Formation and Structure of Highly Ordered Self-Assembled Monolayers on Au(111) via Vapor Deposition of Dioctyl Diselenides
Abstract
1. Introduction
2. Results and Discussion
2.1. Formation of Short-Range Ordered C8Se SAMs on Au(111) from Vapor Deposition of DODSe at 363 K for 1 h
2.2. Formation of Highly Ordered C8Se SAMs on Au(111) from Vapor Deposition of DODSe at 363 K for 6 h
2.3. Coexistence of Long-Range Ordered and Disordered Phases of C8Se SAMs on Au(111) from Vapor Deposition of DODSe at 363 K for 24 h
3. Materials and Methods
3.1. Chemicals and Preparation of Au(111) Substrates
3.2. Preparation of C8Se SAMs from DODSe
3.3. STM Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Liu, M.; Qi, F.; Lin, F.R.; Jen, A.K.-Y. Self-Assembled Monolayers for Interfacial Engineering in Solution Processed Thin Film Electronic Devices. Chem. Rev. 2024, 124, 2138–2204. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Vericat, C.; Vela, M.E.; Benitez, G.; Carro, P.; Salvarezza, R.C. Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-known System. Chem. Soc. Rev. 2010, 39, 1805–1834. [Google Scholar] [CrossRef]
- Romashov, L.V.; Ananikov, V.P. Self-Assembled Selenium Monolayers: From Nanotechnology to Materials Science and Adaptive Catalysis. Chem. Eur. J. 2013, 19, 17640–17660. [Google Scholar] [CrossRef]
- Seong, S.; Kang, H.; Kim, H.; Son, Y.J.; Jang, J.; Maeda, S.; Chikami, S.; Hayashi, T.; Yoon, H.J.; Noh, J. Effects of the Substituent Position on the Structural Order, Work Function Change, and Thermopower of Dichloro-Substituted Benzenethiolate Self-Assembled Monolayers on Au (1 1 1). Appl. Surf. Sci. 2024, 643, 158661. [Google Scholar] [CrossRef]
- Wu, H.; Li, G.; Hou, J.; Sotthewes, K. Probing Surface Properties of Organic Molecular Layers by Scanning Tunneling Microscopy. Adv. Colloid Interface Sci. 2023, 318, 102956. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.; Han, J.W.; Kim, H.; Kim, Y.O.; Sung, H.S.; Kaizu, R.; Latag, G.V.; Hayashi, T.; Lee, N.-S.; Noh, J. Formation and Surface Structures of Long-Range Ordered Self-Assembled Monolayers of 2-Mercaptopyrazine on Au(111). Int. J. Mol. Sci. 2025, 26, 160. [Google Scholar] [CrossRef] [PubMed]
- Ossowski, J.; Nascimbeni, G.; Żaba, T.; Verwüster, E.; Rysz, J.; Terfort, A.; Zharnikov, M.; Zojer, E.; Cyganik, P. Relative Thermal Stability of Thiolate- and Selenolate-Bonded Aromatic Monolayers on the Au(111) Substrate. J. Phys. Chem. C 2017, 121, 28031–28042. [Google Scholar] [CrossRef]
- Wróbel, M.; Cegiełka, D.M.; Asyuda, A.; Kozieł, K.; Zharnikov, M.; Cyganik, P. N-heterocyclic Carbenes—The Design Concept for Densely Packed and Thermally Ultra-Stable Aromatic Self-Assembled Monolayers. Nano Today 2023, 53, 102024. [Google Scholar] [CrossRef]
- Cyganik, P.; Terfort, A.; Zharnikov, M. Odd-Even Effects in the Structure and Properties of Aryl-Substituted Aliphatic Self-Assembled Monolayers. Nano Res. 2024, 17, 4231–4243. [Google Scholar] [CrossRef]
- Noh, J.; Hara, M. Structural Investigation of Cyclohexanethiol Self-Assembled Monolayers on Au(111) by Scanning Tunneling Microscopy. Langmuir 2002, 18, 9111–9115. [Google Scholar] [CrossRef]
