New 1,2,4-Triazole Derivatives with a N-Mannich Base Structure Based on a 4,6-Dimethylpyridine Scaffold as Anticancer Agents: Design, Synthesis, Biological Evaluation, and Molecular Modeling
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Cytotoxic Evaluation
2.2.2. Rhodamine-123 Assay
2.2.3. Detection of Apoptosis
2.2.4. Effect of 6 on IL-6 and IL-1β Level
2.3. Computational Chemistry and Molecular Modeling Study
3. Materials and Methods
3.1. Chemistry
3.1.1. Instruments and Chemicals
3.1.2. Preparation and Experimental Properties of Compounds 2–13
General Procedure for Preparation of Compounds 2a–c
General Procedure for Preparation of Compounds 3a–c
General Procedure for Preparation of Compounds 4–13
3.2. Biological Assays
3.2.1. Cell Lines and Conditions
3.2.2. Tested Compounds
3.2.3. Viability Assay
3.2.4. Rh-123 Assay
3.2.5. Detection of Apoptosis
3.2.6. Preparation of Cell Lysates for Human Caspase-3 (Active) ELISA Kit (KHO1091) and p53 Human ELISA Kit (BMS256)
3.2.7. Cytokine Levels (IL-1β and IL-6)
3.2.8. Statistical Analysis
3.3. Computational Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-FU | 5-fluorouracil |
A2780 | Ovarian cancer cell line |
A375 | Melanoma cell line |
A549 | Lung adenocarcinoma cell line |
ABC | ATP-binding cassette |
ANOVA | Analysis of variance |
ATCC | American Type Culture Collection |
BA | Binding affinity |
Bax | Bcl-2-associated X-protein |
BCL-2 | B-cell leukemia/lymphoma-2 |
BCP | Bond critical point |
BS | Binding sites |
BxPC-3 | Pancreatic cancer cell line |
C32 | Amelanotic melanoma cell line |
Ca9-22 | Gingival squamous carcinoma cell line |
Caco-2 | Colorectal adenocarcinoma cell line |
CC50 | The half maximal cytotoxic concentration |
CCD841CoTr | Normal colon epithelial cell line |
DFT | Density functional theory |
DMEM | Dulbecco’s modified Eagle medium |
DMEM/F-12 | Dulbecco’s modified Eagle medium/nutrient mixture F-12 |
DMSO | Dimethyl sulfoxide |
DNA | Deoxyribonucleic acid |
ECACC | European Collection of Authenticated Cell Cultures |
ELISA | Enzyme-linked immunosorbent assay |
EPG | Gastric adenocarcinoma cell lines |
ESI-MS | Electrospray ionization mass spectrometry |
ESP | Electrostatic potential |
FBS | Fetal bovine serum |
FT-IR | Fourier-transform infrared spectroscopy |
HB | Hydrogen bond |
hCA | Carbonic anhydrase |
HepG2 | Liver cancer cell line |
HL-60 | Leukemia cell line |
HR-MS | High-resolution mass spectrometry |
HT-29 | Primary colorectal adenocarcinoma cell line |
IARC | International Agency for Research on Cancer |
IC50 | The half maximal inhibitory concentration |
IEF-PCM | Integral equation formalism–polarizable continuum model |
IL-6 | Interleukin 6 |
IL-1β | Interleukin 1β |
ISO | International Organization of Standardization |
K562 | Chronic myelogenous leukemia (CML) cell line |
LoVo | Colorectal adenocarcinoma cell line |
LoVo/Dx | Doxorubicin-resistant colorectal adenocarcinoma cell line |
MEM | Minimal essential medium |
MCF-7 | Breast cancer cell line |
MCF-7/Dx | Doxorubicin-resistant breast cancer cell line |
MCR | Multicomponent reaction |
MDM-2 | Murine double minute 2 |
MDR-1 | Multidrug-resistant protein 1 |
MS | Mass spectrometry |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
MV | Molecular volume |
NMR | Nuclear magnetic resonance |
NUGC | Gastric cancer cell line |
OVCAR-3 | Ovarian cancer cell line |
PBS | Phosphate-buffered saline |
