Biotransformation of Canola Feedstock Waste Using Brassica Pest Microbiome: Proof of Concept for Insects as Bioengineers
Abstract
1. Introduction
2. Results
2.1. Quality Control Analysis
2.2. Microbial Activity: SCFA Production and Glucosinolate Depletion
2.3. pH Differences Showed No Statistically Significant Metabolic Differences
2.4. Metabolic Transformation During the Canola Meal Fermentation
Species Comparison
2.5. Aromatic Glucosinolate Degradation Results in Nicotinate, SCFA Biosynthesis, and Mercapturic Acid Pathway Led Biogenic Amines Synthesis
2.6. Gut Microbe-Driven Metabolism Plays a Key Role in Oxidative Stress Handling During Glucosinolate and Sinapin Degradation
3. Discussion
Limitations of This Study
4. Materials and Methods
4.1. Canola Feedstock Treatment
4.2. Metabolomics Sample Preparation and Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HP | Heliotis moth |
WCF | Cabbage white |
CL | Cabbage lopper |
SCFA | Short-chain fatty acid |
SAM | S-adenosyl methionine |
LC-MS | Liquid chromatography–mass spectrometry |
CSIRO | Commonwealth Scientific and Industrial Research Organisation |
QC | Quality control |
S/N | Signal-to-noise |
ANOVA | Analysis of variance |
PCA | Principal component analysis |
PLS-DA | Partial least square-discriminant analysis |
FDR | False discovery rate |
RSD | Relative standard deviation |
5-MSPN | 5-methylsulfinyl pentanitrile |
ITC | Isothicyanate |
HMTB | 2-hydroxy-4-methylthiobutyrate |
FAA | fatty acid amides |
GLP-1 | Glucagon-like peptide 1 |
References
- Australian-Bureau-of-Statistics. Australian Agriculture: Broadacre Crops: 2023–24 Financial Year. Available online: https://www.abs.gov.au/statistics/industry/agriculture/australian-agriculture-broadacre-crops/latest-release (accessed on 10 June 2025).
- Ayton, J. Variability of Quality Traits in Canola Seed, Oil and Meal—A Review; Government of New South Wales: Sydney, Australia, 2014; pp. 1–25. [Google Scholar]
- Slominski, B.; Evans, E.; Pierce, A.; Broderick, G.; Zijlstra, R.; Beltranna, E.; Drew, M. Canola Meal Feeding Guide; Canola Council of Canada: Winnipeg, MB, Canada, 2015; pp. 1–57. [Google Scholar]
- Kandel, M.; Macelline, S.P.; Toghyani, M.; Chrystal, P.V.; Choct, M.; Cowieson, A.J.; Liu, S.Y.; Selle, P.H. The potential of canola to decrease soybean meal inclusions in diets for broiler chickens. Anim. Nutr. 2025, 20, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Mejicanos, G.A.; Kim, J.W.; Nyachoti, C.M. Tail-end dehulling of canola meal improves apparent and standardized total tract digestibility of phosphorus when fed to growing pigs. J. Anim. Sci. 2018, 96, 1430–1440. [Google Scholar] [CrossRef]
- Wongsirichot, P.; Gonzalez-Miquel, M.; Winterburn, J. Holistic valorization of rapeseed meal utilizing green solvents extraction and biopolymer production with Pseudomonas putida. J. Clean. Prod. 2019, 230, 420–429. [Google Scholar] [CrossRef]
- Beale, D.J.; Shah, R.M.; Marcora, A.; Hulthen, A.; Karpe, A.V.; Pham, K.; Wijffels, G.; Paull, C. Is there any biological insight (or respite) for insects exposed to plastics? Measuring the impact on an insects central carbon metabolism when exposed to a plastic feed substrate. Sci. Total Environ. 2022, 831, 154840. [Google Scholar] [CrossRef]
- Xiang, F.; Zhang, Q.; Xu, X.; Zhang, Z. Black soldier fly larvae recruit functional microbiota into the intestines and residues to promote lignocellulosic degradation in domestic biodegradable waste. Environ. Pollut. 2024, 340, 122676. [Google Scholar] [CrossRef]
