Computational and Experimental Insights into Tyrosinase and Antioxidant Activities of Resveratrol and Its Derivatives: Molecular Docking, Molecular Dynamics Simulation, DFT Calculation, and In Vitro Evaluation
Abstract
1. Introduction
2. Results
2.1. Anti-Tyrosinase and Antioxidant Activities
2.2. Lipinski’s Rule of Five, Skin Permeability, and Toxicity
2.3. DFT Calculations
2.3.1. Molecular Orbital Analysis
2.3.2. Density of States
2.3.3. Molecular Electrostatic Potential (MEP) Map Analysis
2.4. Molecular Docking
2.5. Molecular Dynamics (MD) Simulation
2.5.1. System Stability
2.5.2. Protein Flexibility
2.5.3. Protein-Ligand Interactions
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Anti-Mushroom Tyrosinase Activity
4.3. Antioxidant Activity
4.3.1. DPPH Radical Scavenging Activity
4.3.2. ABTS Radical Scavenging Activity
4.3.3. Ferric Reducing Antioxidant Power (FRAP)
4.4. Lipinski’s Rule of Five and Skin Permeability and Toxicity Analysis
4.5. Density Functional Theory (DFT) Calculates
4.6. Molecular Docking Study
4.7. Molecular Dynamics Simulation
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
Are | Acetyl-resveratrol |
B3LYP | Becke Three-Parameter Hybrid Functional Combined with Lee–Yang–Parr Correlation Functional |
Cre | Cis-trismethoxy resveratrol |
COX | Cyclooxygenase enzymes |
Dre | Dihydroresveratrol |
DFT | Density Functional Theory |
DPPH | 2,2-Diphenyl-2-picrylhydrazyl |
DMSO | Dimethyl Sulfoxide |
DOS | Density of States |
EHOMO | Energy of the Highest Occupied Molecular Orbital |
ELUMO | Energy of the Lowest Occupied Molecular Orbital |
Egap | HOMO–LUMO energy gap |
FRAP | Ferric Reducing Antioxidant Power |
IC50 | Half-Maximal Inhibitory Concentration |
Ore | Oxyresveratrol |
ORAC | Oxygen Radical Absorbance Capacity |
PDB | Protein Data Bank |
ROS | Reactive Oxygen Species |
MEP | Molecular Electrostatic Potential |
MW | Molecular Weight |
MD | Molecular Dynamics |
L-DOPA | L-3,4-dihydroxyphenylalanine |
HSV | Herpes Simplex Virus |
TPSA | Total Polar Surface Area |
TPTZ | 2,4,6-Tris(2-pyridyl)-s-triazine |
References
- Vierkötter, A.; Krutmann, J. Environmental Influences on Skin Aging and Ethnic-Specific Manifestations. Dermato-Endocrinology 2012, 4, 227–231. [Google Scholar] [CrossRef]
- Hussein, R.S.; Bin Dayel, S.; Abahussein, O.; El-Sherbiny, A.A. Influences on Skin and Intrinsic Aging: Biological, Environmental, and Therapeutic Insights. J. Cosmet. Dermatol. 2025, 24, e16688. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kim, D.; Park, R.; Kim, S.; Kim, J.L.; Kim, O.K.; Lee, J. Skin protective effect of Indian gooseberry and barley sprout complex on skin dryness, wrinkles, and melanogenesis by cell models. Nutr. Res. Pract. 2024, 18, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Miyamura, Y.; Wolber, R.; Smuda, C.; Reinhold, W.; Liu, H.; Kolbe, L.; Hearing, V.J. Regulation of human skin pigmentation in situ by repetitive UV exposure: Molecular characterization of responses to UVA and/or UVB. J. Investig. Dermatol. 2010, 130, 1685–1696. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, K.U.; Ali, S.A.; Ali, A.S. Effect of Purified Mushroom Tyrosinase on Melanin Content and Melanogenic Protein Expression. Biotechnol. Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin Whitening gents: Medicinal chemistry perspective of Tyrosinase Inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef]
- Baumann, L. Skin ageing and its treatment. J. Pathol. 2007, 211, 241–251. [Google Scholar] [CrossRef]
- Campa, M.; Baron, E. Anti-aging Effects of Select Botanicals: Scientific Evidence and Current Trends. Cosmetics 2018, 5, 54. [Google Scholar] [CrossRef]
- Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; et al. Potential Adverse Effects of Resveratrol: A Literature Review. Int. J. Mol. Sci. 2020, 21, 2084. [Google Scholar] [CrossRef]
- Chen, X.; He, H.; Wang, G.; Yang, B.; Ben, W.; Ma, L.; Yu, Q. Stereospecific determination of cis- and trans-resveratrol in rat plasma by HPLC: Application to pharmacokinetic studies. Biomed. Chromatogr. 2007, 21, 257–265. [Google Scholar] [CrossRef]