- Alharbi, A.R.M.; Roman, T.; Alotabi, A.S.; Koper, I.; Andersson, G.G. Probing the Structure and Orientation of Carboxylic Acid-Terminated Self-Assembled Monolayers. Langmuir 2024, 4, 18925–18941, Erratum in Langmuir 2024, 40, 23570. [Google Scholar] [CrossRef]
- Liu, Y.; Notz, S.; Lang, H.; Zharnikov, M. Pyrene-Terminated Self-Assembled Monolayers on Au Substrate: Molecular Organization and Charge Transport Properties. J. Phys. Chem. C 2023, 127, 19290–19300. [Google Scholar] [CrossRef]
- Azzam, W.; Subaihi, A. Influence of an Alkyl Spacer on the Formation and Structure of 4-Fluorobenzenethiol and 4-Fluorobenzenemethanethiol Self-Assembled Monolayers on Au(111). Surf. Interfaces 2020, 20, 100544. [Google Scholar] [CrossRef]
- Raymundo-Pereira, P.A.; de Oliveira Pedro, R.; Carr, O.; Melendez, M.E.; Gobbi, A.L.; de Oliveira Piazzetta, M.H.; Carvalho, A.L.; Reis, R.M.; Miranda, P.B.; Oliveira, O.N., Jr. Influence of the Molecular Orientation and Ionization of Self-Assembled Monolayers in Biosensors: Application to Genosensors of Prostate Cancer Antigen 3. J. Phys. Chem. C 2021, 125, 498–506. [Google Scholar] [CrossRef]
- Hasan, A.; Pattanayek, S.K.; Pandey, L.M. Effect of Functional Groups of Self-Assembled Monolayers on Protein Adsorption and Initial Cell Adhesion. ACS Biomater. Sci. Eng. 2018, 4, 3224–3233. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tao, X.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O.; Lu, G.; Lou, X.W. Self-Assembled Monolayers Direct a LiF-Rich Interphase toward Long-Life Lithium Metal Batteries. Science 2022, 375, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; He, P.; Yoon, H.J. Molecular Thermoelectricity in Egain-Based Molecular Junctions. Acc. Chem. Res. 2023, 56, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Yadavalli, S.K.; Chen, M.; Abbaspourtamijani, A.; Qi, Y.; Padture, N.P. Interfacial Toughening with Self-Assembled Monolayers Enhances Perovskite Solar Cell Reliability. Science 2021, 372, 618–622. [Google Scholar] [CrossRef]
- Kim, S.Y.; Cho, S.J.; Byeon, S.E.; He, X.; Yoon, H.J. Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 2002606. [Google Scholar] [CrossRef]
- Casalini, S.; Bortolotti, C.A.; Leonardi, F.; Biscarini, F. Self-Assembled Monolayers in Organic Electronics. Chem. Soc. Rev. 2017, 46, 40–71. [Google Scholar] [CrossRef]
- Heimel, G.; Rissner, F.; Zojer, E. Modeling the Electronic Properties of π-Conjugated Self-Assembled Monolayers. Adv. Mater. 2010, 22, 2494–2513. [Google Scholar] [CrossRef] [PubMed]
- Poirier, G.E. Coverage-Dependent Phases and Phase Stability of Decanethiol on Au (111). Langmuir 1999, 15, 1167–1175. [Google Scholar] [CrossRef]
- Kim, D.H.; Noh, J.; Hara, M.; Lee, H. An Adsorption Process Study on the Self-Assembled Monolayer Formation of Octadecanethiol Chemisorbed on Gold Surface. Bull. Korean Chem. Soc. 2001, 22, 276–280. [Google Scholar]
- Yang, G.; Liu, G.-Y. New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy. J. Phys. Chem. B 2003, 107, 8746–8759. [Google Scholar] [CrossRef]
- Hel Al Mamun, A.; Hahn, J.R. Effects of Solvent on the Formation of Octanethiol Self-Assembled Monolayers on Au(111) at High Temperatures in a Closed Vessel: A Scanning Tunneling Microscopy and X-Ray Photoelectron Spectroscopy Study. J. Phys. Chem. C 2012, 116, 22441–22448. [Google Scholar] [CrossRef]