- Rajeswari, G.; Jacob, S.; Chandel, A.K.; Kumar, V. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: A review. Microb. Cell Factories 2021, 20, 107. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, P.; Buer, B.; Ilias, A.; Kaforou, S.; Aivaliotis, M.; Orfanoudaki, G.; Douris, V.; Geibel, S.; Vontas, J.; Denecke, S. A spatiotemporal atlas of the lepidopteran pest Helicoverpa armigera midgut provides insights into nutrient processing and pH regulation. BMC Genom. 2022, 23, 75. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Shikano, I.; Liu, T.-X.; Felton, G.W. Helicoverpa zea–Associated Gut Bacteria as Drivers in Shaping Plant Anti-herbivore Defense in Tomato. Microb. Ecol. 2023, 86, 2173–2182. [Google Scholar] [CrossRef]
- Shukla, S.P.; Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 2020, 29, 4692–4705. [Google Scholar] [CrossRef]
- Jagdale, S.; Tellis, M.; Barvkar, V.T.; Joshi, R.S. Glucosinolate induces transcriptomic and metabolic reprogramming in Helicoverpa armigera. 3 Biotech 2021, 11, 26. [Google Scholar] [CrossRef]
- Jeschke, V.; Gershenzon, J.; Vassão, D.G. Metabolism of Glucosinolates and Their Hydrolysis Products in Insect Herbivores. In The Formation, Structure and Activity of Phytochemicals; Jetter, R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 163–194. [Google Scholar]
- Funke, M.; Büchler, R.; Mahobia, V.; Schneeberg, A.; Ramm, M.; Boland, W. Rapid Hydrolysis of Quorum-Sensing Molecules in the Gut of Lepidopteran Larvae. ChemBioChem 2008, 9, 1953–1959. [Google Scholar] [CrossRef]
- Jeschke, V.; Gershenzon, J.; Vassão, D.G. A mode of action of glucosinolate-derived isothiocyanates: Detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis. Insect Biochem. Mol. Biol. 2016, 71, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Karpe, A.V.; Hutton, M.L.; Mileto, S.J.; James, M.L.; Evans, C.; Ghodke, A.B.; Shah, R.M.; Metcalfe, S.S.; Liu, J.-W.; Walsh, T.; et al. Gut microbial perturbation and host response induce redox pathway upregulation along the Gut-Liver axis during giardiasis in C57BL/6J mouse model. Int. J. Mol. Sci. 2023, 24, 1636. [Google Scholar] [CrossRef] [PubMed]
- Karpe, A.V.; Hutton, M.L.; Mileto, S.J.; James, M.L.; Evans, C.; Shah, R.M.; Ghodke, A.B.; Hillyer, K.E.; Metcalfe, S.S.; Liu, J.W.; et al. Cryptosporidiosis Modulates the Gut Microbiome and Metabolism in a Murine Infection Model. Metabolites 2021, 11, 380. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, J.; Fang, J.; Shen, L.; Ma, S.; Zhao, Z.; Yu, W.; Jiang, W. Diversity, Composition and Functional Inference of Gut Microbiota in Indian Cabbage white Pieris canidia (Lepidoptera: Pieridae). Life 2020, 10, 254. [Google Scholar] [CrossRef]
- Dow, J.A.T. pH gradients in lepidopteran midgut. J. Exp. Biol. 1992, 172, 355–375. [Google Scholar] [CrossRef]
- Wong, M.T.; Zhang, D.; Li, J.; Hui, R.K.H.; Tun, H.M.; Brar, M.S.; Park, T.-J.; Chen, Y.; Leung, F.C. Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment. Biotechnol. Biofuels 2013, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Karpe, A.V.; Dhamale, V.V.; Morrison, P.D.; Beale, D.J.; Harding, I.H.; Palombo, E.A. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments. Fungal Genet. Biol. 2017, 102, 22–30. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef]
- Wieder, C.; Bundy, J.G.; Frainay, C.; Poupin, N.; Rodríguez-Mier, P.; Vinson, F.; Cooke, J.; Lai, R.P.J.; Jourdan, F.; Ebbels, T.M.D. Avoiding the Misuse of Pathway Analysis Tools in Environmental Metabolomics. Environ. Sci. Technol. 2022, 56, 14219–14222. [Google Scholar] [CrossRef]
