Cytokines from Macrophages Activated by Spike S1 of SARS-CoV-2 Cause eNOS/Arginase Imbalance in Endothelial Cells
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Experimental Treatments
4.2. RT-qPCR Analysis
4.3. Western Blot Analysis
4.4. Arginine Uptake
4.5. Determination of Intracellular Arginine
4.6. Cytokine Analysis
4.7. Nitric Oxide Production
4.8. Statistical Analysis
4.9. Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stein, R.A.; Young, L.M. From ACE2 to COVID-19: A multiorgan endothelial disease. Int. J. Infect. Dis. 2020, 100, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Teuwen, L.A.; Geldhof, V.; Pasut, A.; Carmeliet, P. COVID-19: The vasculature unleashed. Nat. Rev. Immunol. 2020, 20, 389–391. [Google Scholar] [CrossRef]
- Pelle, M.C.; Zaffina, I.; Luca, S.; Forte, V.; Trapanese, V.; Melina, M.; Giofre, F.; Arturi, F. Endothelial dysfunction in COVID-19: Potential mechanisms and possible therapeutic options. Life 2022, 12, 1605. [Google Scholar] [CrossRef]
- Liu, N.; Long, H.; Sun, J.; Li, H.; He, Y.; Wang, Q.; Pan, K.; Tong, Y.; Wang, B.; Wu, Q.; et al. New laboratory evidence for the association between endothelial dysfunction and COVID-19 disease progression. J. Med. Virol. 2022, 94, 3112–3120. [Google Scholar] [CrossRef]
- Bernard, I.; Limonta, D.; Mahal, L.K.; Hobman, T.C. Endothelium infection and dysregulation by SARS-CoV-2: Evidence and caveats in COVID-19. Viruses 2020, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; et al. Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 2021, 184, 149–168.e117. [Google Scholar] [CrossRef]
- Batah, S.S.; Fabro, A.T. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respir. Med. 2021, 176, 106239. [Google Scholar] [CrossRef]
- Adebayo, A.; Varzideh, F.; Wilson, S.; Gambardella, J.; Eacobacci, M.; Jankauskas, S.S.; Donkor, K.; Kansakar, U.; Trimarco, V.; Mone, P.; et al. l-Arginine and COVID-19: An Update. Nutrients 2021, 13, 3951. [Google Scholar] [CrossRef]
- Durante, W. Targeting arginine in COVID-19-induced immunopathology and vasculopathy. Metabolites 2022, 12, 240. [Google Scholar] [CrossRef]
- Flowers, M.A.; Wang, Y.; Stewart, R.J.; Patel, B.; Marsden, P.A. Reciprocal regulation of endothelin-1 and endothelial constitutive NOS in proliferating endothelial cells. Am. J. Physiol. 1995, 269, H1988–H1997. [Google Scholar] [CrossRef]
- Xu, S.W.; Ilyas, I.; Weng, J.P. Endothelial dysfunction in COVID-19: An overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 2023, 44, 695–709. [Google Scholar] [CrossRef]
- Bryan, N.S. Nitric oxide deficiency is a primary driver of hypertension. Biochem. Pharmacol. 2022, 206, 115325. [Google Scholar] [CrossRef] [PubMed]
- de Frutos, T.; Sanchez de Miguel, L.; Farre, J.; Gomez, J.; Romero, J.; Marcos-Alberca, P.; Nunez, A.; Rico, L.; Lopez-Farre, A. Expression of an endothelial-type nitric oxide synthase isoform in human neutrophils: Modification by tumor necrosis factor-alpha and during acute myocardial infarction. J. Am. Coll. Cardiol. 2001, 37, 800–807. [Google Scholar] [CrossRef]
- Bachetti, T.; Comini, L.; Francolini, G.; Bastianon, D.; Valetti, B.; Cadei, M.; Grigolato, P.; Suzuki, H.; Finazzi, D.; Albertini, A.; et al. Arginase pathway in human endothelial cells in pathophysiological conditions. J. Mol. Cell Cardiol. 2004, 37, 515–523. [Google Scholar] [CrossRef]
