COVID-19: Lessons Learned from Molecular and Clinical Research
Conflicts of Interest
References
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Burki, T. WHO ends the COVID-19 public health emergency. Lancet Respir. Med. 2023, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, R.; Hozumi, Y.; Liu, G.; Qiu, Y.; Wei, X.; Wei, G.W. Emerging dominant SARS-CoV-2 variants. J. Chem. Inf. Model. 2023, 63, 335–342. [Google Scholar] [CrossRef]
- Rizzi, M.; Tonello, S.; Brinno, C.; Zecca, E.; Matino, E.; Cittone, M.; Rizzi, E.; Casciaro, G.F.; D’Onghia, D.; Colangelo, D.; et al. SARS-CoV-2 infection risk is higher in vaccinated patients with inflammatory autoimmune diseases or liver transplantation treated with mycophenolate due to an impaired antiviral immune response: Results of the extended follow up of the RIVALSA prospective cohort. Front. Immunol. 2023, 14, 1185278. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Mateos-Haro, M.; Dinnes, J.; Ciapponi, A.; Davenport, C.; Buitrago-Garcia, D.; Bennouna-Dalero, T.; Roqué-Figuls, M.; Van den Bruel, A.; von Eije, K.J.; et al. Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2024, 10, CD015618. [Google Scholar] [CrossRef]
- Dinnes, J.; Sharma, P.; Berhane, S.; van Wyk, S.S.; Nyaaba, N.; Domen, J.; Taylor, M.; Cunningham, J.; Davenport, C.; Dittrich, S.; et al. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2022, 7, CD013705. [Google Scholar] [CrossRef]
- Jafari, M.; Jabrodini, A.; Pirouzi, A.; Meshkin, A.; Mohsenzadeh, M. Comparative analysis of asymptomatic infection prevalence in Beta, Delta, and Omicron surges of COVID-19. Braz. J. Infect. Dis. 2024, 28, 103724. [Google Scholar] [CrossRef]
- Rizzi, M.; D’Onghia, D.; Tonello, S.; Minisini, R.; Colangelo, D.; Bellan, M.; Castello, L.M.; Gavelli, F.; Avanzi, G.C.; Pirisi, M.; et al. COVID-19 Biomarkers at the crossroad between patient stratification and targeted therapy: The role of validated and proposed parameters. Int. J. Mol. Sci. 2023, 24, 7099. [Google Scholar] [CrossRef]
- Shansky, Y.D.; Yanushevich, O.O.; Gospodarik, A.V.; Maev, I.V.; Krikheli, N.I.; Levchenko, O.V.; Zaborovsky, A.V.; Evdokimov, V.V.; Solodov, A.A.; Bely, P.A.; et al. Evaluation of serum and urine biomarkers for severe COVID-19. Front. Med. 2024, 11, 1357659. [Google Scholar] [CrossRef]
- Mousa, A.; Blok, S.G.; Karssen, D.; Aman, J.; Annema, J.T.; Bogaard, H.J.; Bonta, P.I.; Haaksma, M.E.; Heldeweg, M.L.A.; Lieveld, A.W.E.; et al. Correlation between serum biomarkers and lung ultrasound in COVID-19: An observational study. Diagnostics 2024, 14, 421. [Google Scholar] [CrossRef]
- Tanaka, H.; Toya, E.; Chubachi, S.; Namkoong, H.; Asakura, T.; Azekawa, S.; Otake, S.; Nakagawara, K.; Fukushima, T.; Watase, M.; et al. Combined use of serum ferritin and KL-6 levels as biomarkers for predicting COVID-19 severity. Respir. Investig. 2024, 62, 1132–1136. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Gupta, A.; Bansal, S.; Sharma, M.; Saluja, S.; Balakrishnan, I.; Gupta, K. Role of interleukin-6, serum ferritin, and d-dimer in hospitalized COVID-19 patients. Cytokine 2024, 184, 156776. [Google Scholar] [CrossRef] [PubMed]