- Pensa, E.; Azofra, L.M.; Albrecht, T.; Salvarezza, R.C.; Carro, P. Shedding Light on the Interfacial Structure of Low-Coverage Alkanethiol Lattices. J. Phys. Chem. C 2020, 124, 26748–26758. [Google Scholar] [CrossRef]
- Cai, L.; Yao, Y.; Yang, J.; Price, D.W.; Tour, J.M. Chemical and Potential-assisted Assembly of Thioacetyl-terminated Oligo-(phenylene ethynylene)s on Gold Surfaces. Chem. Mater. 2002, 14, 2905–2909. [Google Scholar] [CrossRef]
- Béthencourt, M.I.; Srisombat, L.; Chinwangso, P.; Lee, T.R. SAMs on Gold Derived from the Direct Adsorption of Alkanethioacetates are Inferior to Those Derived from the Direct Adsorption of Alkanethiols. Langmuir 2009, 25, 1265–1271. [Google Scholar] [CrossRef]
- Lee, M.-T.; Hsueh, C.-C.; Freund, M.S.; Ferguson, G. Electrochemical Self-Assembly of Monolayers from Alkylthiosulfates on Gold. Langmuir 2003, 19, 5246–5253. [Google Scholar] [CrossRef]
- Yamada, A.; Feng, Q.; Zhou, Q.; Hoskins, A.; Lewis, K.M. Conductance of Junctions with Acetyl-Functionalized Thiols: A First-Principals-Based Analysis. J. Phys. Chem. C 2017, 121, 10298–10304. [Google Scholar] [CrossRef]
- Ciszek, J.W.; Tour, J.M. Mechanistic Implications of the Assembly of Organic Thiocyanates on Precious Metals. Chem. Mater. 2005, 17, 5684–5690. [Google Scholar] [CrossRef]
- Shen, C.; Buck, M.; Wilton-Ely, J.D.E.T.; Weidner, T.; Zharnikov, M. On the Importnace of Purity for the Formation of Self-Assembled Monolayers from Thiocyanates. Langmuir 2008, 24, 6609–6615. [Google Scholar] [CrossRef] [PubMed]
- de la Llave, E.; Scherlis, D.A. Selenium-Based Self-Assembled Monolayers: The Nature of Adsorbate-Surface Interactions. Langmuir 2010, 26, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Arisnabarreta, N.; Ruano, G.D.; Lingenfelder, M.; Patrito, E.M.; Cometto, F.P. Comparative Study of the Adsorption of Thiols and Selenols on Au(111) and Au(100). Langmuir 2017, 33, 13733–13739. [Google Scholar] [CrossRef]
- Lee, S.Y.; Ito, E.; Kang, H.; Hara, M.; Lee, H.; Noh, J. Surface Structure, Adsorption, and Thermal Desorption Behaviors of Methaneselenolate Monolayers on Au(111) from Dimethyl Diselenides. J. Phys. Chem. C 2014, 118, 8322–8330. [Google Scholar] [CrossRef]
- Chen, N.; Li, S.; Zhao, P.; Liu, R.; Xie, Y.; Lin, J.-L.; Nijhuis, C.A.; Xu, B.; Zhang, L.; Xu, H.; et al. Extreme Long-Lifetime Self-Assembled Monolayer for Air-Stable Molecular Junctions. Sci. Adv. 2023, 9, eadh3412. [Google Scholar] [CrossRef]
- Monnell, J.D.; Stapleton, J.J.; Drik, S.M.; Reinerth, W.A.; Tour, J.M.; Allara, D.L.; Weiss, P.S. Relative Conductances of Alkaneselenolate and Alkanethiolate Self-Assembled Monolayers on Au{111}. J. Phys. Chem. B 2005, 109, 20343–20349. [Google Scholar] [CrossRef]
- Ossowski, J.; Wächter, T.; Silies, L.; Kind, M.; Noworolska, A.; Blobner, F.; Gnatek, D.; Rysz, J.; Bolte, M.; Feulner, P.; et al. Thiolate versus Selenolate: Structure, Stability, and Charge Transfer Properties. ACS Nano 2015, 9, 4508–4526. [Google Scholar] [CrossRef]
- Cyganik, P.; Szelagowska-Kunstman, K.; Terfort, A.; Zharnikov, M. Odd-Even Effect in Molecular Packing of Biphenyl-Substituted Alkaneselenolate Self-Assembled Monolayers on Au(111): Scanning Tunneling Microscopy Study. J. Phys. Chem. C 2008, 112, 15466–15473. [Google Scholar] [CrossRef]