PC-3 | Pancreatic cancer cell line |
PES | Potential energy surface |
P-gp | P-glycoprotein |
QTAIM | Quantum Theory of Atoms in Molecules |
RCP | Ring critical points |
Rh-123 | Rhodamine-123 |
SAR | Structure–activity relationship |
SD | Standard deviation |
SDS | Sodium dodecyl sulfate |
SI | Selectivity index |
SNB-19 | Glioma cell line |
TLC | Thin-layer chromatography |
TMS | Tetramethylsilane |
TRAIL | Tumor necrosis factor-related apoptosis-inducing ligand |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Shabelnyk, K.; Fominichenko, A.; Antypenko, O.; Gaponov, O.; Koptieva, S.; Shyshkina, S.; Voskoboinik, O.; Okovytyy, S.; Kovalenko, S.; Oksenych, V.; et al. Antistaphylococcal Triazole-Based Molecular Hybrids: Design, Synthesis and Activity. Pharmaceuticals 2025, 18, 83. [Google Scholar] [CrossRef]
- Bai, X.; Wang, J.; Jiao, F.; Zhang, H.; Zhang, T. Synthesis and Biological Evaluation of Novel Aminoguanidine Derivatives as Potential Antibacterial Agents. Sci. Rep. 2024, 14, 26896. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, M.; Zia-Ur-Rehman, M.; Munir, R.; Jamil, N.; Ishtiaq, S.; Zaib Saleem, R.S.; Elsegood, M.R.J. (Benzylideneamino)Triazole-Thione Derivatives of Flurbiprofen: An Efficient Microwave-Assisted Synthesis and in Vivo Analgesic Potential. ACS Omega 2021, 6, 31348–31357. [Google Scholar] [CrossRef]
- Nawaz, Z.; Riaz, N.; Saleem, M.; Iqbal, A.; Abida Ejaz, S.; Bashir, B.; Muzaffar, S.; Ashraf, M.; Aziz-ur-Rehman; Sajjad Bilal, M.; et al. Molecular Hybrids of Substituted Phenylcarbamoylpiperidine and 1,2,4-Triazole Methylacetamide as Potent 15-LOX Inhibitors: Design, Synthesis, DFT Calculations and Molecular Docking Studies. Bioorg. Chem. 2024, 143, 106984. [Google Scholar] [CrossRef]
- Bai, X.; Ye, C.; Liu, Z.; Zhou, Z.; Zhang, T. Synthesis and Biological Evaluation of Isoaurone Derivatives as Anti-inflammatory Agents. Chem. Biodivers. 2024, 22, e202402073. [Google Scholar] [CrossRef] [PubMed]
- Quy Huong, D.; Nam, P.C.; Quang, D.T.; Ngo, S.T.; Duong, T.; Tam, N.M. Evaluation of Free Radical Scavenging Ability of Triazole-3-Thiol: A Combination of Experimental and Theoretical Approaches. ACS Omega 2024, 9, 24071–24081. [Google Scholar] [CrossRef]
- Boraei, A.T.A.; Nafie, M.S.; Barakat, A.; Tanaka, T.; Kawano, K.; Tojo, T.; Aoki, S.; Sarhan, A.A.M. Synthesis of New Functionalized Bioactive S-Substituted Indolyl-Triazoles as Cytotoxic and Apoptotic Agents through Multi-Targeted Kinase Inhibition. Bioorg. Chem. 2025, 156, 108154. [Google Scholar] [CrossRef]
- Mahmoud, E.; Abdelhamid, D.; Mohammed, A.F.; Almarhoon, Z.M.; Bräse, S.; Youssif, B.G.M.; Hayallah, A.M.; Abdel-Aziz, M. Design, Synthesis, and Antiproliferative Activity of Novel Indole/1,2,4-Triazole Hybrids as Tubulin Polymerization Inhibitors. Pharmaceuticals 2025, 18, 275. [Google Scholar] [CrossRef]
- Kuran, E.D.; Uner, B.; Cam, M.E.; Ulusoy-Guzeldemirci, N. Novel Hydrazide-hydrazone Containing 1,2,4-triazole as Potent Inhibitors of Antiapoptotic Protein Bcl-xL: Synthesis, Biological Evaluation, and Docking Studies. Arch. Pharm. 2024, 357, 2400562. [Google Scholar] [CrossRef]
- Khan, J.; Rani, A.; Aslam, M.; Maharia, R.S.; Pandey, G.; Nand, B. Exploring Triazole-Based Drugs: Synthesis, Application, FDA Approvals, and Clinical Trial Updates–A Comprehensive Review. Tetrahedron 2024, 162, 134122. [Google Scholar] [CrossRef]