- Camont, L.; Cottart, C.H.; Rhayem, Y.; Nivet-Antoine, V.; Djelidi, R.; Collin, F.; Beaudeux, J.L.; Bonnefont-Rousselot, D. Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Anal. Chim. Acta 2009, 634, 121–128. [Google Scholar] [CrossRef]
- Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J. Cosmet. Laser Ther. 2018, 21, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef]
- Bejenaru, L.E.; Biţă, A.; Belu, I.; Segneanu, A.-E.; Radu, A.; Dumitru, A.; Ciocîlteu, M.V.; Mogoşanu, G.D.; Bejenaru, C. Resveratrol: A Review on the Biological Activity and Applications. Appl. Sci. 2024, 14, 4534. [Google Scholar] [CrossRef]
- Baxter, R.A. Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol. 2008, 7, 2–7. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, S.; Sprinz, H.; Brede, O. Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch. Biochem. Biophys. 2001, 391, 79–89. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef]
- Bernard, P.; Berthon, J.Y. Resveratrol: An original mechanism on tyrosinase inhibition. Int. J. Cosmet. Sci. 2000, 22, 219–226. [Google Scholar] [CrossRef]
- Shin, N.H.; Ryu, S.Y.; Choi, E.J.; Kang, S.H.; Chang, I.M.; Min, K.R.; Kim, Y. Oxyresveratrol as the potent inhibitor on dopa oxydase activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 1998, 243, 801–803. [Google Scholar] [CrossRef]
- Kim, Y.M.; Yun, J.; Lee, C.K.; Lee, H.; Min, K.R.; Kim, Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J. Biol. Chem. 2002, 277, 16340–16344. [Google Scholar] [CrossRef]
- Fabbrocini, G.; Staibano, S.; De Rosa, G.; Battimiello, V.; Fardella, N.; Ilardi, G.; La Rotonda, M.I.; Longobardi, A.; Mazzella, M.; Siano, M.; et al. Resveratrol-containing gel for the treatment of acne vulgaris: A single-blind, vehicle-controlled, pilot study. Am. J. Clin. Dermatol. 2011, 12, 133–141. [Google Scholar] [CrossRef]
- Docherty, J.J.; Fu, M.M.; Hah, J.M.; Sweet, T.J.; Faith, S.A.; Booth, T. Effect of resveratrol on herpes simplex virus vaginal infection in the mouse. Antivir. Res. 2005, 67, 155–162. [Google Scholar] [CrossRef]
- Rakrai, W.; Rattanadon, B.; Tabtimsai, C.; Kaewtong, C.; Wanno, B. Encapsulation investigation of molnupiravir drug guest using cucurbituril hosts through the DFT approach. J. Incl. Phenom. Macrocycl. Chem. 2024, 104, 501–512. [Google Scholar] [CrossRef]
- Adekoya, O.C.; Adekoya, G.J.; Sadiku, E.R.; Hamam, Y.; Ray, S.S. Application of DFT Calculations in Designing Polymer-Based Drug Delivery Systems: An Overview. Pharmaceutics 2022, 14, 1972. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lu, Y.; Wang, S. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem. 2003, 46, 2287–2303. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Abbas, Q.; Ashraf, Z.; Moustafa, A.A.; Seo, S.Y. Pharmacoinformatics exploration of polyphenol oxidases leading to novel inhibitors by virtual screening and molecular dynamic simulation study. Comput. Biol. Chem. 2017, 68, 131–142. [Google Scholar] [CrossRef]
- Alruhaimi, R.S.; Mahmoud, A.M.; Alnasser, S.M.; Alotaibi, M.F.; Elbagory, I.; El-Bassuony, A.A.; Lamsabhi, A.A.; Kamel, E.M. Integrating Computational Modeling and Experimental Validation to Unveil Tyrosinase Inhibition Mechanisms of Flavonoids from Alhagi graecorum. ACS Omega 2024, 9, 47167–47179. [Google Scholar] [CrossRef]
- Chen, J.; Yu, X.; Huang, Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 168, 111–117. [Google Scholar] [CrossRef]
- Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef]
- Rajchakom, C.; Darai, N.; Boonma, T.; Sungthong, B.; Puthongking, P.; Nualkaew, S.; Sripadung, P.; Rungrotmongkol, T.; Nunthaboot, N. Molecular insights into natural product compounds targeting papain protease of SARS-CoV-2 through molecular dynamics simulation. Monatshefte Chem.-Chem. Mon. 2025, 156, 219–232. [Google Scholar] [CrossRef]
