 | 0.86 ± 0.03 | <LOQ | 3.7 ± 0.3 | 2.8 ± 0.1 | 5.5 ± 0.1 | 1.39 ± 0.04 | 1.3 ± 0.1 | 1.9 ± 0.1 | 0.24 ± 0.02 |
Me-Ol-Ag 6 | 0.13 ± 0.04 | <LOQ | 6.6 ± 0.3 | 0.6 ± 0.1 | <LOQ | 0.14 ± 0.01 | 0.41 ± 0.02 | <LOQ | 1.6 ± 0.1 | 1.7 ± 0.1 | 2.8 ± 0.1 | 0.71 ± 0.04 | 1.04 ± 0.04 | 1.3 ± 0.1 | <LOQ |
Ol-Ag 1 | 9.7 ± 0.5 | 17 ± 1 | 8 ± 1 | 6.2 ± 0.5 | 3.5 ± 0.2 | 7.7 ± 0.4 | 5.7 ± 0.4 | 5 ± 1 | 23 ± 3 | 4.8 ± 0.5 | 7.0 ± 0.3 | 2.6 ± 0.3 | 0.7 ± 0.1 | 3.4 ± 0.3 | 3.7 ± 0.1 |
Ol-Ag 2 | 82 ± 3 | 51 ± 3 | 777 ± 4 | 320 ± 7 | 46 ± 1 | 422 ± 5 | 193 ± 6 | 236 ± 9 | 569 ± 8 | 95 ± 2 | 131 ± 3 | 114 ± 3 | 84 ± 4 | 226 ± 6 | 122 ± 11 |
Ol-Ag 3 | 43 ± 1 | 33 ± 2 | 59 ± 1 | 57 ± 2 | 30 ± 2 | 64 ± 2 | 42 ± 2 | 44 ± 2 | 80 ± 4 | 30 ± 1 | 63 ± 1 | 41 ± 2 | 6.2 ± 0.1 | 43 ± 1 | 31 ± 1 |
Ol-Ag 4 | 6.0 ± 0.2 | 5.5 ± 0.3 | 5.3 ± 0.4 | 5.1 ± 0.2 | 3.6 ± 0.1 | 4.1 ± 0.1 | 4.6 ± 0.5 | 4.9 ± 0.1 | 7 ± 1 | 5.2 ± 0.5 | 4.2 ± 0.1 | 5.0 ± 0.2 | 0.82 ± 0.02 | 2.3 ± 0.1 | 4.1 ± 0.2 |
Pin | 0.20 ± 0.01 | 0.25 ± 0.01 | 0.54 ± 0.02 | 0.16 ± 0.01 | 0.49 ± 0.01 | 0.18 ± 0.01 | 0.153 ± 0.004 | 0.252 ± 0.002 | 0.54 ± 0.02 | 0.27 ± 0.01 | 0.207 ± 0.01 | 0.66 ± 0.01 | 1.33 ± 0.03 | 0.79 ± 0.03 | 1.08 ± 0.02 |
QuiAc | 0.08 ± 0.01 | 0.044 ± 0.003 | 3.2 ± 0.1 | 0.036 ± 0.001 | 0.019 ± 0.002 | 0.008 ± 0.002 | <LOD | <LOD | 0.9 ± 0.1 | 0.52 ± 0.03 | 1.2 ± 0.1 | 0.21 ± 0.01 | <LOD | 0.21 ± 0.03 | 0.78 ± 0.01 |
Syr | 0.29 ± 0.01 | 0.30 ± 0.01 | 0.17 ± 0.01 | 0.19 ± 0.01 | 0.391 ± 0.002 | 0.228 ± 0.001 | 0.220 ± 0.005 | 0.127 ± 0.004 | 0.122 ± 0.003 | 0.40 ± 0.01 | 0.30 ± 0.01 | 0.22 ± 0.01 | 1.14 ± 0.03 | 0.48 ± 0.01 | 0.28 ± 0.01 |
Tyr | 1.4 ± 0.1 | 1.3 ± 0.1 | 5.5 ± 0.3 | 3.4 ± 0.1 | 2.0 ± 0.1 | 2.4 ± 0.1 | 5.7 ± 0.1 | 10.8 ± 0.4 | 6 ± 1 | 3.3 ± 0.1 | 3.5 ± 0.1 | 2.2 ± 0.1 | 2.5 ± 0.2 | 1.8 ± 0.1 | 3.9 ± 0.1 |
Van | 0.5 ± 0.1 | 0.65 ± 0.02 | 0.19 ± 0.01 | 0.25 ± 0.01 | 0.50 ± 0.02 | 0.26 ± 0.01 | 0.21 ± 0.02 | 0.19 ± 0.01 | 0.6 ± 0.1 | 0.54 ± 0.04 | 0.14 ± 0.01 | 0.24 ± 0.01 | 0.45 ± 0.03 | 0.39 ± 0.03 | 0.38 ± 0.01 |
Total | 418 | 369 | 1471 | 1021 | 263 | 1341 | 619 | 775 | 1245 | 404 | 579 | 451 | 239 | 511 | 346 |
AChE | COX-2 | |||
---|---|---|---|---|
Sample a | PDO | Variety | % Inhibition | % Inhibition |
1 | PG | Hojiblanca | 74.80 ± 7.12 b | 63.26 ± 1.55 cde |
2 | PG | Picudo | 75.04 ± 2.10 b | 59.76 ± 2.37 ef |
3 | MG | Picual | 73.09 ± 1.42 b | 62.50 ± 1.00 cdef |
4 | PG | Chorreao | 86.82 ± 0.36 a | 63.63 ± 1.97 cde |
5 | PG | Hojiblanca | 54.99 ± 5.05 e | 54.58 ± 3.46 gh |
6 | PG | Manzanillo | 87.21 ± 1.89 a | 66.86 ± 0.84 bc |
7 | PG | Picudo | 85.10 ± 1.89 a | 64.42 ± 1.12 bcd |
8 | PG | Chorreao | 77.85 ± 4.20 b | 65.69 ± 4.29 bcd |
9 | MG | Picual | 86.43 ± 1.83 a | 68.48 ± 3.02 b |
10 | PG | Hojiblanca | 63.65 ± 2.39 cd | 53.04 ± 5.45 h |
11 | PG | Hojiblanca | 58.89 ± 1.29 de | 58.43 ± 4.45 fg |
12 | MG | Picual | 67.00 ± 0.94 c | 61.75 ± 1.34 def |
13 | MG | Picual | 20.75 ± 0.49 g | 58.89 ± 0.63 fg |
14 | MG | Coupage | 46.02 ± 4.81 f | 64.06 ± 1.48 cde |
