In Experimental Tuberculosis Infection, the Bacteriostatic Function of Macrophages Is Activated by Th1 CD4+ T-Effectors in a Nitrite-Independent Manner
Abstract
1. Introduction
2. Results
2.1. Selective iNOS Inhibition Exerts No Effect on the Antimycobacterial Activity of Peritoneal Exudate Macrophages and Lung Interstitial Macrophages
2.2. Macrophage Bacteriostatic Function Is Activated by CD70-CD27 Signaling
3. Discussion
4. Materials and Methods
4.1. Animals and Mycobacterial Cultures
4.2. Procuring Macrophage Suspension
4.3. CD4+ T Lymphocyte Isolation
4.4. Mycobacteria Viability Determination
4.5. Determination of Nitric Oxide (NO•) Production
4.6. LDH Release from Macrophages
4.7. DNA and RNA Isolation
4.8. Preparation of Chimeric Soluble CD70
- CD5speF:
- CD5bspmR:
- CD70bspmF:
- CD70ecor5R:
4.9. Production of Stocks Containing Lentiviral Particles
4.10. Lentiviral Transduction of Cells
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
B6 | C57BL/6 mice |
CTRI | Central Tuberculosis Research Institute |
imp/min | Impulse per minute |
LD | Linear dichroism |
iNOS | inducible NO synthase |
LDH | lactate dehydrogenase |
L-NIL | N6-(1-iminoethyl)-L-lysine |
Mtb | Mycobacterium tuberculosis |
Мф | macrophages |
sCD70 | soluble mouse CD70 |
TB | tuberculosis |
References
- Brites, D.; Gagneux, S. Co-Evolution of Mycobacterium Tuberculosis and Homo Sapiens. Immunol. Rev. 2015, 264, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.; Chawla, A.; Pollard, J.W. Macrophage Biology in Development, Homeostasis and Disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef]
- Gordon, S.; Plüddemann, A.; Martinez Estrada, F. Macrophage Heterogeneity in Tissues: Phenotypic Diversity and Functions. Immunol. Rev. 2014, 262, 36–55. [Google Scholar] [CrossRef]
- Dahl, J.L.; Krau, C.N.; Boshoff, H.M.; Doan, B.; Foley, K.; Avarbock, D.; Kaplan, G.; Mizrahi, V.; Rubin, H.; Barry, C.E., III. The Role of Rel Mtb-Mediated Adaptation to Stationary Phase in Long-Term Persistence of Mycobacterium tuberculosis in Mice. Proc. Natl. Acad. Sci. USA 2003, 100, 10026–10031. [Google Scholar] [CrossRef]
- Hingley-Wilson, S.M.; Sambandamurthy, V.K.; Jacobs, W.R. Survival Perspectives From the World’s Most Successful Pathogen, Mycobacterium Tuberculosis. Nat. Immunol. 2003, 4, 949–955. [Google Scholar] [CrossRef]
- Huang, L.; Nazarova, E.V.; Tan, S.; Liu, Y.; Russell, D.G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 2018, 215, 1135–1152. [Google Scholar] [CrossRef]
- Flynn, J.L.; Chan, J.; Lin, P.L. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol. 2011, 4, 271–278. [Google Scholar] [CrossRef]
- Majorov, K.B.; Lyadova, I.V.; Kondratieva, T.K.; Eruslanov, E.B.; Rubakova, E.I.; Orlova, M.O.; Mischenko, V.V.; Apt, A.S. Different innate ability of I/St and A/Sn mice to combat virulent Mycobacterium tuberculosis: Phenotypes expressed in lung and extrapulmonary macrophages. Infect. Immun. 2003, 71, 697–707. [Google Scholar] [CrossRef]
- Lyadova, I.V.; Oberdorf, S.; Kapina, M.A.; Apt, A.S.; Swain, S.L.; Sayles, P.C. CD4 T cells producing IFN-gamma in the lungs of mice challenged with mycobacteria express a CD27-negative phenotype. Clin. Exp. Immunol. 2004, 138, 21–29. [Google Scholar] [CrossRef]
- Kapina, M.A.; Shepelkova, G.S.; Mischenko, V.V.; Sayles, P.; Bogacheva, P.; Winslow, G.; Apt, A.S.; Lyadova, I.V. CD27low CD4 T lymphocytes that accumulate in the mouse lungs during mycobacterial infection differentiate from CD27high precursors in situ, produce IFN-gamma, and protect the host against tuberculosis infection. J. Immunol. 2007, 178, 976–985. [Google Scholar] [CrossRef]
- Shepel’kova, G.S.; Mayorov, K.B.; Evstifeev, V.V.; Apt, A.S. Interaction of T lymphocytes of CD4+CD27hi and CD4+CD27lo with macrophages in tuberculous infection in mice. Tuberc. Lung Dis. 2015, 12, 57–60. (In Russian). Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC1454850/ (accessed on 29 May 2025).