- Kumari, A.; Kumar, R.; Sulabh, G.; Singh, P.; Kumar, J.; Singh, V.K.; Ojha, K.K. In silico ADMET, molecular docking and molecular simulation-based study of glabridin’s natural and semisynthetic derivatives as potential tyrosinase inhibitors. Adv. Tradit. Med. 2023, 23, 733–751. [Google Scholar] [CrossRef]
- Duru, C.E.; Chidiebere, C.W. Computer-assisted discovery of tyrosinase inhibitors from turmeric and clove: An in silico study on natural skinwhitening agents and their potential toxicity. S. Afr. J. Bot. 2024, 175, 669–683. [Google Scholar] [CrossRef]
- Narsa, A.C.; Suhandi, C.; Afidika, J.; Ghaliya, S.; Elamin, K.M.; Wathoni, N. A Comprehensive Review of the Strategies to Reduce Retinoid-Induced Skin Irritation in Topical Formulation. Dermatol. Res. Pract. 2024, 17, 5551774. [Google Scholar] [CrossRef] [PubMed]
- Tabtimsai, C.; Wanno, B. Theoretical investigation on 5-fluorouracil anti-cancer drug adsorption on Sc- and Ti-doped armchair and zigzag boron nitride nanotubes. J. Mol. Liq. 2021, 337, 116596. [Google Scholar] [CrossRef]
- Guan, H.; Sun, H.; Zhao, X. Application of Density Functional Theory to Molecular Engineering of Pharmaceutical Formulations. Int. J. Mol. Sci. 2025, 26, 3262. [Google Scholar] [CrossRef] [PubMed]
- Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 2006, 281, 8981–8990. [Google Scholar] [CrossRef]
- Zeng, H.J.; Li, Q.Y.; Ma, J.; Yang, R.; Qu, L.B. A comparative study on the effects of resveratrol and oxyresveratrol against tyrosinase activity and their inhibitory mechanism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119405. [Google Scholar] [CrossRef]
- Lee, K.E.; Bharadwaj, S.; Sahoo, A.K.; Yadava, U.; Kang, S.G. Determination of tyrosinase-cyanidin-3-O-glucoside and (−/+)-catechin binding modes reveal mechanistic differences in tyrosinase inhibition. Sci. Rep. 2021, 11, 24494. [Google Scholar] [CrossRef]
- Huang, S.Y.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 2010, 11, 3016–3034. [Google Scholar] [CrossRef]
- Lai, X.; Wichers, H.J.; Soler-Lopez, M.; Dijkstra, B.W. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angew. Chem. Int. Ed. 2017, 56, 9812–9815. [Google Scholar] [CrossRef]
- Pintus, F.; Floris, S.; Fais, A.; Era, B.; Kumar, A.; Gatto, G.; Uriarte, E.; Matos, M.J. Hydroxy-3-Phenylcoumarins as Multitarget Compounds for Skin Aging Diseases: Synthesis, Molecular Docking and Tyrosinase, Elastase, Collagenase and Hyaluronidase Inhibition, and Sun Protection Factor. Molecules 2022, 27, 6914. [Google Scholar] [CrossRef]
- Wang, J.; Morin, P.; Wang, W.; Kollman, P.A. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 2001, 123, 5221–5230. [Google Scholar] [CrossRef]
- Sungthong, B.; Phadungkit, M. Anti-Tyrosinase and DPPH Radical Scavenging Activities of Selected Thai Herbal Extracts Traditionally Used as Skin Toner. Pharmacogn. J. 2015, 7, 97–101. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros, Z.L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Kasikorn, T.; Panyatip, P.; Yongram, C.; Dokkiang, O.; Sungthong, B.; Puthongking, P. The Antioxidant Activities, Total Phenolic, Flavonoid and Melatonin Contents of Five Cultivars of Mulberry Leaves. J. Thai Trad. Alt. Med. 2019, 17, 429–436. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5; Semichem Inc.: Edinburgh, UK, 2009. [Google Scholar]
- Frish, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Paterson, G. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- O’Boyle, N.M.; Tenderholt, A.L.; Langner, K.M. A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
- Ismaya, W.T.; Rozenoom, H.J.; Weijin, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011, 50, 5477–5486. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Dassault Systèmes. Materials Studio; BIOVIA: San Diego, CA, USA, 2024. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Betz, R.M.; Cerutti, D.S.; Cheatham, T.E., III; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Homeyer, N.; et al. AMBER 2016; University of California: San Francisco, CA, USA, 2016; Available online: http://www.ambermd.org/index.php (accessed on 20 May 2025).