- Siva Reddy, B.; Purna Chandra Rao, G.; Ramya Devi, E.; Prasad, K.R.S.; Nalla, S. Synthesis and Biological Evaluation of 1,2,3-Triazole Incorporated Pyridin-4-Yl)-1H-1,2,4-Triazol-3-Yl)Pyrimidine Derivatives as Anticancer Agents. Results Chem. 2024, 8, 101598. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Hosseini-khah, Z.; Mahmoudi, F.; Emami, S. Synthesis of 4-Hydroxycoumarin-Based Triazoles/Oxadiazoles as Novel Anticancer Agents. Chem. Biodivers. 2022, 19, e202200043. [Google Scholar] [CrossRef] [PubMed]
- Strzelecka, M.; Wiatrak, B.; Jawień, P.; Czyżnikowska, Ż.; Świątek, P. New Schiff Bases Derived from Dimethylpyridine-1,2,4-Triazole Hybrid as Cytotoxic Agents Targeting Gastrointestinal Cancers: Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Bioorg. Chem. 2023, 139, 106758. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Hong, G.; Wang, L. Recent Advances in Green Multi-Component Reactions for Heterocyclic Compound Construction. Org. Biomol. Chem. 2025, 23, 2059–2078. [Google Scholar] [CrossRef]
- Guchhait, T.; Roy, S.; Jena, P. Mannich Reaction: An Alternative Synthetic Approach for Various Pyrrole-Based Anion Receptors and Chelating Ligands. Eur. J. Org. Chem. 2022, 2022, e202200578. [Google Scholar] [CrossRef]
- Pu, M.X.; Guo, H.Y.; Quan, Z.S.; Li, X.; Shen, Q.K. Application of the Mannich Reaction in the Structural Modification of Natural Products. J. Enzym. Inhib. Med. Chem. 2023, 38, 2235095. [Google Scholar] [CrossRef]
- Buravlev, E.V.; Shevchenko, O.G. Mannich Bases of Alizarin: Synthesis and Evaluation of Antioxidant Capacity. Chem. Pap. 2023, 77, 499–508. [Google Scholar] [CrossRef]
- Czopek, A.; Byrtus, H.; Zagórska, A.; Rychtyk, J.; Góra, M.; Sałat, K.; Rapacz, A.; Obniska, J. Synthesis and Pharmacological Evaluation of Novel N-Mannich Bases Derived from 5,5-Diphenyl and 5,5-Di(Propan-2-Yl)Imidazolidine-2,4-Dione Core. Bioorg. Med. Chem. Lett. 2019, 29, 2387–2392. [Google Scholar] [CrossRef]
- Janowska, S.; Andrzejczuk, S.; Gawryś, P.; Wujec, M. Synthesis and Antimicrobial Activity of New Mannich Bases with Piperazine Moiety. Molecules 2023, 28, 5562. [Google Scholar] [CrossRef]
- Abdula, A.M.; Qarah, A.F.; Alatawi, K.; Qurban, J.; Abualnaja, M.M.; Katuah, H.A.; El-Metwaly, N.M. Design, Synthesis, and Molecular Docking of New Phenothiazine Incorporated N-Mannich Bases as Promising Antimicrobial Agents. Heliyon 2024, 10, e28573. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Liu, S.; Liang, K.; Xia, Z.; Zhang, G.; Li, B.; Liu, S. Design and Synthesis of Dimethylaminomethyl-Substituted Curcumin Derivatives: Potent Anti-Inflammatory, Anti-Oxidant, and Radioprotection Activity, Improved Aqueous Solubility Compared with Curcumin. Molecules 2024, 29, 1985. [Google Scholar] [CrossRef]
- Tugrak, M.; Gul, H.I.; Bandow, K.; Sakagami, H.; Gulcin, I.; Ozkay, Y.; Supuran, C.T. Synthesis and Biological Evaluation of Some New Mono Mannich Bases with Piperazines as Possible Anticancer Agents and Carbonic Anhydrase Inhibitors. Bioorg. Chem. 2019, 90, 103095. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, I.M.; Mustafa, M.; Mohamed, S.A.; Yahia, R.; Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.; Hayallah, A.M. Novel Mannich Bases of Ciprofloxacin with Improved Physicochemical Properties, Antibacterial, Anticancer Activities and Caspase-3 Mediated Apoptosis. Bioorg. Chem. 2021, 107, 104629. [Google Scholar] [CrossRef] [PubMed]