- Andernach, L.; Witzel, K.; Hanschen, F.S. Glucosinolate-derived amine formation in Brassica oleracea vegetables. Food Chem. 2023, 405, 134907. [Google Scholar] [CrossRef]
- Deguenon, J.M.; Dhammi, A.; Ponnusamy, L.; Travanty, N.V.; Cave, G.; Lawrie, R.; Mott, D.; Reisig, D.; Kurtz, R.; Roe, R.M. Bacterial Microbiota of Field-Collected Helicoverpa zea (Lepidoptera: Noctuidae) from Transgenic Bt and Non-Bt Cotton. Microorganisms 2021, 9, 878. [Google Scholar] [CrossRef]
- Hanschen, F.S. Acidification and tissue disruption affect glucosinolate and S-methyl-l-cysteine sulfoxide hydrolysis and formation of amines, isothiocyanates and other organosulfur compounds in red cabbage (Brassica oleracea var. capitata f. rubra). Food Res. Int. 2024, 178, 114004. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, C.; Zhang, J.; Xin, X.; Wu, Q. Dynamics of the glucosinolate–myrosinase system in tuber mustard (Brassica juncea var. tumida) during pickling and its relationship with bacterial communities and fermentation characteristics. Food Res. Int. 2022, 161, 111879. [Google Scholar] [CrossRef]
- Yan, X.; Chen, S. Regulation of plant glucosinolate metabolism. Planta 2007, 226, 1343–1352. [Google Scholar] [CrossRef]
- Dalgaard, L.; Nawaz, R.; Sorensen, H. 3-Methylthiopropylamine and (R)-3-methylsulphinylpropylamine in Iberis amara. Phytochemistry 1977, 16, 931–932. [Google Scholar] [CrossRef]
- Hanna, P.E.; Anders, M.W. The mercapturic acid pathway. Crit. Rev. Toxicol. 2019, 49, 819–929. [Google Scholar] [CrossRef] [PubMed]
- Ashaolu, T.J.; Ashaolu, J.O.; Adeyeye, S.A.O. Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: A critical review. J. Appl. Microbiol. 2021, 130, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Bosnjak, M.; Karpe, A.V.; Van, T.T.H.; Kotsanas, D.; Jenkin, G.A.; Costello, S.P.; Johanesen, P.; Moore, R.J.; Beale, D.J.; Srikhanta, Y.N.; et al. Multi-omics analysis of hospital-acquired diarrhoeal patients reveals biomarkers of enterococcal proliferation and Clostridioides difficile infection. Nat. Commun. 2023, 14, 7737. [Google Scholar] [CrossRef]
- Qin, D.; Zheng, Q.; Zhang, P.; Lin, S.; Huang, S.; Cheng, D.; Zhang, Z. Azadirachtin directly or indirectly affects the abundance of intestinal flora of Spodoptera litura and the energy conversion of intestinal contents mediates the energy balance of intestine-brain axis, and along with decreased expression CREB in the brain neurons. Pestic. Biochem. Physiol. 2021, 173, 104778. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Chen, Y.; Rong, W.; Qin, Y.; Li, X.; Guan, D. Gut Microbiota Analysis in Silkworms (Bombyx mori) Provides Insights into Identifying Key Bacterials for Inclusion in Artificial Diet Formulations. Animals 2024, 14, 1261. [Google Scholar] [CrossRef]
- Kazek, M.; Kaczmarek, A.; Wrońska, A.K.; Boguś, M.I. Diet influences the bacterial and free fatty acid profiles of the cuticle of Galleria mellonella larvae. PLoS ONE 2019, 14, e0211697. [Google Scholar] [CrossRef]
- Wrońska, A.K.; Boguś, M.I.; Włóka, E.; Kazek, M.; Kaczmarek, A.; Zalewska, K. Cuticular fatty acids of Galleria mellonella (Lepidoptera) inhibit fungal enzymatic activities of pathogenic Conidiobolus coronatus. PLoS ONE 2018, 13, e0192715. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.J.; Grula, E.A. Toxic components on the larval surface of the corn earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. J. Invertebr. Pathol. 1982, 39, 15–22. [Google Scholar] [CrossRef]
