Molecular Diplomacy of Lipids in the War of Immunity: Bridging Rare and Common Disease Mechanisms
1. Introduction
2. Conclusions
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Cao, S.; Yang, D.; Shang, L.; Hang, Y.; Wang, P.; Zhang, S.; Li, C.; Zhang, M.; Gao, X. Proteomics Profiling Reveals Pharmaceutical Excipient PEG400 Induces Nuclear-Receptor-Activation-Affected Lipid Metabolism and Metabolic Enzyme Expression. Int. J. Mol. Sci. 2025, 26, 1732. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Lv, X.; Cao, X.; Sun, W. Effect of METTL3 Gene on Lipopolysaccharide Induced Damage to Primary Small Intestinal Epithelial Cells in Sheep. Int. J. Mol. Sci. 2024, 25, 9316. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Gao, R.; Chen, Z. 5-Methylcytosine Methylation-Linked Hippo Pathway Molecular Interactions Regulate Lipid Metabolism. Int. J. Mol. Sci. 2025, 26, 2560. [Google Scholar] [CrossRef]
- Magnusen, A.F.; Pandey, M.K. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int. J. Mol. Sci. 2024, 25, 12252. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Han, S.; Kim, S.; Kang, I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int. J. Mol. Sci. 2024, 25, 11185. [Google Scholar] [CrossRef]
- Arribada, R.G.; Rodrigues-Braz, D.; Silva-Cunha, A.; Behar-Cohen, F. Excipients in drug delivery systems: A comprehensive review of approved inactive ingredients for human ophthalmic formulations. Eur. J. Pharm. Biopharm. 2025, 208, 114637. [Google Scholar] [CrossRef]
- Martinez, M.N.; Sinko, B.; Wu, F.; Flanagan, T.; Borbás, E.; Tsakalozou, E.; Giacomini, K.M. A Critical Overview of the Biological Effects of Excipients (Part I): Impact on Gastrointestinal Absorption. AAPS J. 2022, 24, 60. [Google Scholar] [CrossRef]
- Barrington, G.M.; Gay, J.M.; Evermann, J.F. Biosecurity for neonatal gastrointestinal diseases. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 7–34. [Google Scholar] [CrossRef]
- Söllner, J.H.; Mettenleiter, T.C.; Petersen, B. Genome Editing Strategies to Protect Livestock from Viral Infections. Viruses 2021, 13, 1996. [Google Scholar] [CrossRef]
- Thomson, S.; Hamilton, C.A.; Hope, J.C.; Katzer, F.; Mabbott, N.A.; Morrison, L.J.; Innes, E.A. Bovine cryptosporidiosis: Impact, host-parasite interaction and control strategies. Vet. Res. 2017, 48, 42. [Google Scholar] [CrossRef]
- Dai, W.; Qiao, X.; Fang, Y.; Guo, R.; Bai, P.; Liu, S.; Li, T.; Jiang, Y.; Wei, S.; Na, Z.; et al. Epigenetics-targeted drugs: Current paradigms and future challenges. Signal Transduct. Target. Ther. 2024, 9, 332. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.A.; Ordovás, J. Epigenetics of Early Cardiometabolic Disease: Mechanisms and Precision Medicine. Circ. Res. 2023, 132, 1648–1662. [Google Scholar] [CrossRef] [PubMed]
- Huo, M.; Zhang, J.; Huang, W.; Wang, Y. Interplay Among Metabolism, Epigenetic Modifications, and Gene Expression in Cancer. Front. Cell Dev. Biol. 2021, 9, 793428. [Google Scholar] [CrossRef] [PubMed]
- McCurry, K.R.; Kooyman, D.L.; Alvarado, C.G.; Cotterell, A.H.; Martin, M.J.; Logan, J.S.; Platt, J.L. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat. Med. 1995, 1, 423–427. [Google Scholar] [CrossRef]
- Jongerius, I.; Köhl, J.; Pandey, M.K.; Ruyken, M.; van Kessel, K.P.; van Strijp, J.A.; Rooijakkers, S.H. Staphylococcal complement evasion by various convertase-blocking molecules. J. Exp. Med. 2007, 204, 2461–2471. [Google Scholar] [CrossRef]
