Effects of Sodium Alginate Infusion on Intramammary Immunity Against Subclinical Mastitis in Dairy Cows
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Preparation of SA for Intramammary Infusion (IMI)
4.3. Administration and Sampling
4.4. Milk Composition
4.5. Milk Somatic Cell Counts and Cure Rate on D14
4.6. Isolation of Milk Somatic Cells
4.7. Reactive Oxygen Species Level and Phagocytic Activity of Milk Somatic Cells
4.8. Analysis of Cytokine Expression
4.9. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
cDNA | complementary deoxyribonucleic acid |
D | day |
FBS | fetus bovine serum |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
IACUC | Institutional Animal Care and Use Committee |
IFN | interferon |
IL | interleukin |
IMI | intramammary infusion |
LPS | lipopolysaccharide |
LSD | Least Significant Difference |
MAPK | mitogen-activated protein kinase |
mRNA | messenger ribonucleic acid |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NPUST | National Pingtung University of Science and Technology |
PBS | phosphate-buffered saline |
PCR | polymerase chain reaction |
PMNs | polymorphonuclear neutrophils |
RNA | ribonucleic acid |
ROS | reactive oxygen species |
RT | reverse transcription |
SA | sodium alginate |
SCC | somatic cell count |
SCM | subclinical mastitis |
SCS | somatic cell score |
SEM | standard error of the mean |
SNF | solids-not-fat |
TNF | tumor necrosis factor |
References
- Ferguson, J.D.; Azzaro, G.; Gambina, M.; Licitra, G. Prevalence of Mastitis Pathogens in Ragusa, Sicily, from 2000 to 2006. J. Dairy Sci 2007, 90, 5798–5813. [Google Scholar] [CrossRef] [PubMed]
- Pitkälä, A.; Haveri, M.; Pyörälä, S.; Myllys, V.; Honkanen-Buzalski, T. Bovine Mastitis in Finland 2001—Prevalence, Distribution of Bacteria, and Antimicrobial Resistance. J. Dairy Sci. 2004, 87, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Pol, M.; Ruegg, P.L. Treatment Practices and Quantification of Antimicrobial Drug Usage in Conventional and Organic Dairy Farms in Wisconsin. J. Dairy Sci. 2007, 90, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Tenhagen, B.A.; Köster, G.; Wallmann, J.; Heuwieser, W. Prevalence of Mastitis Pathogens and Their Resistance against Antimicrobial Agents in Dairy Cows in Brandenburg, Germany. J. Dairy Sci. 2006, 89, 2542–2551. [Google Scholar] [CrossRef] [PubMed]
- Seegers, H.; Fourichon, C.; Beaudeau, F. Production Effects Related to Mastitis and Mastitis Economics in Dairy Cattle Herds. Vet. Res. 2003, 34, 475–491. [Google Scholar] [CrossRef]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic Effects of Bovine Mastitis and Mastitis Management: A Review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Boyso, J.; Valdez-Alarcón, J.J.; Cajero-Juárez, M.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Bravo-Patiño, A.; Baizabal-Aguirre, V.M. Innate Immune Response of Bovine Mammary Gland to Pathogenic Bacteria Responsible for Mastitis. J. Infect. 2007, 54, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.W.; White, L.J.; Zadoks, R.N.; Schukken, Y.H. A Mathematical Model Demonstrating Indirect and Overall Effects of Lactation Therapy Targeting Subclinical Mastitis in Dairy Herds. Prev. Vet. Med. 2009, 90, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, P.; Goudar, A.L.; Suresh, K.P.; Roy, P. Global and Countrywide Prevalence of Subclinical and Clinical Mastitis in Dairy Cattle and Buffaloes by Systematic Review and Meta-Analysis. Res. Vet. Sci. 2021, 136, 561–586. [Google Scholar] [CrossRef]
- Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An Introduction to Immunology and Immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Bannerman, D.D. Pathogen-Dependent Induction of Cytokines and Other Soluble Inflammatory Mediators during Intramammary Infection of Dairy Cows. J. Anim. Sci. 2009, 87, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Bannerman, D.D.; Paape, M.J.; Hare, W.R.; Hope, J.C. Characterization of the Bovine Innate Immune Response to Intramammary Infection with Klebsiella Pneumoniae. J. Dairy Sci. 2004, 87, 2420–2432. [Google Scholar] [CrossRef] [PubMed]
- Poizat, A.; Bonnet-Beaugrand, F.; Rault, A.; Fourichon, C.; Bareille, N. Antibiotic Use by Farmers to Control Mastitis as Influenced by Health Advice and Dairy Farming Systems. Prev. Vet. Med. 2017, 146, 61–72. [Google Scholar] [CrossRef]
- Reis, S.R.; Silva, N.; Brescia, M.V. Antibioticoterapia Para Controle Da Mastite Subclínica de Vacas Em Lactação. Arq. Bras. Med. Vet. Zootec. 2003, 55, 651–658. [Google Scholar] [CrossRef]
- Bi, D.; Zhou, R.; Cai, N.; Lai, Q.; Han, Q.; Peng, Y.; Jiang, Z.; Tang, Z.; Lu, J.; Bao, W.; et al. Alginate Enhances Toll-like Receptor 4-Mediated Phagocytosis by Murine RAW264.7 Macrophages. Int. J. Biol. Macromol. 2017, 105, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Borazjani, N.J.; Tabarsa, M.; You, S.G.; Rezaei, M. Effects of Extraction Methods on Molecular Characteristics, Antioxidant Properties and Immunomodulation of Alginates from Sargassum Angustifolium. Int. J. Biol. Macromol. 2017, 101, 703–711. [Google Scholar] [CrossRef]
- Yang, D.; Jones, K.S. Effect of Alginate on Innate Immune Activation of Macrophages. J. Biomed. Mater. Res. A 2009, 90A, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Ravichandran, S.; Muralisankar, T.; Uthayakumar, V.; Chandirasekar, R.; Seedevi, P.; Abirami, R.G.; Rajan, D.K. Application of Marine-Derived Polysaccharides as Immunostimulants in Aquaculture: A Review of Current Knowledge and Further Perspectives. Fish Shellfish. Immunol. 2019, 86, 1177–1193. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.L.; Guo, Y.M.; Yuan, J.M.; Liu, D.; Zhang, B.K. Sodium Alginate Oligosaccharides from Brown Algae Inhibit Salmonella Enteritidis Colonization in Broiler Chickens. Poult. Sci. 2011, 90, 1441–1448. [Google Scholar] [CrossRef]
- Xiao, X.; Guo, K.; Liu, J.; Liu, Y.; Yang, C.; Xu, Y.; Deng, B. The Effect of Sodium Alginate-Coated Nano-Zinc Oxide on the Growth Performance, Serum Indexes and Fecal Microbial Structure of Weaned Piglets. Animals 2023, 14, 146. [Google Scholar] [CrossRef]
- Saleh, E.M.; Hamdy, G.M.; Hassan, R.E. Neuroprotective Effect of Sodium Alginate against Chromium-Induced Brain Damage in Rats. PLoS ONE 2022, 17, e0266898. [Google Scholar] [CrossRef] [PubMed]
- Schutz, M.M.; VanRaden, P.M.; Wiggans, G.R.; Norman, H.D. Standardization of Lactation Means of Somatic Cell Scores for Calculation of Genetic Evaluations. J. Dairy Sci. 1995, 78, 1843–1854. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhao, Y.; Yan, Y.; Mi, J.; Lu, L.; Luo, Q.; Li, X.; Zeng, X.; Cao, Y. Antioxidant and Immunomodulatory Activities in Vitro of Polysaccharides from Bee Collected Pollen of Chinese Wolfberry. Int. J. Biol. Macromol. 2020, 163, 190–199. [Google Scholar] [CrossRef]
- Schmenger, A.; Krömker, V. Characterization, Cure Rates and Associated Risks of Clinical Mastitis in Northern Germany. Vet. Sci. 2020, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Schmenger, A.; Leimbach, S.; Wente, N.; Zhang, Y.; Biggs, A.M.; Kroemker, V. Implementation of a Targeted Mastitis Therapy Concept Using an On-Farm Rapid Test: Antimicrobial Consumption, Cure Rates and Compliance. Vet. Rec. 2020, 187, 401. [Google Scholar] [CrossRef]