- Bashir, A.; Käfer, D.; Müller, J.; Wöll, S.; Terfort, A.; Witte, G. Selenium as a Key Element for Highly Ordered Aromatic Self-Assembled Monolayers. Angew. Chem. Int. Ed. 2008, 47, 5250–5252. [Google Scholar] [CrossRef] [PubMed]
- Azzam, W.; Al-Rawashdeh, N.A.F.; Al-Refaie, N.; Shekhah, O.; Bashir, A. On the Influence of the Aliphatic Linker on Fabrication of Highly Ordered and Orientated Self-Assembled Monolayers of Aromatic Selenols on Au(111). J. Phys. Chem. C 2014, 118, 4846–4859. [Google Scholar] [CrossRef]
- Kang, H.; Jeong, H.; Seong, S.; Han, S.; Son, Y.J.; Tahara, H.; Hayashi, T.; Yoon, H.J.; Noh, J. Formation and Superlattice of Long-Range and Highly Ordered Alicyclic Selenolate Monolayers on Au(111) Studied by Scanning Tunneling Microscopy. Appl. Surf. Sci. 2022, 572, 151454. [Google Scholar] [CrossRef]
- Monnell, J.D.; Stapleton, J.J.; Jackiw, J.J.; Dunbar, T.; Reinerth, W.A.; Dirk, S.M.; Tour, J.M.; Allara, D.L.; Weiss, P.S. Ordered Local Domain Structures of Decaneselenolate and Dodecaneselenolate Monolayers on Au{111}. J. Phys. Chem. B 2004, 108, 9834–9841. [Google Scholar] [CrossRef]
- Choi, J.; Kang, H.; Ito, E.; Hara, M.; Noh, J. Phase Transition of Octaneselenolate Self-Assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy. Bull. Korean Chem. Soc. 2011, 32, 2623–2627. [Google Scholar] [CrossRef][Green Version]
- Tsvetanova, M.; Oldenkotte, V.J.S.; Bertolino, M.C.; Gao, Y.; Siekman, M.H.; Huskens, J.; Zandvliet, H.J.W.; Sottewes, K. Nanoscale Work Function Contrast Induced by Decanethiol Self-Assembled Monolayers on Au(111). Langmuir 2020, 36, 12745–12754. [Google Scholar] [CrossRef]
- Guo, Q.; Li, F. Self-Assembled Alkanethiol Monolayers on Gold Surfaces: Resolving the Complex Structure at the Interface by STM. Phys. Chem. Chem. Phys. 2014, 16, 19074–19090. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, B.; Zhang, C.; Yang, Z.; Loy, M.M.T. Thermal Annealing Effect of Alkanethiol Monolayers on Au(111) in Air. Surf. Sci. 2001, 472, 41–50. [Google Scholar] [CrossRef]
- Azzam, W.; Al-Momani, L. A New Striped-Phase of Decanethiol Self-Assembled Monolayers on Au(111) Formed at a High Solution Temperature. Appl. Surf. Sci. 2013, 266, 239–244. [Google Scholar] [CrossRef]
- Dai, J.; Li, Z.; Jin, J.; Cheng, J.; Kong, J.; Bi, S. Study on the Solvent Effect on the Quality of Dodecanethiol Self-Assembled Monolayers on Polycrystalline Gold. J. Electroanal. Chem. 2008, 624, 315–322. [Google Scholar] [CrossRef]
- Subramanian, S.; Sampath, S. Enhanced Stability of Short- and Long-Chain Diselenide Self-Assembled Monolayers on Gold Probed by Electrochemistry, Spectroscopy, and Microscopy. J. Colloid Interface Sci. 2017, 312, 413–424. [Google Scholar] [CrossRef]
- Han, S.; Seong, S.; Son, Y.J.; Yokota, Y.; Hayashi, T.; Hara, M.; Noh, J. Formation and Surface Structures of Highly Ordered Self-Assembled Monolayers of Alkyl Selenocyanates on Au(111) via Ambient-Pressure Vapor Deposition. J. Phys. Chem C 2020, 124, 26730–26740. [Google Scholar] [CrossRef]
- Deering, A.L.; Van Lue, S.M.; Kandel, S.A. Ambient-Pressure Vapor Deposition of Octanethiol Self-Assembled Monolayers. Langmuir 2005, 21, 10260–10263. [Google Scholar] [CrossRef] [PubMed]