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Sun, H.; Li, Y.; Shen, M.; Tian, S.; Xu, L.; Pan, P.; Guan, Y.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys. 2014, 16, 22035–22045. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Loncharich, R.J.; Brooks, B.R.; Pastor, R.W. Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide. Biopolymers 1992, 32, 523–535. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham III, T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
Compound | MW a | cLog P b | cLog S c | TPSA d | NORTB e | HBA f | HBD g | Lipinski’s Violation h |
---|---|---|---|---|---|---|---|---|
Re | 228.24 | 2.48 | −3.62 | 60.69 | 2 | 3 | 3 | 0 |
Ore | 244.24 | 2.08 | −3.46 | 80.92 | 2 | 4 | 4 | 0 |
Are | 354.36 | 2.56 | −3.88 | 77.76 | 3 | 4 | 3 | 0 |
Dre | 230.26 | 2.49 | −3.53 | 60.69 | 3 | 3 | 3 | 0 |
Cre | 270.32 | 3.66 | −4.22 | 27.69 | 5 | 3 | 0 | 0 |
Compound | Skin Permeability (log Kp cm/s) | Toxicity | ||
---|---|---|---|---|
Skin Sensitization | Eye Corrosion | Eye Irritation | ||
Re | −5.47 | No | Yellow | Red |
Ore | −5.82 | No | Yellow | Red |
Are | −5.56 | No | Green | Red |
Dre | −5.52 | No | Green | Red |
Cre | −5.03 | No | Green | Red |
Compound | EHOMO | ELUMO | Egap | µ | χ | η | ω | S |
---|---|---|---|---|---|---|---|---|
Re | −5.245 | −1.207 | 4.038 | −3.226 | 3.226 | 2.019 | 2.577 | 0.2477 |
Ore | −5.058 | −1.077 | 3.981 | −3.068 | 3.068 | 1.991 | 2.364 | 0.2512 |
Are | −5.786 | −1.773 | 4.013 | −3.779 | 3.779 | 2.007 | 3.559 | 0.2492 |
Dre | −5.742 | −0.015 | 5.727 | −2.879 | 2.879 | 2.863 | 1.447 | 0.1746 |
Cre | −5.296 | −0.956 | 4.339 | −3.126 | 3.126 | 2.170 | 2.252 | 0.2305 |
Kojic acid | −6.252 | −1.090 | 5.162 | −3.671 | 3.671 | 2.581 | 2.611 | 0.1937 |
Compound | Binding Energy (Kcal/mol) | Hydrogen Bonds (Distance, Å) | Other Interactions |
---|---|---|---|
PDB: 2Y9X (Mushroom) | |||
Re | −7.3 | Van der Waals: Cu400, Phe292, His61, His279, Met280, Ser282, Gly281, His259, Asn260, Met267 Carbon hydrogen bond: His85 Pi-Pi: His263, Phe264 Pi-Alkyl: Cu401, Val283, Ala286, Val248 | |
Ore | −7.2 | His85 (3.03) Ser282 (2.92) | Van der Waals: Cu400, Cu401, His61, Phe90, His,259, Phe292, Met280, Gly281, Asv260, Met267 Pi-Pi: His263, Phe264 Pi-Alkyl: Val283, Ala286, Val248 |
Are | −6.8 | Asn81 (3.06) Asn260 (2.67) | Van der Waals: Glu322, Ala80, Ala323, Thr324, His244, Val248, Arg268, Met267, Phe264, Cu401, Ser282, Gly281, His263, Met280 Pi-sigma: His85 Pi-Alkyl: Val283 |
Dre | −5.9 | His244 (2.20) | Van der Waals: Ser282, Met280, His85, His61, Ala286, His296, His94, Phe90, His259, Gly281, Phe264, Asn260, Met257, Val248 Pi-Pi stacked: His263 Pi-Alkyl: Cu400, Cu401, Ala286, Val283 |
Cre | −7.0 | Van der Waals: Thr84, Asn81, Thr324, Glu322, His244, Val248, Asn260, Glu256, Cu400, Phe292, His259, Ser282, Met280, His61, Phe264, Cys83 Pi-Alkyl: His85, Cu401, Ala286, His263, Val283, Pro284 | |
Kojic acid | −5.6 | Van der Waals: His85, His61, Phe292, Cu400, His296, Phe90, His259, Asn260, Phe264, Gly281, Met280, Ser282 Pi-Pi stacked: His263 Pi-Alkyl: Val283, Ala286, Cu401 Unfavorable bump: Cu401 | |