15 | PG | Picual | 45.63 ± 3.16 f | 65.46 ± 1.02 bcd |
Celecoxib | - | - | - | 87.02 ± 1.10 a |
Physostigmin | - | - | 48.52 ± 1.69 f | - |
AChE | COX-2 | |||
---|---|---|---|---|
Compound | Correlation Coefficient | p-Value | Correlation Coefficient | p-Value |
DEDA | 0.7152 | 0.0027 | 0.6708 | 0.0062 |
Ac-Pin | - | - | −0.7969 | 0.0004 |
Hy-D-Li-Agl | - | - | 0.5194 | 0.0473 |
HyDec Ol Ag 2 | 0.5902 | 0.0205 | - | - |
Hy-D-Ag 3 | - | - | 0.5637 | 0.0286 |
Hy Ol Ag 3 | 0.6107 | 0.0156 | - | - |
Li-Ag 2 | - | - | 0.6914 | 0.0043 |
Li-Ag 3 | 0.5823 | 0.0156 | 0.7813 | 0.0006 |
Li-Ag 4 | 0.5273 | 0.0434 | 0.6271 | 0.0124 |
Li-Ag 7 | - | - | 0.8122 | 0.0002 |
Ol-Ag 1 | - | - | 0.5577 | 0.0308 |
Ol-Ag 2 | 0.5422 | 0.0368 | - | - |
Ol-Ag 3 | 0.5457 | 0.0354 | 0.7138 | 0.0028 |
Ol-Ag 4 | - | - | 0.8066 | 0.0003 |
Pin | - | - | −0.8264 | 0.0001 |
Syr | - | - | −0.8343 | 0.0001 |
Compound | p-Value | Compound | p-Value |
---|---|---|---|
Api | 0.011001 | Me-Ol-Ag 1 | 0.006583 |
EA 1 | 0.005829 | Me-Ol-Ag 2 | 0.002038 |
EA 2 | 0.015351 | Me-Ol-Ag 3 | 0.010392 |
ForP | 0.000522 | Me-Ol-Ag 4 | 0.004056 |
Hy-D-Ol-Agl 1 | 9.92 × 10−6 | Me-Ol-Ag 5 | 5.45 × 10−7 |
Hy-Ol-Ag 1 | 0.014051 | Me-Ol-Ag 6 | 2.31 × 10−6 |
Hy-Ol-Ag 2 | 0.005130 | Ol-Ag 1 | 0.010716 |
Hy-Ol-Ag 3 | 0.020644 | Ol-Ag 2 | 0.011589 |
Hyty | 0.002559 | Pin | 2.21 × 10−14 |
Hyty-Ac | 9.96 × 10−14 | QuiAc | 0.000572 |
Li-Ag 2 | 0.000247 | TMP-Ac | 0.000322 |
Li-Ag 7 | 0.000192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Bascón, M.A.; Moscoso-Ruiz, I.; Quirantes-Piné, R.; del Pino-García, R.; López-Gámez, G.; Justicia-Rueda, A.; Verardo, V.; Quiles, J.L. Characterization of Phenolic Compounds in Extra Virgin Olive Oil from Granada (Spain) and Evaluation of Its Neuroprotective Action. Int. J. Mol. Sci. 2024, 25, 4878. https://doi.org/10.3390/ijms25094878
López-Bascón MA, Moscoso-Ruiz I, Quirantes-Piné R, del Pino-García R, López-Gámez G, Justicia-Rueda A, Verardo V, Quiles JL. Characterization of Phenolic Compounds in Extra Virgin Olive Oil from Granada (Spain) and Evaluation of Its Neuroprotective Action. International Journal of Molecular Sciences. 2024; 25(9):4878. https://doi.org/10.3390/ijms25094878
Chicago/Turabian StyleLópez-Bascón, María Asunción, Inmaculada Moscoso-Ruiz, Rosa Quirantes-Piné, Raquel del Pino-García, Gloria López-Gámez, Andrea Justicia-Rueda, Vito Verardo, and José L. Quiles. 2024. "Characterization of Phenolic Compounds in Extra Virgin Olive Oil from Granada (Spain) and Evaluation of Its Neuroprotective Action" International Journal of Molecular Sciences 25, no. 9: 4878. https://doi.org/10.3390/ijms25094878
APA StyleLópez-Bascón, M. A., Moscoso-Ruiz, I., Quirantes-Piné, R., del Pino-García, R., López-Gámez, G., Justicia-Rueda, A., Verardo, V., & Quiles, J. L. (2024). Characterization of Phenolic Compounds in Extra Virgin Olive Oil from Granada (Spain) and Evaluation of Its Neuroprotective Action. International Journal of Molecular Sciences, 25(9), 4878. https://doi.org/10.3390/ijms25094878