- Wilm, J.; Krömker, V.; Kirkeby, C.; Gussmann, M. Lactational Treatment of Bovine Mastitis—Development over Time and Factors Influencing Cytological Cure. J. Dairy Sci. 2023, 106, 5740–5752. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, X.; Wang, Q.; Cai, N.; Zhang, H.; Jiang, Z.; Wan, M.; Oda, T. Immunomodulatory Effects of Alginate Oligosaccharides on Murine Macrophage RAW264.7 Cells and Their Structure-Activity Relationships. J. Agric. Food Chem. 2014, 62, 3168–3176. [Google Scholar] [CrossRef]
- Sordillo, L.M. Mammary Gland Immunobiology and Resistance to Mastitis. Vet. Clin. N. Am.-Food Anim. Pract. 2018, 34, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Paape, M.; Mehrzad, J.; Zhao, X.; Detilleux, J.; Burvenich, C. Defense of the Bovine Mammary Gland by Polymorphonuclear Neutrophil Leukocytes. J. Mammary Gland. Biol. Neoplasia 2002, 7, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Alhussien, M.N.; Panda, B.S.K.; Dang, A.K. A Comparative Study on Changes in Total and Differential Milk Cell Counts, Activity, and Expression of Milk Phagocytes of Healthy and Mastitic Indigenous Sahiwal Cows. Front. Vet. Sci. 2021, 8, 670811. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Takahashi, A.; Kobayashi, S.; Hirata, H.; Mesner, P.W.; Kaufmann, S.H.; Yonehara, S.; Yamamoto, K.; Uchiyama, T.; Sasada, M. Caspases Mediate Tumor Necrosis Factor-α–Induced Neutrophil Apoptosis and Downregulation of Reactive Oxygen Production. Blood 1999, 93, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Otterlei, M.; Østgaard, K.; Skjåk-Bræk, G.; Smidsrød, O.; Soon-Shiong, P.; Espevik, T. Induction of Cytokine Production from Human Monocytes Stimulated with Alginate. J. Immunother. 1991, 10, 286–291. [Google Scholar] [CrossRef]
- Ueno, M.; Oda, T. Biological Activities of Alginate. Adv. Food Nutr. Res. 2014, 72, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.; Pfaffl, M.W.; Meyer, H.H.D.; Bruckmaier, R.M. Short-Term Changes of MRNA Expression of Various Inflammatory Factors and Milk Proteins in Mammary Tissue during LPS-Induced Mastitis. Domest. Anim. Endocrinol. 2004, 26, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Sørensen, P.; Røntved, C.; Vels, L.; Ingvartsen, K.L. Gene Expression Profiling of Liver from Dairy Cows Treated Intra-Mammary with Lipopolysaccharide. BMC Genom. 2008, 9, 443. [Google Scholar] [CrossRef]
- Lee, J.W.; Bannerman, D.D.; Paape, M.J.; Huang, M.K.; Zhao, X. Characterization of Cytokine Expression in Milk Somatic Cells during Intramammary Infections with Escherichia Coli or Staphylococcus Aureus by Real-Time PCR. Vet. Res. 2006, 37, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Tanamati, F.; Stafuzza, N.B.; Gimenez, D.F.J.; Stella, A.A.S.; Santos, D.J.A.; Ferro, M.I.T.; Albuquerque, L.G.; Gasparino, E.; Tonhati, H. Differential Expression of Immune Response Genes Associated with Subclinical Mastitis in Dairy Buffaloes. Animal 2019, 13, 1651–1657. [Google Scholar] [CrossRef]
- Mukaida, N.; Harada, A.; Matsushima, K. Interleukin-8 (IL-8) and Monocyte Chemotactic and Activating Factor (MCAF/MCP-1), Chemokines Essentially Involved in Inflammatory and Immune Reactions. Cytokine Growth Factor Rev. 1998, 9, 9–23. [Google Scholar] [CrossRef]
- Ellis, T.N.; Beaman, B.L. Interferon-γ Activation of Polymorphonuclear Neutrophil Function. Immunology 2004, 112, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Kurachi, M.; Yamaguchi, K.; Oda, T. Stimulation of Multiple Cytokine Production in Mice by Alginate Oligosaccharides Following Intraperitoneal Administration. Carbohydr. Res. 2007, 342, 1133–1137. [Google Scholar] [CrossRef]
