Mitochondrial Genome Characteristics Reveal Evolution of Danxiaorchis yangii and Phylogenetic Relationships
Abstract
:1. Introduction
2. Results
2.1. Characterization and Comparative Analysis of Plastomes and Mitogenomes
2.2. Codon Preference Analysis
2.3. Repeat Sequence
2.4. Gene Transfer Between Organelle Genomes
2.5. Genome Synteny Evolution and Phylogenetic Analysis
2.6. Selective Pressure Analysis
3. Discussion
3.1. Characterization of the D. yangii Organelle Genomes
3.2. Repeat Sequences
3.3. DNA Fragment Transfer Events
3.4. Genome Synteny Evolution and Phylogenetic Analyses
3.5. Gene Selective Pressure Analysis
4. Materials and Methods
4.1. Plant Material and Sequencing
4.2. Assembly, Annotation, and Condon Usage Analysis
4.3. Analysis of Repeat Structure
4.4. Gene Transfer, Synteny Anlysis, and Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sloan, D.B.; Warren, J.M.; Williams, A.M.; Wu, Z.; Abdel-Ghany, S.E.; Chicco, A.J.; Havird, J.C. Cytonuclear integration and co-evolution. Nat. Rev. Genet. 2018, 19, 635–648. [Google Scholar] [CrossRef]
- Gray, M.W. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 2012, 4, a011403. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liao, X.; Zhang, X.; Tembrock, L.R.; Broz, A. Genomic architectural variation of plant mitochondria—A review of multichromosomal structuring. J. Syst. Evol. 2022, 60, 160–168. [Google Scholar] [CrossRef]
- Sloan, D.B. One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’model of plant mitochondrial DNA structure. New Phytol. 2013, 200, 978–985. [Google Scholar] [CrossRef]
- Chen, T.-C.; Su, Y.-Y.; Wu, C.-H.; Liu, Y.-C.; Huang, C.-H.; Chang, C.-C. Analysis of mitochondrial genomics and transcriptomics reveal abundant RNA edits and differential editing status in moth orchid, Phalaenopsis aphrodite subsp. formosana. Sci. Hortic. 2020, 267, 109304. [Google Scholar] [CrossRef]
- Liao, P.-C.; Bergamini, C.; Fato, R.; Pon, L.A.; Pallotti, F. Isolation of mitochondria from cells and tissues. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 155, pp. 3–31. ISBN 0091-679X. [Google Scholar]
- Yuan, Y.; Jin, X.; Liu, J.; Zhao, X.; Zhou, J.; Wang, X.; Wang, D.; Lai, C.; Xu, W.; Huang, J.; et al. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat. Commun. 2018, 9, 1615. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Zhai, J.-W.; Liu, Z.-J.; Li, M.-H. Organelle genomes of epipogium roseum provide insight into the evolution of mycoheterotrophic orchids. Int. J. Mol. Sci. 2024, 25, 1578. [Google Scholar] [CrossRef] [PubMed]
- Jackman, S.D.; Coombe, L.; Warren, R.L.; Kirk, H.; Trinh, E.; MacLeod, T.; Pleasance, S.; Pandoh, P.; Zhao, Y.; Coope, R.J.; et al. Complete mitochondrial genome of a gymnosperm, Sitka Spruce (Picea sitchensis), indicates a complex physical structure. Genome Biol. Evol. 2020, 12, 1174–1179. [Google Scholar] [CrossRef]
- Liu, B.B.; Ren, C.; Kwak, M.; Hodel, R.G.J.; Xu, C.; He, J.; Zhou, W.; Huang, C.; Ma, H.; Qian, G.; et al. Phylogenomic conflict analyses in the apple genus Malus s.l. reveal widespread hybridization and allopolyploidy driving diversification, with insights into the complex biogeographic history in the Northern Hemisphere. J. Integr. Plant Biol. 2022, 64, 1020–1043. [Google Scholar] [CrossRef]
- McCauley, D.E. Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. New Phytol. 2013, 200, 966–977. [Google Scholar] [CrossRef]
