Dietary Taurine Regulation of the Intestinal Microbiome in Chinese Stripe-Necked Turtle (Mauremys sinensis)
Abstract
:1. Introduction
2. Results
2.1. Analysis of rRNA Sequencing Results
2.2. Colony Composition and Relative Abundance
2.3. Alpha and Beta Diversity Analyses
2.4. Predicted Functional Analysis
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. DNA Extraction and PCR Amplification
4.3. Processing of Sequencing Data
4.4. Ecological and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miles, A.R.; Hawrysh, P.J.; Hossein-Javaheri, N.; Buck, L.T. Taurine Activates Glycine and GABAA Receptor Currents in Anoxia-Tolerant Painted Turtle Pyramidal Neurons. J. Exp. Biol. 2018, 221 Pt 21, jeb181529. [Google Scholar] [CrossRef]
- Li, S.; Ji, X.; Shao, T.; Bai, Y. Research Progress on Application of Taurine in Aquaculture. Feed Res. 2021, 18, 173–177. [Google Scholar] [CrossRef]
- Palmisano, J.; Mitchell, P.P.; Steinmetz, P.R. NBD-Taurine Uptake by Alpha-Type Carbonic Anhydrase Cells of Turtle Bladder. Am. J. Physiol. 1989, 257, F1015–F1020. [Google Scholar] [CrossRef]
- Huang, H.; Shao, J.; Xiang, L. Current Research Status and Progress of Fish Immunostimulants. J. Fish. China 2005, 29, 552–559. [Google Scholar]
- Wei, Z.; Yu, H.; Wu, R. Effect of Taurine on Hypoxia Resistance of Tilapia sp. Amino Acids Biot. Res. 2004, 26, 27–28. [Google Scholar]
- Park, G.-S.; Takeuchi, T.; Yokoyama, M.; Seikai, T. Optimal Dietary Taurine Level for Growth of Juvenile Japanese Flounder Paralichthys olivaceus. Fish. Sci. 2002, 68, 824–829. [Google Scholar] [CrossRef]
- Liang, X.; Ye, X.; Kong, Y.; Zhang, Y.; Yang, M.; Cao, X.; Wu, J.; Yue, X. Effect of Taurine from Bovine Liver on Immune Functions and Antioxidant Capacity in Immunosuppressed Mice. Meat. Res. 2016, 11, 1–5. [Google Scholar] [CrossRef]
- Hou, J.; Jia, Y.; Yang, Z.; Li, Y.; Cheng, F.; Li, D.; Ji, F. Effects of Taurine Supplementation on Growth Performance and Antioxidative Capacity of Chinese Soft-Shelled Turtles, Pelodiscus sinensis, Fed a Diet of Low Fish Meal Content. J. World Aquacult. Soc. 2013, 44, 786–794. [Google Scholar] [CrossRef]
- Qian, W.; Li, M.; Yu, L.; Tian, F.; Zhao, J.; Zhai, Q. Effects of Taurine on Gut Microbiota Homeostasis: An Evaluation Based on Two Models of Gut Dysbiosis. Biomedicines 2023, 11, 1048. [Google Scholar] [CrossRef] [PubMed]
- Forbes, Z.; Scro, A.; Patel, S.; Dourdeville, K.; Prescott, R.; Smolowitz, R. Fecal and Cloacal Microbiomes of Cold-Stunned Loggerhead Caretta caretta, Kemp’s Ridley Lepidochelys kempii, and Green Sea Turtles Chelonia mydas. Endanger. Species Res. 2023, 50, 93–105. [Google Scholar] [CrossRef]
- Robinson, C.J.; Bohannan, B.J.M.; Young, V.B. From Structure to Function: The Ecology of Host-Associated Microbial Communities. Microbiol. Mol. Biol. Rev. 2010, 74, 453–476. [Google Scholar] [CrossRef]
- Macke, E.; Tasiemski, A.; Massol, F.; Callens, M.; Decaestecker, E. Life History and Eco-evolutionary Dynamics in Light of the Gut Microbiota. Oikos 2017, 126, 508–531. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Liu, H. Nutrient-Imbalanced Conditions Shift the Interplay between Zooplankton and Gut Microbiota. BMC Genom. 2021, 22, 37. [Google Scholar] [CrossRef] [PubMed]