- Liu, D.; Wang, J.; Xu, Z.; Chen, X.; Jiao, X. Phagocytosis: Strategies for macrophages to hunt Mycobacterium tuberculosis. One Health Adv. 2024, 32, 1255. [Google Scholar] [CrossRef]
- Denoeud, J.; Moser, M. Role of CD27/CD70 pathway of activation in immunity and tolerance. J. Leukoc. Biol. 2011, 89, 195–203. [Google Scholar] [CrossRef]
- Totemeyer, S.; Sheppard, M.; Lloyd, A.; Roper, D.; Dowson, C.; Underhill, D.; Murray, P.; Maskell, D.; Bryant, C. IFN-gamma enhances production of nitric oxide from macrophages via a mechanism that depends on nucleotide oligomerization domain-2. J. Immunol. 2006, 176, 4804–4810. [Google Scholar] [CrossRef]
- Salim, T.; Sershen, C.L.; May, E.E. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages. PLoS ONE 2016, 11, e0153289. [Google Scholar] [CrossRef]
- Fang, Y.; Tang, Y.; Luo, Q.X.; Wang, N.; Tang, L.; Yang, X.J.; You, X.F.; Wang, Y.C.; Liang, L.; Zhang, J.B.; et al. Changes of Mycobacterium tuberculosis specific antigen-stimulated CD27-CD38+IFN-γ+CD4+ T cells before and after anti-tuberculosis treatment. Eur. J. Med. Res. 2024, 29, 147. [Google Scholar] [CrossRef]
- Díaz-Fernández, S.; Villar-Hernández, R.; Stojanovic, Z.; Fernández, M.; Galvão, M.L.S.; Tolosa, G.; Sánchez-Montalva, A.; Abad, J.; Jiménez-Fuentes, M.Á.; Safont, G.; et al. Study of CD27, CD38, HLA-DR and Ki-67 immune profiles for the characterization of active tuberculosis, latent infection and end of treatment. Front. Microbiol. 2022, 13, 885312. [Google Scholar] [CrossRef]
- Keller, A.M.; Groothuis, T.A.; Veraar, E.A.; Marsman, M.; Maillette de Buy Wenniger, L.; Janssen, H.; Neefjes, J.; Borst, J. Costimulatory ligand CD70 is delivered to the immunological synapse by shared intracellular trafficking with MHC class II molecules. Proc. Natl. Acad. Sci. USA 2007, 104, 5989–5994. [Google Scholar] [CrossRef]
- Ziogas, D.C.; Theocharopoulos, C.; Lialios, P.P.; Foteinou, D.; Koumprentziotis, I.A.; Xynos, G.; Gogas, H. Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment. Cancers 2023, 15, 2718. [Google Scholar] [CrossRef]
- Kuka, M.; Munitic, I.; Giardino Torchia, M.L.; Ashwell, J.D. CD70 is downregulated by interaction with CD27. J. Immunol. 2013, 191, 2282–2289. [Google Scholar] [CrossRef]
- Tesselaar, K.; Xiao, Y.; Arens, R.; van Schijndel, G.M.; Schuurhuis, D.H.; Mebius, R.E.; Borst, J.; van Lier, R.A. Expression of the murine CD27 ligand CD70 in vitro an. J. Immunol. 2003, 170, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Holt, P.G.; Degebrodt, A.; Venaille, T.; O’Leary, C.; Krska, K.; Flexman, J.; Farell, H.; Shellam, G.; Young, P.; Penhale, J.; et al. Preparation of interstitial lung cells by enzymatic digestion of tissue slices: Preliminary characterization by morphology and performance in functional assays. Immunology 1985, 54, 139–147. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC1454850/ (accessed on 29 May 2025). [PubMed]
- Lyadova, I.V.; Eruslanov, E.B.; Khaidukov, S.V.; Yeremeev, V.V.; Majorov, K.B.; Pichugin, A.V.; Nikonenko, B.V.; Kondratieva, T.K.; Apt, A.S. Comparative analysis of T lymphocytes recovered from the lungs of mice genetically susceptible, resistant and hyperresistant to Mycobacterium tuberculosis-triggered disease. J. Immunol. 2000, 165, 5921–5932. [Google Scholar] [CrossRef] [PubMed]
- Kramnik, I.; Dietrich, W.F.; Demant, P.; Bloom, B.R. Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2000, 97, 8560–8565. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evstifeev, V.V.; Majorov, K.B.; Avdienko, V.G.; Yeremeev, V.V.; Shepelkova, G.S. In Experimental Tuberculosis Infection, the Bacteriostatic Function of Macrophages Is Activated by Th1 CD4+ T-Effectors in a Nitrite-Independent Manner. Int. J. Mol. Sci. 2025, 26, 6573. https://doi.org/10.3390/ijms26146573
Evstifeev VV, Majorov KB, Avdienko VG, Yeremeev VV, Shepelkova GS. In Experimental Tuberculosis Infection, the Bacteriostatic Function of Macrophages Is Activated by Th1 CD4+ T-Effectors in a Nitrite-Independent Manner. International Journal of Molecular Sciences. 2025; 26(14):6573. https://doi.org/10.3390/ijms26146573
Chicago/Turabian StyleEvstifeev, Vladimir V., Konstantin B. Majorov, Vadim G. Avdienko, Vladimir V. Yeremeev, and Galina S. Shepelkova. 2025. "In Experimental Tuberculosis Infection, the Bacteriostatic Function of Macrophages Is Activated by Th1 CD4+ T-Effectors in a Nitrite-Independent Manner" International Journal of Molecular Sciences 26, no. 14: 6573. https://doi.org/10.3390/ijms26146573
APA StyleEvstifeev, V. V., Majorov, K. B., Avdienko, V. G., Yeremeev, V. V., & Shepelkova, G. S. (2025). In Experimental Tuberculosis Infection, the Bacteriostatic Function of Macrophages Is Activated by Th1 CD4+ T-Effectors in a Nitrite-Independent Manner. International Journal of Molecular Sciences, 26(14), 6573. https://doi.org/10.3390/ijms26146573