- Mahal, K.; Ahmad, A.; Schmitt, F.; Lockhauserbäumer, J.; Starz, K.; Pradhan, R.; Padhye, S.; Sarkar, F.H.; Koko, W.S.; Schobert, R.; et al. Improved Anticancer and Antiparasitic Activity of New Lawsone Mannich Bases. Eur. J. Med. Chem. 2017, 126, 421–431. [Google Scholar] [CrossRef]
- Strzelecka, M.; Glomb, T.; Drąg-Zalesińska, M.; Kulbacka, J.; Szewczyk, A.; Saczko, J.; Kasperkiewicz-Wasilewska, P.; Rembiałkowska, N.; Wojtkowiak, K.; Jezierska, A.; et al. Synthesis, Anticancer Activity and Molecular Docking Studies of Novel N-Mannich Bases of 1,3,4-Oxadiazole Based on 4,6-Dimethylpyridine Scaffold. Int. J. Mol. Sci. 2022, 23, 11173. [Google Scholar] [CrossRef]
- Megally Abdo, N.Y.; Kamel, M.M. Synthesis and Anticancer Evaluation of 1,3,4-Oxadiazoles, 1,3,4-Thiadiazoles, 1,2,4-Triazoles and Mannich Bases. Chem. Pharm. Bull. 2015, 63, 369–376. [Google Scholar] [CrossRef]
- Milošev, M.Z.; Jakovljević, K.; Joksović, M.D.; Stanojković, T.; Matić, I.Z.; Perović, M.; Tešić, V.; Kanazir, S.; Mladenović, M.; Rodić, M.V.; et al. Mannich Bases of 1,2,4-triazole-3-thione Containing Adamantane Moiety: Synthesis, Preliminary Anticancer Evaluation, and Molecular Modeling Studies. Chem. Biol. Drug Des. 2017, 89, 943–952. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Lengauer, T.; Rarey, M. Computational Methods for Biomolecular Docking. Curr. Opin. Struct. Biol. 1996, 6, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Świątek, P.; Saczko, J.; Rembiałkowska, N.; Kulbacka, J. Synthesis of New Hydrazone Derivatives and Evaluation of Their Efficacy as Proliferation Inhibitors in Human Cancer Cells. Med. Chem. 2019, 15, 903–910. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2017.
- Vaidyanathan, A.; Sawers, L.; Gannon, A.L.; Chakravarty, P.; Scott, A.L.; Bray, S.E.; Ferguson, M.J.; Smith, G. ABCB1 (MDR1) Induction Defines a Common Resistance Mechanism in Paclitaxel- and Olaparib-Resistant Ovarian Cancer Cells. Br. J. Cancer 2016, 115, 431–441. [Google Scholar] [CrossRef]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef] [PubMed]
- Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G. ATP-Binding Cassette Transporters in Reproduction: A New Frontier. Hum. Reprod. Update 2016, 22, 164–181. [Google Scholar] [CrossRef] [PubMed]
- El-Readi, M.Z.; Eid, S.Y.; Abdelghany, A.A.; Al-Amoudi, H.S.; Efferth, T.; Wink, M. Resveratrol Mediated Cancer Cell Apoptosis, and Modulation of Multidrug Resistance Proteins and Metabolic Enzymes. Phytomedicine 2019, 55, 269–281. [Google Scholar] [CrossRef]
- Zu, Y.; Yang, Z.; Tang, S.; Han, Y.; Ma, J. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells. Molecules 2014, 19, 13061–13075. [Google Scholar] [CrossRef]
- Souza, P.S.; Madigan, J.P.; Gillet, J.P.; Kapoor, K.; Ambudkar, S.V.; Maia, R.C.; Gottesman, M.M.; Leung Fung, K. Expression of the Multidrug Transporter P-Glycoprotein Is Inversely Related to That of Apoptosis-Associated Endogenous TRAIL. Exp. Cell Res. 2015, 336, 318–328. [Google Scholar] [CrossRef]
- Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the Multidrug Resistance P-Glycoprotein: Time for a Change of Strategy? Drug Metab. Dispos. 2014, 42, 623–631. [Google Scholar] [CrossRef]
- Jouan, E.; Le Vée, M.; Mayati, A.; Denizot, C.; Parmentier, Y.; Fardel, O. Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay. Pharmaceutics 2016, 8, 12. [Google Scholar] [CrossRef]