- Costello, E.K.; Gordon, J.I.; Secor, S.M.; Knight, R. Postprandial Remodeling of the Gut Microbiota in Burmese pythons. ISME J. 2010, 4, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.-Y.; Wheeler, E.; Cann, I.K.O.; Mackie, R.I. Phylogenetic Analysis of the Fecal Microbial Community in Herbivorous Land and Marine Iguanas of the Galápagos Islands Using 16S rRNA-Based Pyrosequencing. ISME J. 2011, 5, 1461–1470. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A Core Gut Microbiome in Obese and Lean Twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity Alters Gut Microbial Ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, Q.; Dai, J.; Zhang, S.; Wei, F. Evidence of Cellulose Metabolism by the Giant Panda Gut Microbiome. Proc. Natl. Acad. Sci. USA 2011, 108, 17714–17719. [Google Scholar] [CrossRef]
- Zhao, C. The Breeding Status and Prospect of Native Turtles in China. China Fish. 2018, 4, 30–33. [Google Scholar]
- Arena, P.C.; Warwick, C.; Steedman, C. Welfare and Environmental Implications of Farmed Sea Turtles. J. Agric. Environ. Ethics 2013, 27, 309–330. [Google Scholar] [CrossRef]
- Pan, X.; Xian, j.; Kou, H.; Wang, A.; Miao, Y. Effects of Dietary Taurine Supplementation on Ingestion and Growth Performance of Pelodisous sinensis. Mod. Agric. Sci. Technol. 2014, 16, 247–249. [Google Scholar]
- Sepulveda, J.; Moeller, A.H. The Effects of Temperature on Animal Gut Microbiomes. Front. Microbiol. 2020, 11, 384. [Google Scholar] [CrossRef] [PubMed]
- Rawski, M.; Mans, C.; Kierończyk, B.; Świątkiewicz, S.; Barc, A.; Józefiak, D. Freshwater Turtle Nutrition—A Review of Scientific and Practical Knowledge. Ann. Anim. Sci. 2018, 18, 17–37. [Google Scholar] [CrossRef]
- Wang, X.; Shang, Y.; Wei, Q.; Wu, X.; Dou, H.; Zhang, H.; Zhou, S.; Sha, W.; Sun, G.; Ma, S.; et al. Comparative Analyses of the Gut Microbiome of Two Fox Species, the Red Fox (Vulpes vulpes) and Corsac Fox (Vulpes corsac), that Occupy Different Ecological Niches. Microb. Ecol. 2021, 83, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.H.; Guo, Y.L.; Liu, Y.D.; Liu, J.; Shi, W.Q.; Dong, L.; Cai, C.B.; Cao, G.Q.; Li, B.G.; Gao, P.F. Analysis of Colonic Microbiota Characteristics in Piglets at Different Developmental Stages. Acta Vet. Zootech. Sin. 2019, 50, 1759–1774. [Google Scholar]
- Li, C.-J. Comparative Genomic Analysis and Proposal of Clostridium yunnanense sp. Nov., Clostridium rhizosphaerae sp. Nov., and Clostridium paridis sp. Nov., Three Novel Clostridium Sensu Stricto Endophytes with Diverse Capabilities of Acetic Acid and Ethanol Production. Anaerobe 2023, 79, 102686. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium Species as Probiotics: Potentials and Challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Bilen, M.; Mbogning, M.D.; Cadoret, F.; Dubourg, G.; Daoud, Z.; Fournier, P.E.; Raoult, D. ‘Pygmaiobacter massiliensis’ sp. Nov., a New Bacterium Isolated from the Human Gut of a Pygmy Woman. New Microbes New Infect. 2017, 16, 37–38. [Google Scholar] [CrossRef]
- Shakir, R. Brucellosis. J. Neurol. Sci. 2021, 420, 117280. [Google Scholar] [CrossRef]
- Lambert, S.; Thébault, A.; Anselme-Martin, S.; Calenge, C.; Dunoyer, C.; Freddi, L.; Garin-Bastuji, B.; Guyonnaud, B.; Hars, J.; Marchand, P.; et al. La brucellose du bouquetin des Alpes: Un exemple de dix années de recherche et d’expertise. Med. Sci. 2023, 39, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Khairullah, A.; Kurniawan, S.; Puspitasari, Y.; Aryaloka, S.; Silaen, O.; Yanestria, S.; Widodo, A.; Moses, I.; Effendi, M.; Afnani, D.; et al. Brucellosis: Unveiling the Complexities of a Pervasive Zoonotic Disease and Its Global Impacts. Open Vet. J. 2024, 14, 1081. [Google Scholar] [CrossRef] [PubMed]