- Arimura, S.; Yamamoto, J.; Aida, G.P.; Nakazono, M.; Tsutsumi, N. Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc. Natl. Acad. Sci. USA 2004, 101, 7805–7808. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, Y.; Wafula, E.K.; Honaas, L.A.; Ralph, P.E.; Jones, S.; Clarke, C.R.; Liu, S.; Su, C.; Zhang, H.; et al. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proc. Natl. Acad. Sci. USA 2016, 113, 7010–7019. [Google Scholar] [CrossRef]
- Sinn, B.T.; Barrett, C.F. Ancient mitochondrial gene transfer between fungi and the orchids. Mol. Biol. Evol. 2020, 37, 44–57. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Liu, K.W.; Li, Z.; Lohaus, R.; Hsiao, Y.Y.; Niu, S.C.; Wang, J.Y.; Lin, Y.C.; Xu, Q.; Chen, L.J.; et al. The Apostasia genome and the evolution of orchids. Nature 2017, 549, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.F.; Freudenstein, J.V.; Taylor, D.L.; Kõljalg, U. Rangewide analysis of fungal associations in the fully mycoheterotrophic Corallorhiza striata complex (Orchidaceae) reveals extreme specificity on ectomycorrhizal Tomentella (Thelephoraceae) across North America. Am. J. Bot. 2010, 97, 628–643. [Google Scholar] [CrossRef]
- Wicke, S.; Müller, K.F.; DePamphilis, C.W.; Quandt, D.; Bellot, S.; Schneeweiss, G.M. Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. Proc. Natl. Acad. Sci. USA 2016, 113, 9045–9050. [Google Scholar] [CrossRef]
- Graham, S.W.; Lam, V.K.Y.; Merckx, V.S.F.T. Plastomes on the edge: The evolutionary breakdown of mycoheterotroph plastid genomes. New Phytol. 2017, 214, 48–55. [Google Scholar] [CrossRef]
- Klimpert, N.J.; Mayer, J.L.S.; Sarzi, D.S.; Prosdocimi, F.; Pinheiro, F.; Graham, S.W. Phylogenomics and plastome evolution of a Brazilian mycoheterotrophic orchid, Pogoniopsis schenckii. Am. J. Bot. 2022, 109, 2030–2050. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.W.; Zhang, G.Q.; Chen, L.J.; Xiao, X.J.; Liu, K.W.; Tsai, W.C.; Hsiao, Y.Y.; Tian, H.Z.; Zhu, J.Q.; Wang, M.N.; et al. A new orchid genus, Danxiaorchis, and phylogenetic analysis of the tribe Calypsoeae. PLoS ONE 2013, 8, e60371. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xiao, S.; Jiang, Y.; Luo, H.; Xiong, D.; Zhai, J.; Li, B.O. Danxiaorchis yangii sp. Nov. (Orchidaceae: Epidendroideae), the second species of danxiaorchis. Phytotaxa 2017, 306, 287–295. [Google Scholar] [CrossRef]
- Lee, S.Y.; Meng, K.; Wang, H.; Zhou, R.; Liao, W.; Chen, F.; Zhang, S.; Fan, Q. Severe plastid genome size reduction in a mycoheterotrophic orchid, Danxiaorchis singchiana, reveals heavy gene loss and gene relocations. Plants 2020, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, X.-H.; Ge, C.-L.; Chen, B.-H. Danxiaorchis mangdangshanensis (Orchidaceae, Epidendroideae), a new species from central Fujian Province based on morphological and genomic data. PhytoKeys 2022, 212, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Wicke, S.; Schneeweiss, G.M.; Depamphilis, C.W.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef]
- Palmer, J.D. Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet. 1990, 6, 115–120. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liao, M.; Cheng, Y.H.; Feng, Y.; Ju, W.B.; Deng, H.N.; Li, X.; Plenković-Moraj, A.; Xu, B. Comparative chloroplast genomics of seven endangered Cypripedium species and phylogenetic relationships of Orchidaceae. Front. Plant Sci. 2022, 13, 911702. [Google Scholar] [CrossRef]