- Iam-Arunthai, K.; Chamnanchanunt, S.; Thungthong, P.; Chinapha, A.; Nakhahes, C.; Suwanban, T.; Umemura, T. COVID-19 with high-sensitivity CRP associated with worse dynamic clinical parameters and outcomes. Front. Med. 2024, 11, 1346646. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, M.; Patrucco, F.; Trevisan, M.; Faolotto, G.; Mercandino, A.; Strola, C.; Ravanini, P.; Costanzo, M.; Tonello, S.; Matino, E.; et al. Baseline plasma SARS-CoV-2 RNA detection predicts an adverse COVID-19 evolution in moderate to severe hospitalized patients. Panminerva Med. 2022, 64, 465–471. [Google Scholar] [CrossRef]
- Santana, A.; Prestes, G.D.S.; Silva, M.D.D.; Girardi, C.S.; Silva, L.D.S.; Moreira, J.C.F.; Gelain, D.P.; Westphal, G.A.; Kupek, E.; Walz, R.; et al. Identification of distinct phenotypes and improving prognosis using metabolic biomarkers in COVID-19 patients. Crit. Care Sci. 2024, 36, e20240028en. [Google Scholar] [CrossRef]
- de Fátima Cobre, A.; Alves, A.C.; Gotine, A.R.M.; Domingues, K.Z.A.; Lazo, R.E.L.; Ferreira, L.M.; Tonin, F.S.; Pontarolo, R. Novel COVID-19 biomarkers identified through multi-omics data analysis: N-acetyl-4-O-acetylneuraminic acid, N-acetyl-L-alanine, N-acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate. Intern. Emerg. Med. 2024, 19, 1439–1458. [Google Scholar] [CrossRef]
- Castelli, V.; Cimini, A.; Ferri, C. Cytokine storm in COVID-19: “When you come out of the storm, you won’t be the same person who walked in”. Front. Immunol. 2020, 11, 2132. [Google Scholar] [CrossRef]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Posfay-Barbe, K.M.; Wagner, N.; Gauthey, M.; Moussaoui, D.; Loevy, N.; Diana, A.; L’Huillier, A.G. COVID-19 in children and the dynamics of infection in families. Pediatrics 2020, 146, e20201576. [Google Scholar] [CrossRef]
- Götzinger, F.; Strenger, V. The role of children and young people in the transmission of SARS-CoV-2. Pediatr. Infect. Dis. J. 2022, 41, e172–e174. [Google Scholar] [CrossRef]
- Rizzi, M.; Avellis, V.; Messina, A.; Germano, C.; Tavella, E.; Dodaro, V.; Vitale, R.; Revelli, A.; Zola, P.; Picone, S.; et al. Vitamin D supplementation in neonatal and infant MIS-C following COVID-19 infection. Int. J. Mol. Sci. 2024, 25, 3712. [Google Scholar] [CrossRef]
- Khafaja, S.; Youssef, N.; El Zein, Z.; Boutros, C.F.; Bou Karroum, S.; Abdel-Halim, N.; Salameh, R.; Hodroj, D.; El Meski, N.; Nasrallah, O.; et al. Multisystem inflammatory syndrome in children (MIS-C) and “Near MIS-C”: A continuum? Front. Pediatr. 2023, 10, 988706. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.O.; Gonçalves, L.C.; Silva, P.A.N.; Moreira, A.L.E.; Ito, C.R.M.; Peixoto, F.A.O.; Wastowski, I.J.; Carneiro, L.C.; Avelino, M.A.G. Multisystem inflammatory syndrome (MIS-C): A systematic review and meta-analysis of clinical characteristics, treatment, and outcomes. J. Pediatr. 2022, 98, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Aksenen, C.F.; Ferreira, D.M.A.; Jeronimo, P.M.C.; Costa, T.O.; de Souza, T.C.; Lino, B.M.N.S.; Farias, A.A.; Miyajima, F. Enhancing SARS-CoV-2 lineage surveillance through the integration of a simple and direct qPCR-based protocol adaptation with established machine learning algorithms. Anal. Chem. 2024, 96, 18537–18544. [Google Scholar] [CrossRef] [PubMed]
- Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar] [CrossRef]
- Saravanan, K.A.; Panigrahi, M.; Kumar, H.; Rajawat, D.; Nayak, S.S.; Bhushan, B.; Dutt, T. Role of genomics in combating COVID-19 pandemic. Gene 2022, 823, 146387. [Google Scholar] [CrossRef]
- Konono, K.C.C.; Msusa, K.; Mpinganjira, S.; Amani, A.; Nyagupe, C.; Ngigi, M. Technological barriers to routine genomic surveillance for vaccine development against SARS-CoV-2 in Africa: A systematic review. Influenza Other Respir. Viruses 2024, 18, e70047. [Google Scholar] [CrossRef]