PDB: 5M8Q (Human) | |||
Re | −7.0 | Arg321 (2.16) Asn378 (3.23) | Van der Waals: Val373, Phe362, Gly389, Gln390, Gly388, Ser394, Phe400, His192, His215, Cu502, Pro395, His377, Cu501, Phe220 Carbon hydrogen bond: Ser374 Pi-Pi: His381 Pi-Alkyl: Leu382, Val391 |
Ore | −7.4 | Asn378 (3.40) Ser394 (2.14) | Van der Waals: Val373, Phe362, Gly389, Gln390, Gly388, Ser394, Phe400, His192, His215, Cu502, Pro395, His377, Cu501, Phe220 Carbon hydrogen bond: Ser374 Pi-Pi: His381 Pi-Alkyl: Leu382, Val391 |
Are | −6.9 | Arg321 (2.46) | Van der Waals: Tyr369, Asp370, Phe362, Val373, Glu216, His377, His215, His192, Phe400, Cu502, Asn378, Leu382, Ser394, Cu501, Ser374, Gly389, Gln390 Pi-Pi staked: His381 Pi-Alkyl: Val391 |
Dre | −6.2 | Glu216 (2.47) His215 (2.16) His192 (2.90) | Van der Waals: Asp212, Phe362, Asn378, Leu382, His377, Phe220, Cu501, His224, Phe400, Ser394, Gly388, Gln390, Gly389 Unfavorable bump: Cu502 |
Cre | −6.7 | Van der Waals: Asp212, Glu360, Glu216, Ser394, Phe400, His224, Cu502, Cu501, Phe362, Asn378, Arg321, Lys198 Carbon hydrogen bond: His215 Pi-Pi: His377 Pi-Alkyl: His381, Leu382, His192, Val391 | |
Kojic acid | −5.7 | Van der Waals: Asn378, Phe362, His377, His215, Cu501, Phe400, His192, Pro395, Ser394, Gln390, Gly388, Gly389, Leu382. Pi-Pi stacked: His381. Pi-Alkyl: Val391. Metal accepter: Cu502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sripadung, P.; Rajchakom, C.; Nunthaboot, N.; Jiang, X.; Sungthong, B. Computational and Experimental Insights into Tyrosinase and Antioxidant Activities of Resveratrol and Its Derivatives: Molecular Docking, Molecular Dynamics Simulation, DFT Calculation, and In Vitro Evaluation. Int. J. Mol. Sci. 2025, 26, 8827. https://doi.org/10.3390/ijms26188827
Sripadung P, Rajchakom C, Nunthaboot N, Jiang X, Sungthong B. Computational and Experimental Insights into Tyrosinase and Antioxidant Activities of Resveratrol and Its Derivatives: Molecular Docking, Molecular Dynamics Simulation, DFT Calculation, and In Vitro Evaluation. International Journal of Molecular Sciences. 2025; 26(18):8827. https://doi.org/10.3390/ijms26188827
Chicago/Turabian StyleSripadung, Ployvadee, Chananya Rajchakom, Nadtanet Nunthaboot, Xinwei Jiang, and Bunleu Sungthong. 2025. "Computational and Experimental Insights into Tyrosinase and Antioxidant Activities of Resveratrol and Its Derivatives: Molecular Docking, Molecular Dynamics Simulation, DFT Calculation, and In Vitro Evaluation" International Journal of Molecular Sciences 26, no. 18: 8827. https://doi.org/10.3390/ijms26188827
APA StyleSripadung, P., Rajchakom, C., Nunthaboot, N., Jiang, X., & Sungthong, B. (2025). Computational and Experimental Insights into Tyrosinase and Antioxidant Activities of Resveratrol and Its Derivatives: Molecular Docking, Molecular Dynamics Simulation, DFT Calculation, and In Vitro Evaluation. International Journal of Molecular Sciences, 26(18), 8827. https://doi.org/10.3390/ijms26188827