- Xu, X.; Wang, D. Comparative chloroplast genomics of Corydalis species (Papaveraceae): Evolutionary perspectives on their unusual large scale rearrangements. Front. Plant Sci. 2021, 11, 600354. [Google Scholar] [CrossRef]
- Alverson, A.J.; Wei, X.; Rice, D.W.; Stern, D.B.; Barry, K.; Palmer, J.D. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol. Biol. Evol. 2010, 27, 1436–1448. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.-J.; Liu, D.-K.; Tu, X.-D.; He, X.; Zhang, M.-M.; Zhu, M.-J.; Zhang, D.-Y.; Zhang, C.-L.; Lan, S.-R.; Liu, Z.-J. Apostasia mitochondrial genome analysis and monocot mitochondria phylogenomics. Int. J. Mol. Sci. 2023, 24, 7837. [Google Scholar] [CrossRef]
- Zheng, Q.; Luo, X.; Huang, Y.; Ke, S.-J.; Liu, Z.-J. The complete mitogenome of Apostasia fujianica Y. Li & S. Lan and comparative analysis of mitogenomes across Orchidaceae. Int. J. Mol. Sci. 2024, 25, 8151. [Google Scholar] [CrossRef]
- Tong, W.; Yu, D.; Zhu, X.; Le, Z.; Chen, H.; Hu, F.; Wu, S. The whole mitochondrial genome sequence of Dendrobium loddigesii Rolfe, an endangered orchid species in China, reveals a complex multi-chromosome structure. Genes 2024, 15, 834. [Google Scholar] [CrossRef]
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 2021, 19, 128. [Google Scholar] [CrossRef]
- Børsting, C.; Morling, N. Next generation sequencing and its applications in forensic genetics. Forensic Sci. Int. Genet. 2015, 18, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Kadirvel, P.; Senthilvel, S.; Geethanjali, S.; Sujatha, M.; Varaprasad, K.S. Genetic markers, trait mapping and marker-assisted selection in plant breeding. In Plant Biology and Biotechnology: Volume II: Plant Genomics and Biotechnology; Springer Nature: Cham, Switzerland, 2015; pp. 65–88. [Google Scholar]
- Timmis, J.N.; Ayliffe, M.A.; Huang, C.Y.; Martin, W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 2004, 5, 123–135. [Google Scholar] [CrossRef]
- Dong, S.; Zhao, C.; Chen, F.; Liu, Y.; Zhang, S.; Wu, H.; Zhang, L.; Liu, Y. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genom. 2018, 19, 614. [Google Scholar] [CrossRef] [PubMed]
- Hazkani-Covo, E.; Zeller, R.M.; Martin, W. Molecular poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 2010, 6, e1000834. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, Y.Y.; Bai, Y.W.; Li, H.J.; Xue, J.Q.; Zhang, R.H. Response of photosynthesis in maize to drought and re-watering. Russ J. Plant Physiol. 2019, 66, 424–432. [Google Scholar] [CrossRef]
- Zhu, Z. Adaptive evolution of the petB gene in response to high light intensity. J. Exp. Bot. 2017, 68, 2389–2398. [Google Scholar]
- Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; Depamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 2018, 35, 1550–1552. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed]
- Huan, G.A.O.; Jie, K. Distribution characteristics and biological function of tandem repeat sequences in the genomes of different organisms. Zool. Res. 2005, 26, 555–564. [Google Scholar]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, W.; Zhang, Y.; Xu, Y. High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Res. 2015, 43, 7762–7768. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Wang, Y.; Ming, X.; Qi, J.; Zhou, Y. Comparative analysis of the mitochondrial genomes of four Dendrobium species (Orchidaceae) reveals heterogeneity in structure, synteny, intercellular gene transfer, and RNA editing. Front. Plant Sci. 2024, 15, 1429545. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.3.1; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Ziheng, Y. Paml 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar]