- Mellors, J.; Dhaliwal, R.; Longet, S.; Tipton, T.; McInnes, I.; Siebert, S.; Kearns, P.; Rea, D.; Cook, G.; Willicombe, M.; et al. Complement-mediated enhancement of SARS-CoV-2 antibody neutralisation potency in vaccinated individuals. Nat. Commun. 2025, 16, 2666. [Google Scholar] [CrossRef]
- Xu, R.; Lin, F.; Bao, C.; Huang, H.; Ji, C.; Wang, S.; Jin, L.; Sun, L.; Li, K.; Zhang, Z.; et al. Complement 5a receptor-mediated neutrophil dysfunction is associated with a poor outcome in sepsis. Cell. Mol. Immunol. 2016, 13, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Seki, K.; Sueyoshi, K.; Miyoshi, Y.; Nakamura, Y.; Ishihara, T.; Kondo, Y.; Kuroda, Y.; Yonekura, A.; Iwabuchi, K.; Okamoto, K.; et al. Complement activation and lung injury in Japanese patients with COVID-19: A prospective observational study. Sci. Rep. 2024, 14, 24895. [Google Scholar] [CrossRef]
- Donado, C.A.; Theisen, E.; Zhang, F.; Nathan, A.; Fairfield, M.L.; Rupani, K.V.; Jones, D.; Johannes, K.P.; Raychaudhuri, S.; Dwyer, D.F.; et al. Granzyme K activates the entire complement cascade. Nature 2025, 641, 211–221. [Google Scholar] [CrossRef]
- Zhang, X.; Schmudde, I.; Laumonnier, Y.; Pandey, M.K.; Clark, J.R.; König, P.; Gerard, N.P.; Gerard, C.; Wills-Karp, M.; Köhl, J. A critical role for C5L2 in the pathogenesis of experimental allergic asthma. J. Immunol. 2010, 185, 6741–6752. [Google Scholar] [CrossRef]
- Köhl, J.; Baelder, R.; Lewkowich, I.P.; Pandey, M.K.; Hawlisch, H.; Wang, L.; Best, J.; Herman, N.S.; Sproles, A.A.; Zwirner, J.; et al. A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J. Clin. Investig. 2006, 116, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Bestebroer, J.; Aerts, P.C.; Rooijakkers, S.H.; Pandey, M.K.; Köhl, J.; van Strijp, J.A.; de Haas, C.J. Functional basis for complement evasion by staphylococcal superantigen-like 7. Cell. Microbiol. 2010, 12, 1506–1516. [Google Scholar] [CrossRef]
- Weaver, D.J., Jr.; Reis, E.S.; Pandey, M.K.; Köhl, G.; Harris, N.; Gerard, C.; Köhl, J. C5a receptor-deficient dendritic cells promote induction of Treg and Th17 cells. Eur. J. Immunol. 2010, 40, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, D.; García-González, M.; Gómez-Bernal, F.; Quevedo-Abeledo, J.C.; González-Rivero, A.F.; Fernández-Cladera, Y.; González-López, E.; Ocejo-Vinyals, J.G.; Jiménez-Sosa, A.; González-Toledo, B.; et al. Complete Description of the Three Pathways of the Complement System in a Series of 430 Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2024, 25, 8360. [Google Scholar] [CrossRef]
- Chen, J.; He, Z.; Fan, Y.; Zhou, X.; Li, L.; Liu, M. Production of a bispecific antibody targeting TNF-α and C5a in Pichia pastoris and its therapeutic potential in rheumatoid arthritis. Biotechnol. Lett. 2020, 42, 557–569. [Google Scholar] [CrossRef]
- Hornum, L.; Hansen, A.J.; Tornehave, D.; Fjording, M.S.; Colmenero, P.; Wätjen, I.F.; Søe Nielsen, N.H.; Bliddal, H.; Bartels, E.M. C5a and C5aR are elevated in joints of rheumatoid and psoriatic arthritis patients, and C5aR blockade attenuates leukocyte migration to synovial fluid. PLoS ONE 2017, 12, e0189017. [Google Scholar] [CrossRef] [PubMed]
- Ramsey-Goldman, R.; Alexander, R.V.; Massarotti, E.M.; Wallace, D.J.; Narain, S.; Arriens, C.; Collins, C.E.; Saxena, A.; Putterman, C.; Kalunian, K.C.; et al. Complement Activation in Patients with Probable Systemic Lupus Erythematosus and Ability to Predict Progression to American College of Rheumatology–Classified Systemic Lupus Erythematosus. Arthritis Rheumatol. 2020, 72, 78–88. [Google Scholar] [CrossRef]