- Jan, R.; Chaudhry, G.E.S. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv. Pharm. Bull. 2019, 9, 205–218. [Google Scholar] [CrossRef]
- Nikoletopoulou, V.; Markaki, M.; Palikaras, K.; Tavernarakis, N. Crosstalk between Apoptosis, Necrosis and Autophagy. Biochim. Et Biophys. Acta—Mol. Cell Res. 2013, 1833, 3448–3459. [Google Scholar] [CrossRef]
- Wong, R.S.Y. Apoptosis in Cancer: From Pathogenesis to Treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [PubMed]
- Vousden, K.H.; Lane, D.P. P53 in Health and Disease. Nat. Rev. Mol. Cell Biol. 2007, 8, 275–283. [Google Scholar] [CrossRef]
- Riley, T.; Sontag, E.; Chen, P.; Levine, A. Transcriptional Control of Human P53-Regulated Genes. Nat. Rev. Mol. Cell Biol. 2008, 9, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Zhuang, J.; Li, J.; Hwang, P.M.; Just, W. P53 as Guardian of the Mitochondrial Genome. FEBS Lett. 2016, 590, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Gębarowski, T.; Wiatrak, B.; Gębczak, K.; Tylińska, B.; Gąsiorowski, K. Effect of New Olivacine Derivatives on P53 Protein Level. Pharmacol. Rep. 2020, 72, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Chipuk, J.E.; Green, D.R. Dissecting P53-Dependent Apoptosis. Cell Death Differ. 2006, 13, 994–1002. [Google Scholar] [CrossRef]
- Porter, A.G.; Jänicke, R.U. Emerging Roles of Caspase-3 in Apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef]
- Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How Does P53 Induce Apoptosis and How Does This Relate to P53-Mediated Tumour Suppression? Cell Death Differ. 2018, 25, 104–113. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in Inflammation, Autoimmunity and Cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Setrerrahmane, S.; Xu, H. Tumor-Related Interleukins: Old Validated Targets for New Anti-Cancer Drug Development. Mol. Cancer 2017, 16, 153. [Google Scholar] [CrossRef] [PubMed]
- Waldner, M.J.; Foersch, S.; Neurath, M.F. Interleukin-6—A Key Regulator of Colorectal Cancer Development. International J. Biol. Sci. 2012, 8, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; et al. The Role of Microenvironment in Tumor Angiogenesis. J. Exp. Clin. Cancer Res. 2020, 39, 204. [Google Scholar] [CrossRef]
- Lopez-Castejon, G.; Brough, D. Understanding the Mechanism of IL-1β Secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef] [PubMed]
- ImageJ. Available online: https://imagej.net/ij/ (accessed on 27 May 2025).
- STATISTICA 13.3 Download—Statist.exe. Available online: https://statistica.software.informer.com/13.3/ (accessed on 27 May 2025).
- Prism—GraphPad. Available online: https://www.graphpad.com/features (accessed on 27 May 2025).
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- OneAngstrom. SAMSON 2022 R2. Available online: https://www.samson-connect.net/ (accessed on 20 May 2025).
- Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilizaion of AB Initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327–335. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK; Clarendon Press: New York, NY, USA, 1990. [Google Scholar]
- Bader, R.F.W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 16 Revision C.0.1; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Keith, T.A.; Gristmill, T.K. AIMAll (Version 19.10.12), Software; Overland Park, KS, USA, 2019. Available online: https://aim.tkgristmill.com/ (accessed on 20 May 2025).