- Li, H.; Meininger, C.J.; Hawker, J.R., Jr.; Haynes, T.E.; Kepka-Lenhart, D.; Mistry, S.K.; Morris, S.M., Jr.; Wu, G. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E75–E82. [Google Scholar] [CrossRef]
- Yang, Z.; Ming, X.F. Arginase: The emerging therapeutic target for vascular oxidative stress and inflammation. Front. Immunol. 2013, 4, 149. [Google Scholar] [CrossRef] [PubMed]
- Derakhshani, A.; Hemmat, N.; Asadzadeh, Z.; Ghaseminia, M.; Shadbad, M.A.; Jadideslam, G.; Silvestris, N.; Racanelli, V.; Baradaran, B. Arginase 1 (Arg1) as an Up-Regulated Gene in COVID-19 Patients: A Promising marker in COVID-19 immunopathy. J. Clin. Med. 2021, 10, 1051. [Google Scholar] [CrossRef]
- Vassiliou, A.G.; Zacharis, A.; Keskinidou, C.; Jahaj, E.; Pratikaki, M.; Gallos, P.; Dimopoulou, I.; Kotanidou, A.; Orfanos, S.E. Soluble angiotensin converting Enzyme 2 (ACE2) is upregulated and soluble endothelial nitric oxide synthase (eNOS) is downregulated in COVID-19-induced acute respiratory distress syndrome (ARDS). Pharmaceuticals 2021, 14, 695. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Zhang, S.; Cheng, J.; Liu, Y.; Han, X.; Wang, Y.; Wang, Y. Inhaled nitric oxide: Can it serve as a savior for COVID-19 and related respiratory and cardiovascular diseases? Front. Microbiol. 2023, 14, 1277552. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Garcia, S.; Castrillo, A.; Bosca, L.; Prieto, P. Potential beneficial role of nitric oxide in SARS-CoV-2 infection: Beyond spike-binding inhibition. Antioxidants 2024, 13, 1301. [Google Scholar] [CrossRef]
- Redaelli, S.; Magliocca, A.; Malhotra, R.; Ristagno, G.; Citerio, G.; Bellani, G.; Berra, L.; Rezoagli, E. Nitric oxide: Clinical applications in critically ill patients. Nitric Oxide 2022, 121, 20–33. [Google Scholar] [CrossRef]
- Fang, W.; Jiang, J.; Su, L.; Shu, T.; Liu, H.; Lai, S.; Ghiladi, R.A.; Wang, J. The role of NO in COVID-19 and potential therapeutic strategies. Free Radic. Biol. Med. 2021, 163, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Sala, R.; Rotoli, B.M.; Colla, E.; Visigalli, R.; Parolari, A.; Bussolati, O.; Gazzola, G.C.; Dall’Asta, V. Two-way arginine transport in human endothelial cells: TNF-alpha stimulation is restricted to system y(+). Am. J. Physiol. Cell Physiol. 2002, 282, C134–C143. [Google Scholar] [CrossRef] [PubMed]
- Recchia Luciani, G.; Barilli, A.; Visigalli, R.; Dall’Asta, V.; Rotoli, B.M. Cytokines from SARS-CoV-2 spike-activated macrophages hinder proliferation and cause cell dysfunction in endothelial cells. Biomolecules 2024, 14, 927. [Google Scholar] [CrossRef]
- Barilli, A.; Visigalli, R.; Ferrari, F.; Recchia Luciani, G.; Soli, M.; Dall’Asta, V.; Rotoli, B.M. The JAK1/2 inhibitor baricitinib mitigates the spike-induced inflammatory response of immune and endothelial cells in vitro. Biomedicines 2022, 10, 2324. [Google Scholar] [CrossRef]
- Barilli, A.; Visigalli, R.; Ferrari, F.; Recchia Luciani, G.; Soli, M.; Dall’Asta, V.; Rotoli, B.M. growth arrest of alveolar cells in response to cytokines from spike s1-activated macrophages: Role of IFN-gamma. Biomedicines 2022, 10, 3085. [Google Scholar] [CrossRef]
- Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) pathway. Sci. Signal 2010, 3, cm1. [Google Scholar] [CrossRef]
- Holbrook, J.; Lara-Reyna, S.; Jarosz-Griffiths, H.; McDermott, M. Tumour necrosis factor signalling in health and disease. F1000Res 2019, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Silaghi-Dumitrescu, R.; Patrascu, I.; Lehene, M.; Bercea, I. Comorbidities of COVID-19 patients. Medicina 2023, 59, 1393. [Google Scholar] [CrossRef]
- Lui, K.O.; Ma, Z.; Dimmeler, S. SARS-CoV-2 induced vascular endothelial dysfunction: Direct or indirect effects? Cardiovasc. Res. 2024, 120, 34–43. [Google Scholar] [CrossRef]
- Otifi, H.M.; Adiga, B.K. Endothelial dysfunction in COVID-19 Infection. Am. J. Med. Sci. 2022, 363, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Rotoli, B.M.; Barilli, A.; Visigalli, R.; Ferrari, F.; Dall’Asta, V. endothelial cell activation by SARS-CoV-2 spike s1 protein: A crosstalk between endothelium and innate immune cells. Biomedicines 2021, 9, 1220. [Google Scholar] [CrossRef]
- Dean, M.J.; Ochoa, J.B.; Sanchez-Pino, M.D.; Zabaleta, J.; Garai, J.; Del Valle, L.; Wyczechowska, D.; Baiamonte, L.B.; Philbrook, P.; Majumder, R.; et al. Severe COVID-19 Is characterized by an impaired type i interferon response and elevated levels of arginase producing granulocytic myeloid derived suppressor cells. Front. Immunol. 2021, 12, 695972. [Google Scholar] [CrossRef] [PubMed]
- Falck-Jones, S.; Vangeti, S.; Yu, M.; Falck-Jones, R.; Cagigi, A.; Badolati, I.; Osterberg, B.; Lautenbach, M.J.; Ahlberg, E.; Lin, A.; et al. Functional monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19 severity. J. Clin. Investig. 2021, 131, e144734. [Google Scholar] [CrossRef]
- Rees, C.A.; Rostad, C.A.; Mantus, G.; Anderson, E.J.; Chahroudi, A.; Jaggi, P.; Wrammert, J.; Ochoa, J.B.; Ochoa, A.; Basu, R.K.; et al. Altered amino acid profile in patients with SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA 2021, 118, e2101708118. [Google Scholar] [CrossRef]
- Reizine, F.; Lesouhaitier, M.; Gregoire, M.; Pinceaux, K.; Gacouin, A.; Maamar, A.; Painvin, B.; Camus, C.; Le Tulzo, Y.; Tattevin, P.; et al. SARS-CoV-2-Induced ARDS associates with mdsc expansion, lymphocyte dysfunction, and arginine shortage. J. Clin. Immunol. 2021, 41, 515–525. [Google Scholar] [CrossRef]
- Sacchi, A.; Grassi, G.; Notari, S.; Gili, S.; Bordoni, V.; Tartaglia, E.; Casetti, R.; Cimini, E.; Mariotti, D.; Garotto, G.; et al. Expansion of myeloid derived suppressor cells contributes to platelet activation by l-arginine deprivation during SARS-CoV-2 infection. Cells 2021, 10, 2111. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Chen, D.; Ding, W.; Wu, P.; Hou, H.; Bai, Y.; Zhou, Y.; Li, K.; Xiang, S.; Liu, P.; et al. The trans-omics landscape of COVID-19. Nat. Commun. 2021, 12, 4543. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Ren, Y.; Huang, Y.; Liu, W.; Lv, Z.; Qian, L.; Yu, Y.; Xiong, Y. Arginase: Shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Discov. 2022, 8, 413. [Google Scholar] [CrossRef]
- Mantovani, A.; Bussolino, F.; Dejana, E. Cytokine regulation of endothelial cell function. FASEB J. 1992, 6, 2591–2599. [Google Scholar] [CrossRef]