- Daniel, H. Gut Physiology Meets Microbiome Science. Gut Microbiome 2023, 4, 1–14. [Google Scholar] [CrossRef]
- Kuziel, G.A. The Gut Microbiome. Curr. Biol. 2022, 32, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Ahasan, M.S.; Waltzek, T.B.; Huerlimann, R.; Ariel, E. Fecal Bacterial Communities of Wild-Captured and Stranded Green Turtles (Chelonia mydas) on the Great Barrier Reef. FEMS Microbiol. Ecol. 2017, 93, fix139. [Google Scholar] [CrossRef] [PubMed]
- Ahasan, M.S.; Kinobe, R.; Elliott, L.; Owens, L.; Scott, J.; Picard, J.; Huerlimann, R.; Ariel, E. Bacteriophage versus Antibiotic Therapy on Gut Bacterial Communities of Juvenile Green Turtle, Chelonia mydas. Environ. Microbiol. 2019, 21, 2871–2885. [Google Scholar] [CrossRef]
- Rafael, G.-P.; Filipa, G.-V.; Anne, J.; Arnold, R.-H.; Herminio, G.; Jessica, B.; Fahcina, L.; Oluwasina, F.; Christina, M.; Sidransky, D.; et al. 16S rRNA Amplicon Sequencing Identifies Microbiota Associated with Oral Cancer, Human Papilloma Virus Infection and Surgical Treatment. Oncotarget 2016, 32, 51320–52334. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, 1884–1890. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 21, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 99, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Rhoads, W.J.; Edwards, M.A.; Pruden, A. Impact of Water Heater Temperature Setting and Water Use Frequency on the Building Plumbing Microbiome. ISME J. 2017, 11, 1318–1330. [Google Scholar] [CrossRef]
Ingredient Composition | Quantity Contained (%) |
---|---|
Steamed fish meal | 54.00 |
Dehulled soybean meal | 17.00 |
Starch | 23.00 |
Wheat gluten | 2.00 |
Ca(H2PO4)2 | 1.50 |
Choline | 0.25 |
Multi-vitamin 1 | 0.15 |
Vitamin C ester | 0.10 |
Multi-mineral 2 | 1.00 |
Fish oil | 1.00 |
Total | 100 |
Nutrient levels | |
Crude protein | 44.28 |
Crude fat | 8.16 |
n-3PUFA | 2.05 |
n-6 PUFA | 0.65 |
n-3/n-6 | 3.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Niu, X.; Hao, C.; Liang, L.; Huang, Z.; Wang, D.; Hong, M.; Ding, L. Dietary Taurine Regulation of the Intestinal Microbiome in Chinese Stripe-Necked Turtle (Mauremys sinensis). Int. J. Mol. Sci. 2025, 26, 445. https://doi.org/10.3390/ijms26020445
Yuan Y, Niu X, Hao C, Liang L, Huang Z, Wang D, Hong M, Ding L. Dietary Taurine Regulation of the Intestinal Microbiome in Chinese Stripe-Necked Turtle (Mauremys sinensis). International Journal of Molecular Sciences. 2025; 26(2):445. https://doi.org/10.3390/ijms26020445
Chicago/Turabian StyleYuan, Yue, Xin Niu, Chenguang Hao, Lingyue Liang, Zubin Huang, Dongmei Wang, Meiling Hong, and Li Ding. 2025. "Dietary Taurine Regulation of the Intestinal Microbiome in Chinese Stripe-Necked Turtle (Mauremys sinensis)" International Journal of Molecular Sciences 26, no. 2: 445. https://doi.org/10.3390/ijms26020445
APA StyleYuan, Y., Niu, X., Hao, C., Liang, L., Huang, Z., Wang, D., Hong, M., & Ding, L. (2025). Dietary Taurine Regulation of the Intestinal Microbiome in Chinese Stripe-Necked Turtle (Mauremys sinensis). International Journal of Molecular Sciences, 26(2), 445. https://doi.org/10.3390/ijms26020445