- Vitenberga-Verza, Z.; Pilmane, M.; Šerstnova, K.; Melderis, I.; Gontar, Ł.; Kochański, M.; Drutowska, A.; Maróti, G.; Prieto-Simón, B. Identification of Inflammatory and Regulatory Cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-Producing Cells in the Milk of Dairy Cows with Subclinical and Clinical Mastitis. Pathogens 2022, 11, 372. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Hirano, A.; Wada, H.; Takahashi, K.; Hattori, M. Alginic Acid Oligosaccharide Suppresses Th2 Development and IgE Production by Inducing IL-12 Production. Int. Arch. Allergy Immunol. 2004, 133, 239–247. [Google Scholar] [CrossRef]
- Moore, K.W.; De Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the Interleukin-10 Receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef] [PubMed]
- Adkins, P.R.F.; Fox, L.K. Molecular Diagnostics. In Laboratory Handbook on Bovine Mastitis, 3rd ed.; Middleton, J.R., Fox, L.K., Pighetti, G., Petersson-Wolfe, C., Eds.; National Mastitis Council Inc.: New Prague, MN, USA, 2017; pp. 25–30. [Google Scholar]
- Palomares, R.A.; Brock, K.V.; Walz, P.H. Differential Expression of Pro-Inflammatory and Anti-Inflammatory Cytokines during Experimental Infection with Low or High Virulence Bovine Viral Diarrhea Virus in Beef Calves. Vet. Immunol. Immunopathol. 2014, 157, 149–154. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Kasimanickam, V.; Kastelic, J.P. Mucin 1 and Cytokines MRNA in Endometrium of Dairy Cows with Postpartum Uterine Disease or Repeat Breeding. Theriogenology 2014, 81, 952–958.e2. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, E.; Liu, Z.; Li, F.; Liang, D.; Liu, B.; Song, X.; Zhao, F.; Fen, X.; Li, D.; et al. Staphylococcus Aureus and Escherichia Coli Elicit Different Innate Immune Responses from Bovine Mammary Epithelial Cells. Vet. Immunol. Immunopathol. 2013, 155, 245–252. [Google Scholar] [CrossRef]
Gene 1 | Primer | Sequence (5’-3’) | Reference |
---|---|---|---|
GAPDH | Forward | GATTGTCAGCAATGCCTCCT | [46] |
Reverse | GGTCATAAGTCCCTCCACGA | ||
TNF-α | Forward | CCTGGTACGAACCCATCTA | [46] |
Reverse | ATCCCAAAGTAGACCTGCC | ||
IL-1β | Forward | AAAGCTTCAGGCAGGTGGTG | [46] |
Reverse | TGCGTAGGCACTGTTCCTCA | ||
IL-2 | Forward | GAAAGTTAAAAATCCTGAGAACCTCAA | [46] |
Reverse | GCGTTAACCTTGGGCACGTA | ||
IL-4 | Forward | AGGAGCCACACGTGCTTGA | [46] |
Reverse | TTGCCAAGCTGTTGAGATTCC | ||
IL-6 | Forward | ATGACTTCTGCTTTCCCTACCC | [47] |
Reverse | GCTGCTTTCACACTCATCATT | ||
IL-8 | Forward | ACACATTCCACACCTTTCCA | [48] |
Reverse | GGTTTAGGCAGACCTCGTTT | ||
IL-10 | Forward | TTCTGCCCTGCGAAAACAA | [46] |
Reverse | TCTCTTGGAGCTCACTGAAGACTCT | ||
IL-12 | Forward | CATCAGGGACATCATCAAACCA | [46] |
Reverse | CCTCCACCTGCCGAGAATT | ||
IFN-γ | Forward | GTAGCCCTGTGCCTGATTTC | [46] |
Reverse | CACATTGTCCCTTCCCAGAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.-I.; Lin, Y.-C.; Lee, J.-W.; Shen, P.-C.; Ballantyne, R.; Lee, H.-H.; Lee, K.-H. Effects of Sodium Alginate Infusion on Intramammary Immunity Against Subclinical Mastitis in Dairy Cows. Int. J. Mol. Sci. 2025, 26, 5515. https://doi.org/10.3390/ijms26125515
Pan Y-I, Lin Y-C, Lee J-W, Shen P-C, Ballantyne R, Lee H-H, Lee K-H. Effects of Sodium Alginate Infusion on Intramammary Immunity Against Subclinical Mastitis in Dairy Cows. International Journal of Molecular Sciences. 2025; 26(12):5515. https://doi.org/10.3390/ijms26125515
Chicago/Turabian StylePan, Yu-I, Yu-Chia Lin, Jai-Wei Lee, Perng-Chih Shen, Rolissa Ballantyne, Hsu-Hsun Lee, and Kuo-Hua Lee. 2025. "Effects of Sodium Alginate Infusion on Intramammary Immunity Against Subclinical Mastitis in Dairy Cows" International Journal of Molecular Sciences 26, no. 12: 5515. https://doi.org/10.3390/ijms26125515
APA StylePan, Y.-I., Lin, Y.-C., Lee, J.-W., Shen, P.-C., Ballantyne, R., Lee, H.-H., & Lee, K.-H. (2025). Effects of Sodium Alginate Infusion on Intramammary Immunity Against Subclinical Mastitis in Dairy Cows. International Journal of Molecular Sciences, 26(12), 5515. https://doi.org/10.3390/ijms26125515