- Visigalli, R.; Barilli, A.; Bussolati, O.; Sala, R.; Gazzola, G.C.; Parolari, A.; Tremoli, E.; Simon, A.; Closs, E.I.; Dall’Asta, V. Rapamycin stimulates arginine influx through CAT2 transporters in human endothelial cells. Biochim. Biophys. Acta 2007, 1768, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Visigalli, R.; Bussolati, O.; Sala, R.; Barilli, A.; Rotoli, B.M.; Parolari, A.; Alamanni, F.; Gazzola, G.C.; Dall’Asta, V. The stimulation of arginine transport by TNFalpha in human endothelial cells depends on NF-kappaB activation. Biochim. Biophys. Acta 2004, 1664, 45–52. [Google Scholar] [CrossRef]
- Seidel, M.; Billert, H.; Kurpisz, M. Regulation of enos expression in hcaec cell line treated with opioids and proinflammatory cytokines. Kardiol. Pol. 2006, 64, 153–158, discussion 159–160. [Google Scholar] [PubMed]
- McQuillan, L.P.; Leung, G.K.; Marsden, P.A.; Kostyk, S.K.; Kourembanas, S. Hypoxia inhibits expression of enos via transcriptional and posttranscriptional mechanisms. Am. J. Physiol. 1994, 267, H1921–H1927. [Google Scholar] [CrossRef]
- Barilli, A.; Visigalli, R.; Ferrari, F.; Bianchi, M.G.; Dall’Asta, V.; Rotoli, B.M. Immune-mediated inflammatory responses of alveolar epithelial cells: Implications for covid-19 lung pathology. Biomedicines 2022, 10, 618. [Google Scholar] [CrossRef] [PubMed]
- Karadima, E.; Chavakis, T.; Alexaki, V.I. Arginine metabolism in myeloid cells in health and disease. Semin. Immunopathol. 2025, 47, 11. [Google Scholar] [CrossRef]
- Rath, M.; Muller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 2014, 5, 532. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, X.; He, Q.; Li, J.; Lu, J.; Zou, X. L-arginine stimulates CAT-1-mediated arginine uptake and regulation of inducible nitric oxide synthase for the growth of chick intestinal epithelial cells. Mol. Cell Biochem. 2015, 399, 229–236. [Google Scholar] [CrossRef]
- Fulton, D.; Gratton, J.P.; McCabe, T.J.; Fontana, J.; Fujio, Y.; Walsh, K.; Franke, T.F.; Papapetropoulos, A.; Sessa, W.C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999, 399, 597–601. [Google Scholar] [CrossRef]
- Richardson, P.J.; Stebbing, J. Baricitinib as the treatment of choice for hospitalised individuals with COVID-19. EClinicalMedicine 2022, 49, 101493. [Google Scholar] [CrossRef]
- Bronte, V.; Ugel, S.; Tinazzi, E.; Vella, A.; De Sanctis, F.; Cane, S.; Batani, V.; Trovato, R.; Fiore, A.; Petrova, V.; et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J. Clin. Investig. 2020, 130, 6409–6416. [Google Scholar] [CrossRef] [PubMed]
- Marconi, V.C.; Ramanan, A.V.; de Bono, S.; Kartman, C.E.; Krishnan, V.; Liao, R.; Piruzeli, M.L.B.; Goldman, J.D.; Alatorre-Alexander, J.; de Cassia Pellegrini, R.; et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): A randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir. Med. 2021, 9, 1407–1418. [Google Scholar] [CrossRef]
- Dolinger, M.T.; Person, H.; Smith, R.; Jarchin, L.; Pittman, N.; Dubinsky, M.C.; Lai, J. Pediatric crohn disease and multisystem inflammatory syndrome in children (MIS-C) and COVID-19 treated with infliximab. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, N.M.; Warda, A.E.A.; Ibrahim, H.S.G.; Schaalan, M.F.; Fathy, S.M. Evaluation of infliximab/tocilizumab versus tocilizumab among COVID-19 patients with cytokine storm syndrome. Sci. Rep. 2023, 13, 6456. [Google Scholar] [CrossRef]