- Becker, J.W.; Rotonda, J.; Soisson, S.M.; Aspiotis, R.; Bayly, C.; Francoeur, S.; Gallant, M.; García-Calvo, M.; Giroux, A.; Grimm, E.; et al. Reducing the Peptidyl Features of Caspase-3 Inhibitors: A Structural Analysis. J. Med. Chem. 2004, 47, 2466–2474. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.G.; Bourbeau, M.P.; Wohlhieter, G.E.; Bartberger, M.D.; Michelsen, K.; Hungate, R.; Gadwood, R.C.; Gaston, R.D.; Evans, B.; Mann, L.W.; et al. Discovery and Optimization of Chromenotriazolopyrimidines as Potent Inhibitors of the Mouse Double Minute 2-Tumor Protein 53 Protein-Protein Interaction. J. Med. Chem. 2009, 52, 7044–7053. [Google Scholar] [CrossRef]
- RCSB PDB: Homepage. Available online: https://www.rcsb.org/ (accessed on 20 May 2025).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.H.B.; Dar, A.C.; Schlessinger, A. PyVOL: A PyMOL Plugin for Visualization, Comparison, and Volume Calculation of Drug-Binding Sites. bioRxiv 2019. [Google Scholar] [CrossRef]
- Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of Nanosystems: Application to Microtubules and the Ribosome. Proc. Natl. Acad. Sci. USA 2001, 98, 10037–10041. [Google Scholar] [CrossRef] [PubMed]
- The PyMOL Molecular Graphics System, Version 3.0.0; Schrödinger LLC.: New York, NY, USA, 2020.
- Maglic, J.B.; Lavendomme, R. MoloVol: An Easy-to-Use Program for Analyzing Cavities, Volumes and Surface Areas of Chemical Structures. J. Appl. Crystallogr. 2022, 55, 1033–1044. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Ravindranath, P.A.; Forli, S.; Goodsell, D.S.; Olson, A.J.; Sanner, M.F. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS Comput. Biol. 2015, 11, e1004586. [Google Scholar] [CrossRef]
- Velázquez-Libera, J.L.; Durán-Verdugo, F.; Valdés-Jiménez, A.; Valdés-Jiménez, A.; Núñez-Vivanco, G.; Caballero, J. LigRMSD: A Web Server for Automatic Structure Matching and RMSD Calculations among Identical and Similar Compounds in Protein-Ligand Docking. Bioinformatics 2020, 36, 2912–2914. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinforma. 2016, 2016, 5.6.1–5.6.37. [Google Scholar] [CrossRef]
- Šali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef] [PubMed]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for Structure Building and Analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Eng. 1995, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
Comp. | CCD 841 CoTr | EPG | Caco-2 | LoVo | LoVo/Dx | HT-29 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
CC50 ± SD a (µM) | CC50 ± SD a (µM) | SI | CC50 ± SD a (µM) | SI | CC50 ± SD a (µM) | SI | CC50 ± SD a (µM) | SI | CC50 ± SD a (µM) | SI | |
4 | 236.20 ± 3.50 | 140.70 ± 2.50 | 1.68 | 132.90 ± 2.70 | 1.78 | 200.60 ± 4.60 | 1.18 | 201.20 ± 4.10 | 1.17 | 187.60 ± 1.60 | 1.26 |
5 | 220.80 ± 2.40 | 83.00 ± 4.60 | 2.66 | 227.60 ± 5.20 | 0.97 | Non-toxic b | >>1 c | 183.50 ± 2.70 | 1.20 | 102.50 ± 2.70 | 2.15 |
6 | 387.80 ± 6.50 | 57.70 ± 5.40 | 6.72 | 75.10 ± 5.10 | 5.16 | 163.40 ± 4.60 | 2.37 | 195.20 ± 5.70 | 1.99 | 122.80 ± 3.90 | 3.16 |
7 | 486.80 ± 4.60 | 118.70 ± 4.50 | 4.10 | 291.80 ± 6.10 | 1.67 | 303.20 ± 7.10 | 1.61 | 128.90 ± 5.20 | 3.78 | 100.50 ± 4.20 | 4.84 |