- Álvarez-Carretero, S.; Kapli, P.; Yang, Z. Beginner’s Guide on the Use of PAML to Detect Positive Selection. Mol. Biol. Evol. 2023, 40, msad041. [Google Scholar] [CrossRef]
Contig | Length (bp) | GC Content (%) | Genes |
---|---|---|---|
mt1 | 1115 | 42.2 | atp6, nad7 |
mt2 | 1553 | 45.8 | rps10 |
mt3 | 379 | 40.1 | cob |
mt4 | 2543 | 46.9 | cox2 |
mt5 | 373 | 45.3 | nad3, rps12 |
mt6 | 3191 | 43.4 | rpl5, rps14 |
mt7 | 3742 | 41.1 | rps4 |
mt8 | 10,919 | 43.3 | cox1 |
mt9 | 1754 | 42.1 | / |
mt10 | 8534 | 47.0 | / |
mt11 | 18,663 | 41.0 | / |
mt12 | 12,075 | 48.7 | nad7 |
mt13 | 20,870 | 45.2 | rps13 |
mt14 | 16,689 | 45.3 | / |
mt15 | 14,399 | 48.7 | nad4 |
mt16 | 7046 | 45.8 | / |
mt17 | 16,880 | 42.8 | / |
mt18 | 14,342 | 41.5 | trnQ-UUG |
mt19 | 13,337 | 43.7 | rpl22, ccmFc, trnC-GCA# |
mt20 | 6655 | 43.6 | atp4, nad4L |
mt21 | 18,953 | 44.7 | trnK-UUU |
mt22 | 21,634 | 43.0 | atp9, nad1#, ccmFn, mat-R, trnS-GGA |
mt23 | 4746 | 48.7 | / |
mt24 | 12,812 | 46.3 | / |
mt25 | 13,033 | 43.6 | / |
mt26 | 13,736 | 46.4 | / |
mt27 | 11,662 | 44.6 | nad5 |
mt28 | 8694 | 42.8 | nad9 |
mt29 | 10,921 | 39.6 | atp1, atp8, rps1, trnH-GUG |
mt30 | 11,402 | 42.0 | cox3, nad6, trnD-GUC |
mt31 | 12,982 | 43.6 | rps2, ccmB |
mt32 | 1979 | 39.0 | rps7 |
mt33 | 21,895 | 42.6 | nad2, trnL-UAG |
mt34 | 5046 | 38.3 | rpl23, ccmC |
mt35 | 10,405 | 33.8 | trnE-UUC, trnY-GUA, trnS-UGA |
mt36 | 3560 | 40.5 | / |
mt37 | 2171 | 44.5 | trnR-ACG, trnN-GUU |
mt38 | 2205 | 55.7 | / |
mt39 | 4356 | 34.5 | rps3.rpl2, rpl16, trnH-GUG |
mt40 | 13,064 | 31.9 | rps4, trnT-UGU, trnL-UAA, trnV-UAC |
mt41 | 17,561 | 31.1 | rps2, rps16, trnQ-UUG |
Species | GenBank No. | Length (bp) | LSC (bp) | SSC (bp) | IR (bp) | GC % | Coding Genes | tRNAs | rRNAs |
---|---|---|---|---|---|---|---|---|---|
D. yangii | OR569720 | 110,364 | 51,524 | 5940 | 26,450 | 36.60 | 57 | 29 | 8 |
D. singchiana | NC_048523 | 87,931 | 42,575 | 17,831 | 13,762 | 34.55 | 35 | 28 | 4 |
D. mangdangshanensis | OP122564 | 85,273 | 42,605 | 18,766 | 11,951 | 34.00 | 32 | 20 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Luo, H.; Liu, Z.-J.; Yang, B.-Y. Mitochondrial Genome Characteristics Reveal Evolution of Danxiaorchis yangii and Phylogenetic Relationships. Int. J. Mol. Sci. 2025, 26, 562. https://doi.org/10.3390/ijms26020562
Liu X, Luo H, Liu Z-J, Yang B-Y. Mitochondrial Genome Characteristics Reveal Evolution of Danxiaorchis yangii and Phylogenetic Relationships. International Journal of Molecular Sciences. 2025; 26(2):562. https://doi.org/10.3390/ijms26020562
Chicago/Turabian StyleLiu, Xuedie, Huolin Luo, Zhong-Jian Liu, and Bo-Yun Yang. 2025. "Mitochondrial Genome Characteristics Reveal Evolution of Danxiaorchis yangii and Phylogenetic Relationships" International Journal of Molecular Sciences 26, no. 2: 562. https://doi.org/10.3390/ijms26020562
APA StyleLiu, X., Luo, H., Liu, Z.-J., & Yang, B.-Y. (2025). Mitochondrial Genome Characteristics Reveal Evolution of Danxiaorchis yangii and Phylogenetic Relationships. International Journal of Molecular Sciences, 26(2), 562. https://doi.org/10.3390/ijms26020562