- Pickering, M.C.; Botto, M. Canonical and noncanonical functions of complement in systemic lupus erythematosus. Eur. J. Immunol. 2024, 54, e2350918. [Google Scholar] [CrossRef]
- Lechner, J.; Chen, M.; Hogg, R.E.; Toth, L.; Silvestri, G.; Chakravarthy, U.; Xu, H. Higher plasma levels of complement C3a, C4a and C5a increase the risk of subretinal fibrosis in neovascular age-related macular degeneration: Complement activation in AMD. Immun. Ageing 2016, 13, 4. [Google Scholar] [CrossRef]
- Toomey, C.B.; Landowski, M.; Klingeborn, M.; Kelly, U.; Deans, J.; Dong, H.; Harrabi, O.; Van Blarcom, T.; Yeung, Y.A.; Grishanin, R.; et al. Effect of Anti-C5a Therapy in a Murine Model of Early/Intermediate Dry Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, 662–673. [Google Scholar] [CrossRef]
- Rohrer, B. Anaphylatoxin Signaling in Retinal Pigment and Choroidal Endothelial Cells: Characteristics and Relevance to Age-Related Macular Degeneration. Adv. Exp. Med. Biol. 2018, 1074, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, F.; Zetoune, F.S.; Ward, P.A. Complement as a Major Inducer of Harmful Events in Infectious Sepsis. Shock 2020, 54, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.T.; Hale, P.T.; Pauciulo, M.W.; Dasgupta, N.; Pastura, P.A.; Le Cras, T.D.; Pandey, M.K.; Nichols, W.C. Hypoxia-induced Pulmonary Hypertension in Different Mouse Strains: Relation to Transcriptome. Am. J. Respir. Cell Mol. Biol. 2019, 60, 106–116. [Google Scholar] [CrossRef]
- de Nooijer, A.H.; Kotsaki, A.; Kranidioti, E.; Kox, M.; Pickkers, P.; Toonen, E.J.M.; Giamarellos-Bourboulis, E.J.; Netea, M.G. Complement activation in severely ill patients with sepsis: No relationship with inflammation and disease severity. Crit. Care 2023, 27, 63. [Google Scholar] [CrossRef]
- Pandey, M.K. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023, 11, 1067. [Google Scholar] [CrossRef] [PubMed]
- Debiec, H.; Valayannopoulos, V.; Boyer, O.; Nöel, L.-H.; Callard, P.; Sarda, H.; de Lonlay, P.; Niaudet, P.; Ronco, P. Allo-immune membranous nephropathy and recombinant aryl sulfatase replacement therapy: A need for tolerance induction therapy. J. Am. Soc. Nephrol. 2014, 25, 675–680. [Google Scholar] [CrossRef]
- Pandey, M.K.; Grabowski, G.A.; Köhl, J. An unexpected player in Gaucher disease: The multiple roles of complement in disease development. Semin. Immunol 2018, 37, 30–42. [Google Scholar] [CrossRef]
- Pandey, M.K.; Burrow, T.A.; Rani, R.; Martin, L.J.; Witte, D.; Setchell, K.D.; McKay, M.A.; Magnusen, A.F.; Zhang, W.; Liou, B.; et al. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease. Nature 2017, 543, 108–112. [Google Scholar] [CrossRef]
- Trivedi, V.S.; Magnusen, A.F.; Rani, R.; Marsili, L.; Slavotinek, A.M.; Prows, D.R.; Hopkin, R.J.; McKay, M.A.; Pandey, M.K. Targeting the Complement-Sphingolipid System in COVID-19 and Gaucher Diseases: Evidence for a New Treatment Strategy. Int. J. Mol. Sci. 2022, 23, 14340. [Google Scholar] [CrossRef]
- Laffer, B.; Lenders, M.; Ehlers-Jeske, E.; Heidenreich, K.; Brand, E.; Köhl, J. Complement activation and cellular inflammation in Fabry disease patients despite enzyme replacement therapy. Front. Immunol. 2024, 15, 1307558. [Google Scholar] [CrossRef]
- Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med. 2017, 23, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Ali, L.S.; Attia, Y.A.M.; Mourad, S.; Halawa, E.M.; Abd Elghaffar, N.H.; Shokry, S.; Attia, O.M.; Makram, M.; Wadan, A.S.; Negm, W.A.; et al. The missing link between cancer stem cells and immunotherapy. Curr. Med. Res. Opin. 2024, 40, 1963–1984. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Tian, W.; Ning, J.; Xiao, G.; Zhou, Y.; Wang, Z.; Zhai, Z.; Tanzhu, G.; Yang, J.; Zhou, R. Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 170. [Google Scholar] [CrossRef]
- Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front. Immunol. 2020, 11, 1280. [Google Scholar] [CrossRef]
- Yan, Y.; Zuo, X.; Wei, D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl. Med. 2015, 4, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Verdelli, C.; Morotti, A.; Tavanti, G.S.; Silipigni, R.; Guerneri, S.; Ferrero, S.; Vicentini, L.; Vaira, V.; Corbetta, S. The Core Stem Genes SOX2, POU5F1/OCT4, and NANOG Are Expressed in Human Parathyroid Tumors and Modulated by MEN1, YAP1, and β-catenin Pathways Activation. Biomedicines 2021, 9, 637. [Google Scholar] [CrossRef]
- Wang, M.L.; Chiou, S.H.; Wu, C.W. Targeting cancer stem cells: Emerging role of Nanog transcription factor. OncoTargets Ther. 2013, 6, 1207–1220. [Google Scholar] [CrossRef]
- Saito, S.; Ku, C.C.; Wuputra, K.; Pan, J.B.; Lin, C.S.; Lin, Y.C.; Wu, D.C.; Yokoyama, K.K. Biomarkers of Cancer Stem Cells for Experimental Research and Clinical Application. J. Pers. Med. 2022, 12, 715. [Google Scholar] [CrossRef]
- Rezayatmand, H.; Razmkhah, M.; Razeghian-Jahromi, I. Drug resistance in cancer therapy: The Pandora’s Box of cancer stem cells. Stem Cell Res. Ther. 2022, 13, 181. [Google Scholar] [CrossRef]
- Gupta, G.; Merhej, G.; Saravanan, S.; Chen, H. Cancer resistance to immunotherapy: What is the role of cancer stem cells? Cancer Drug Resist. 2022, 5, 981–994. [Google Scholar] [CrossRef]
- El-Tanani, M.; Rabbani, S.A.; Satyam, S.M.; Rangraze, I.R.; Wali, A.F.; El-Tanani, Y.; Aljabali, A.A.A. Deciphering the Role of Cancer Stem Cells: Drivers of Tumor Evolution, Therapeutic Resistance, and Precision Medicine Strategies. Cancers 2025, 17, 382. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Song, X.; Xu, D.; Tiek, D.; Goenka, A.; Wu, B.; Sastry, N.; Hu, B.; Cheng, S.Y. Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics 2020, 10, 8721–8743. [Google Scholar] [CrossRef] [PubMed]
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yue, X.; Chen, Z.; Liu, C.; Wu, W.; Zhang, N.; Liu, Z.; Yang, L.; Jiang, Q.; Cheng, Q.; et al. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: New opportunities in cancer immunotherapy and advances in clinical trials. Mol. Cancer 2023, 22, 159. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; Yuan, Y.; Zhu, Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun. Signal. 2023, 21, 96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, M.K. Molecular Diplomacy of Lipids in the War of Immunity: Bridging Rare and Common Disease Mechanisms. Int. J. Mol. Sci. 2025, 26, 5568. https://doi.org/10.3390/ijms26125568
Pandey MK. Molecular Diplomacy of Lipids in the War of Immunity: Bridging Rare and Common Disease Mechanisms. International Journal of Molecular Sciences. 2025; 26(12):5568. https://doi.org/10.3390/ijms26125568
Chicago/Turabian StylePandey, Manoj Kumar. 2025. "Molecular Diplomacy of Lipids in the War of Immunity: Bridging Rare and Common Disease Mechanisms" International Journal of Molecular Sciences 26, no. 12: 5568. https://doi.org/10.3390/ijms26125568
APA StylePandey, M. K. (2025). Molecular Diplomacy of Lipids in the War of Immunity: Bridging Rare and Common Disease Mechanisms. International Journal of Molecular Sciences, 26(12), 5568. https://doi.org/10.3390/ijms26125568