- Velez, M.P.; McCarthy, M.W. Infliximab as a potential treatment for COVID-19. Expert. Rev. Anti Infect. Ther. 2023, 21, 1–5. [Google Scholar] [CrossRef]
- O’Halloran, J.A.; Ko, E.R.; Anstrom, K.J.; Kedar, E.; McCarthy, M.W.; Panettieri, R.A., Jr.; Maillo, M.; Nunez, P.S.; Lachiewicz, A.M.; Gonzalez, C.; et al. Abatacept, cenicriviroc, or infliximab for treatment of adults hospitalized with COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA 2023, 330, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Saied, Y.M.; Abou Warda, A.E.; Allam, R.M.; Syed, W.; Basil, A.A.-R.M.; Iqbal, A.; Elgendy, M.O.; R, M.E.-S.; Hassan, A. The impact of infliximab on hyperinflammation state in hospitalized COVID-19 patients: A retrospective study. Medicina 2024, 60, 1670. [Google Scholar] [CrossRef]
- Barilli, A.; Visigalli, R.; Ferrari, F.; Borsani, G.; Dall’Asta, V.; Rotoli, B.M. Flagellin from pseudomonas aeruginosa stimulates ATB(0,+) Transporter for arginine and neutral amino acids in human airway epithelial cells. Front. Immunol. 2021, 12, 641563. [Google Scholar] [CrossRef]
- Rotoli, B.M.; Visigalli, R.; Ferrari, F.; Ranieri, M.; Tamma, G.; Dall’Asta, V.; Barilli, A. Desmopressin stimulates nitric oxide production in human lung microvascular endothelial cells. Biomolecules 2022, 12, 389. [Google Scholar] [CrossRef]
Gene/Protein | Forward Primer | Reverse Primer |
---|---|---|
SLC7A1/CAT1 | CTTCATCACCGGCTGGAACT | GGGTCTGCCTATCAGCTCGT |
SLC7A2/CAT2B | TTCTCTCTGCGCCTTGTCAA | CCATCCTCCGCCATAGCATA |
SLC7A6/y+LAT2 | TaqMan® Gene Expression Assay (Cat# Hs00187757_m1) | |
SLC7A7/y+LAT1 | TaqMan® Gene Expression Assay (Cat# Hs00374417_m1) | |
NOS3/eNOS | TGGTACATGAGCACTGAGATCG | CCACGTTGATTTCCACTGCTG |
ARG2/arginase | AAGCTGGCTTGATGAAAAGGC | GCGTGGATTCACTATCAGGTTGT |
RPL15/RPL15 | GCAGCCATCAGGTAAGCCAAG | AGCGGACCCTCAGAAGAAAGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recchia Luciani, G.; Visigalli, R.; Dall’Asta, V.; Rotoli, B.M.; Barilli, A. Cytokines from Macrophages Activated by Spike S1 of SARS-CoV-2 Cause eNOS/Arginase Imbalance in Endothelial Cells. Int. J. Mol. Sci. 2025, 26, 5916. https://doi.org/10.3390/ijms26125916
Recchia Luciani G, Visigalli R, Dall’Asta V, Rotoli BM, Barilli A. Cytokines from Macrophages Activated by Spike S1 of SARS-CoV-2 Cause eNOS/Arginase Imbalance in Endothelial Cells. International Journal of Molecular Sciences. 2025; 26(12):5916. https://doi.org/10.3390/ijms26125916
Chicago/Turabian StyleRecchia Luciani, Giulia, Rossana Visigalli, Valeria Dall’Asta, Bianca Maria Rotoli, and Amelia Barilli. 2025. "Cytokines from Macrophages Activated by Spike S1 of SARS-CoV-2 Cause eNOS/Arginase Imbalance in Endothelial Cells" International Journal of Molecular Sciences 26, no. 12: 5916. https://doi.org/10.3390/ijms26125916
APA StyleRecchia Luciani, G., Visigalli, R., Dall’Asta, V., Rotoli, B. M., & Barilli, A. (2025). Cytokines from Macrophages Activated by Spike S1 of SARS-CoV-2 Cause eNOS/Arginase Imbalance in Endothelial Cells. International Journal of Molecular Sciences, 26(12), 5916. https://doi.org/10.3390/ijms26125916