- Tosta, S.; Moreno, K.; Schuab, G.; Fonseca, V.; Segovia, F.M.C.; Kashima, S.; Elias, M.C.; Sampaio, S.C.; Ciccozzi, M.; Alcantara, L.C.J.; et al. Global SARS-CoV-2 genomic surveillance: What we have learned (so far). Infect. Genet. Evol. 2023, 108, 105405. [Google Scholar] [CrossRef]
- Brito, A.F.; Semenova, E.; Dudas, G.; Hassler, G.W.; Kalinich, C.C.; Kraemer, M.U.G.; Ho, J.; Tegally, H.; Githinji, G.; Agoti, C.N.; et al. Global disparities in SARS-CoV-2 genomic surveillance. Nat. Commun. 2022, 13, 7003. [Google Scholar] [CrossRef]
- Gheorghita, R.; Soldanescu, I.; Lobiuc, A.; Caliman Sturdza, O.A.; Filip, R.; Constantinescu-Bercu, A.; Dimian, M.; Mangul, S.; Covasa, M. The knowns and unknowns of long COVID-19: From mechanisms to therapeutical approaches. Front. Immunol. 2024, 15, 1344086. [Google Scholar] [CrossRef]
- Peluso, M.J.; Deeks, S.G. Mechanisms of long COVID and the path toward therapeutics. Cell 2024, 187, 5500–5529. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Sivan, M.; Perlowski, A.; Nikolich, J.Ž. Long COVID: A clinical update. Lancet 2024, 404, 707–724. [Google Scholar] [CrossRef] [PubMed]
- Arish, M.; Qian, W.; Narasimhan, H.; Sun, J. COVID-19 immunopathology: From acute diseases to chronic sequelae. J. Med. Virol. 2023, 95, e28122. [Google Scholar] [CrossRef]
- Skevaki, C.; Moschopoulos, C.D.; Fragkou, P.C.; Grote, K.; Schieffer, E.; Schieffer, B. Long-COVID-pathophysiology, current concepts and future directions. J. Allergy Clin. Immunol. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Lebbe, A.; Aboulwafa, A.; Bayraktar, N.; Mushannen, B.; Ayoub, S.; Sarker, S.; Abdalla, M.N.; Mohammed, I.; Mushannen, M.; Yagan, L.; et al. New onset of acute and chronic hepatic diseases post-COVID-19 infection: A systematic review. Biomedicines 2024, 12, 2065. [Google Scholar] [CrossRef]
- Ashton, R.E.; Philips, B.E.; Faghy, M. The acute and chronic implications of the COVID-19 virus on the cardiovascular system in adults: A systematic review. Prog. Cardiovasc. Dis. 2023, 76, 31–37. [Google Scholar] [CrossRef]
- Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 2022, 43, 1157–1172. [Google Scholar] [CrossRef]
- Brady, D.K.; Gurijala, A.R.; Huang, L.; Hussain, A.A.; Lingan, A.L.; Pembridge, O.G.; Ratangee, B.A.; Sealy, T.T.; Vallone, K.T.; Clements, T.P. A guide to COVID-19 antiviral therapeutics: A summary and perspective of the antiviral weapons against SARS-CoV-2 infection. FEBS J. 2024, 291, 1632–1662. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzi, M.; Sainaghi, P.P. COVID-19: Lessons Learned from Molecular and Clinical Research. Int. J. Mol. Sci. 2025, 26, 616. https://doi.org/10.3390/ijms26020616
Rizzi M, Sainaghi PP. COVID-19: Lessons Learned from Molecular and Clinical Research. International Journal of Molecular Sciences. 2025; 26(2):616. https://doi.org/10.3390/ijms26020616
Chicago/Turabian StyleRizzi, Manuela, and Pier Paolo Sainaghi. 2025. "COVID-19: Lessons Learned from Molecular and Clinical Research" International Journal of Molecular Sciences 26, no. 2: 616. https://doi.org/10.3390/ijms26020616
APA StyleRizzi, M., & Sainaghi, P. P. (2025). COVID-19: Lessons Learned from Molecular and Clinical Research. International Journal of Molecular Sciences, 26(2), 616. https://doi.org/10.3390/ijms26020616