- Schönherr, H.; Ringsdorf, H. Self-Assembled Monolayers of Symmetrical and Mixed Alkyl Fluoroalkyl Disulfides on Gold. 1. Synthesis of Disulfides and Investigation of Monolayer Properties. Langmuir 1996, 12, 3891–3897. [Google Scholar] [CrossRef]
- Han, S.W.; Kim, K. Self-Assembled Monolayers of Organoselenium Compounds on Gold: Surface-Enhanced Raman Scattering Study. J. Colloid Interface Sci. 2001, 240, 492–497. [Google Scholar] [CrossRef]
- Hooks, D.E.; Fritz, T.; Ward, M.D. Epitaxy and Molecular Organization on Solid Substrates. Adv. Mater. 2001, 13, 227–241. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, G.; Yu, J.; Jung, T.A.; Liu, G.-Y. Structures of Annealed Decanethiol Self-Assembled Monolayers on Au(111): An Ultrahigh Vacuum Scanning Tunneling Microscopy Study. Langmuir 2003, 19, 6056–6065. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.; Chen, W.; Feng, Y.; Wee, A.T.S. Configuration-Dependent Interface Charge Transfer at a Molecule−Metal Junction. J. Am. Chem. Soc. 2006, 128, 8003–8007. [Google Scholar] [CrossRef]
- Yamada, Y.; Wano, H.; Uosaki, K. Effect of Temperature on Structure of the Self-Assembled Monolayer of Decanethiol on Au(111) Surface. Langmuir 2000, 16, 5523–5525. [Google Scholar] [CrossRef]
- Poirier, G.; Tarlov, M.J. Molecular Ordering and Gold Migration Observed in Butanethiol Self-Assembled Monolayers Using Scanning Tunneling Microscopy. J. Phys. Chem. B 1995, 99, 1096–10970. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, X.; Palmer, R.E. Structural Dynamics Induced by Self-Assembled Monolayers on Au(111). Phys. Rev. B 2005, 71, 035406. [Google Scholar] [CrossRef]
- Gladysz, J.A.; Hornby, J.L.; Garbe, J.E. A Convenient One-Flask Synthesis of Dialkyl Selenides and Diselenides via Lithium Triethylborohydride Reduction of Sex. J. Org. Chem. 1978, 43, 1204–1208. [Google Scholar] [CrossRef]
- Kang, H.; Noh, J.; Ganbold, E.-O.; Uuriintuya, D.; Gong, M.S.; Oh, J.J.; Joo, S.-W. Adsorptin Changes of Cyclohexyl Isothiocyanate on Gold Surfaces. J. Colloid Interf. Sci. 2009, 336, 648–653. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Han, J.W.; Seong, S.; Son, Y.J.; Kaizu, R.; Latag, G.V.; Hayashi, T.; Noh, J. Formation and Structure of Highly Ordered Self-Assembled Monolayers on Au(111) via Vapor Deposition of Dioctyl Diselenides. Int. J. Mol. Sci. 2025, 26, 9192. https://doi.org/10.3390/ijms26189192
Han S, Han JW, Seong S, Son YJ, Kaizu R, Latag GV, Hayashi T, Noh J. Formation and Structure of Highly Ordered Self-Assembled Monolayers on Au(111) via Vapor Deposition of Dioctyl Diselenides. International Journal of Molecular Sciences. 2025; 26(18):9192. https://doi.org/10.3390/ijms26189192
Chicago/Turabian StyleHan, Seulki, Jin Wook Han, Sicheon Seong, Young Ji Son, Riko Kaizu, Glenn Villena Latag, Tomohiro Hayashi, and Jaegeun Noh. 2025. "Formation and Structure of Highly Ordered Self-Assembled Monolayers on Au(111) via Vapor Deposition of Dioctyl Diselenides" International Journal of Molecular Sciences 26, no. 18: 9192. https://doi.org/10.3390/ijms26189192
APA StyleHan, S., Han, J. W., Seong, S., Son, Y. J., Kaizu, R., Latag, G. V., Hayashi, T., & Noh, J. (2025). Formation and Structure of Highly Ordered Self-Assembled Monolayers on Au(111) via Vapor Deposition of Dioctyl Diselenides. International Journal of Molecular Sciences, 26(18), 9192. https://doi.org/10.3390/ijms26189192