- Lobo, L.S.; Girotti, J.R.; Mijailovsky, S.J.; Fernandes, É.K.K.; Luz, C.; Pedrini, N. Synthesis and secretion of volatile short-chain fatty acids in Triatoma infestans infected with Beauveria bassiana. Med. Vet. Entomol. 2018, 32, 358–364. [Google Scholar] [CrossRef]
- Depetris-Chauvin, A.; Galagovsky, D.; Chevalier, C.; Maniere, G.; Grosjean, Y. Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae. Sci. Rep. 2017, 7, 14230. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, J.; Qin, Q.; Wu, P.; Zhang, H.; Meng, Q. Metabolic changes during larval–pupal metamorphosis of Helicoverpa armigera. Insect Sci. 2023, 30, 1663–1676. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; Tada, I.; Bonini, P.; et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38, 1159–1163. [Google Scholar] [CrossRef]
Metabolite Name | RSD (%) |
---|---|
Pyruvic acid | 15.19 |
Serine | 31.80 |
Maleic acid | 16.79 |
Succinic acid | 10.75 |
Asparagine | 13.74 |
Salicylic acid | 34.92 |
L-Citrulline | 17.17 |
D-Glucose | 15.69 |
Citric acid | 15.11 |
Tryptophan | 17.19 |
Metabolic Pathway | Hits/Total Compounds | FDR | Impact |
---|---|---|---|
Tyrosine metabolism | 10/29 | 2.77 × 10−10 | 0.67 |
Pentose phosphate pathway | 10/24 | 1.09 × 10−08 | 0.40 |
Alanine, aspartate and glutamate metabolism | 14/21 | 3.33 × 10−08 | 0.98 |
Glycine, serine and threonine metabolism | 9/30 | 9.77 × 10−08 | 0.73 |
Glutathione metabolism | 8/26 | 2.21 × 10−07 | 0.49 |
Ascorbate and aldarate metabolism | 2/9 | 1.47 × 10−06 | 0.52 |
Citrate cycle (TCA cycle) | 8/20 | 2.72 × 10−06 | 0.47 |
Tryptophan metabolism | 8/29 | 4.34 × 10−06 | 0.53 |
Arginine biosynthesis | 9/13 | 0.0003 | 0.80 |
Phenylalanine metabolism | 6/8 | 0.0004 | 0.74 |
Histidine metabolism | 4/9 | 0.0028 | 0.4 |
One carbon pool by folate | 9/23 | 0.0028 | 0.44 |
Vitamin B6 metabolism | 3/8 | 0.0045 | 0.50 |
Cysteine and methionine metabolism | 11/34 | 0.0048 | 0.48 |
Riboflavin metabolism | 1/4 | 0.0129 | 0.5 |
Metabolite | log2FC HP(vs. WCF)|FDR | log2FC HP(vs. CL)|FDR | Log2FC HP(vs. HP Frass)|FDR | Log2FC WCF(vs. WCF Frass)|FDR |
---|---|---|---|---|
FA 18:3 + 2O | −17.62|0.0080 | −17.29|0.1343 | NA | NA |
D-Mannose-6-P | 1.79|0.0080 | 0.61|0.0717 | 1.72|0.0237 | NA |
Indole-3-acetate | 1.26|0.0080 | 1.21|0.0028 | 2.49|0.0084 | −1.53|6.04 × 10−5 |
Tetradecanoic acid | 2.29|0.0243 | 0.22|0.634 | NA | −1.12|0.0004 |
6-Methoxyluteolin | 1.37|0.0276 | 0.0276 | NA | NA |
Indole-3-acetaldehyde | 1.02|0.0497 | 1.18|0003 | NA | −1.37|0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpe, A.V.; Walsh, T.K.; Carrol, A.J.; Zhou, X.-R. Biotransformation of Canola Feedstock Waste Using Brassica Pest Microbiome: Proof of Concept for Insects as Bioengineers. Int. J. Mol. Sci. 2025, 26, 7715. https://doi.org/10.3390/ijms26167715
Karpe AV, Walsh TK, Carrol AJ, Zhou X-R. Biotransformation of Canola Feedstock Waste Using Brassica Pest Microbiome: Proof of Concept for Insects as Bioengineers. International Journal of Molecular Sciences. 2025; 26(16):7715. https://doi.org/10.3390/ijms26167715
Chicago/Turabian StyleKarpe, Avinash V., Tom K. Walsh, Adam J. Carrol, and Xue-Rong Zhou. 2025. "Biotransformation of Canola Feedstock Waste Using Brassica Pest Microbiome: Proof of Concept for Insects as Bioengineers" International Journal of Molecular Sciences 26, no. 16: 7715. https://doi.org/10.3390/ijms26167715
APA StyleKarpe, A. V., Walsh, T. K., Carrol, A. J., & Zhou, X.-R. (2025). Biotransformation of Canola Feedstock Waste Using Brassica Pest Microbiome: Proof of Concept for Insects as Bioengineers. International Journal of Molecular Sciences, 26(16), 7715. https://doi.org/10.3390/ijms26167715