8 | Non-toxic b | 142.00 ± 6.30 | >>1 c | 84.30 ± 6.80 | >>1 c | 177.60 ± 5.30 | >>1 c | 320.60 ± 6.80 | >>1 c | 306.10 ± 4.90 | >>1 c |
9 | Non-toxic b | 231.20 ± 7.10 | >>1 c | 88.60 ± 7.90 | >>1 c | 152.50 ± 2.70 | >>1 c | 260.00 ± 4.10 | >>1 c | 253.10 ± 5.70 | >>1 c |
10 | Non-toxic b | 212.40 ± 3.70 | >>1 c | 87.20 ± 5.20 | >>1 c | 147.90 ± 3.70 | >>1 c | 210.20 ± 3.30 | >>1 c | 175.80 ± 6.40 | >>1 c |
11 | 270.90 ± 7.10 | 118.90 ± 3.40 | 2.28 | 57.70 ± 4.80 | 4.69 | 136.90 ± 5.70 | 1.98 | 254.80 ± 4.80 | 1.06 | 242.30 ± 4.10 | 1.12 |
12 | 342.50 ± 3.40 | 262.80 ± 5.70 | 1.30 | 246.70 ± 4.90 | 1.39 | 445.90 ± 2.30 | 0.77 | 487.00 ± 5.90 | 0.70 | 471.20 ± 3.70 | 0.73 |
13 | 436.10 ± 2.70 | 120.20 ± 8.50 | 3.63 | 146.30 ± 3.60 | 2.98 | 193.00 ± 3.70 | 2.26 | 419.00 ± 6.20 | 1.04 | 392.6 ± 7.40 | 1.11 |
Cis-platin | 14.50 ± 2.90 | 261.50 ± 4.60 | 0.06 | 136.40 ± 5.00 | 0.11 | 27.40 ± 2.70 | 0.53 | 47.80 ± 6.10 | 0.30 | 52.80 ± 7.10 | 0.27 |
5-FU | 61.62 ± 3.70 | 111.20 ± 3.50 | 0.55 | 169.60 ± 3.70 | 0.36 | 72.20 ± 1.80 | 0.85 | 225.70 ± 2.70 | 0.27 | 428.50 ± 2.70 | 0.14 |
Compounds [1 µM] | p53 | Caspase-3 | ||
---|---|---|---|---|
Conc. ± SD [U/mL] | Fold Change | Conc. ± SD [ng/mL] | Fold Change | |
Control | 1.80 ± 0.06 | 1 | 0.03 ± 0.08 | 1 |
6 | 3.50 ± 0.07 | 1.94 | 0.48 ± 0.07 | 16.00 |
Doxorubicin | 7.62 ± 0.17 | 4.23 | 0.92 ± 0.23 | 30.67 |
Compounds [1 µM] | IL-1β Conc. ± SD [pg/mL] | IL-6 Conc. ± SD [pg/mL] |
---|---|---|
Control | 0.36 ± 0.08 | 9.30 ± 0.20 |
6 | 0.51 ± 0.11 | 7.80 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świątek, P.; Glomb, T.; Wiatrak, B.; Nowotarska, P.; Gębarowski, T.; Wojtkowiak, K.; Jezierska, A.; Strzelecka, M. New 1,2,4-Triazole Derivatives with a N-Mannich Base Structure Based on a 4,6-Dimethylpyridine Scaffold as Anticancer Agents: Design, Synthesis, Biological Evaluation, and Molecular Modeling. Int. J. Mol. Sci. 2025, 26, 6572. https://doi.org/10.3390/ijms26146572
Świątek P, Glomb T, Wiatrak B, Nowotarska P, Gębarowski T, Wojtkowiak K, Jezierska A, Strzelecka M. New 1,2,4-Triazole Derivatives with a N-Mannich Base Structure Based on a 4,6-Dimethylpyridine Scaffold as Anticancer Agents: Design, Synthesis, Biological Evaluation, and Molecular Modeling. International Journal of Molecular Sciences. 2025; 26(14):6572. https://doi.org/10.3390/ijms26146572
Chicago/Turabian StyleŚwiątek, Piotr, Teresa Glomb, Benita Wiatrak, Paulina Nowotarska, Tomasz Gębarowski, Kamil Wojtkowiak, Aneta Jezierska, and Małgorzata Strzelecka. 2025. "New 1,2,4-Triazole Derivatives with a N-Mannich Base Structure Based on a 4,6-Dimethylpyridine Scaffold as Anticancer Agents: Design, Synthesis, Biological Evaluation, and Molecular Modeling" International Journal of Molecular Sciences 26, no. 14: 6572. https://doi.org/10.3390/ijms26146572
APA StyleŚwiątek, P., Glomb, T., Wiatrak, B., Nowotarska, P., Gębarowski, T., Wojtkowiak, K., Jezierska, A., & Strzelecka, M. (2025). New 1,2,4-Triazole Derivatives with a N-Mannich Base Structure Based on a 4,6-Dimethylpyridine Scaffold as Anticancer Agents: Design, Synthesis, Biological Evaluation, and Molecular Modeling. International Journal of Molecular Sciences, 26(14), 6572. https://doi.org/10.3390/ijms26146572