Overexpression of Apolipoprotein A-I Alleviates Insulin Resistance in MASLD Mice Through the PPARα Pathway
Abstract
1. Introduction
2. Results
2.1. ApoA-I Alleviates OA-Induced IR in HepG2 Cells
2.2. ApoA-I Promotes the Expression and Transcriptional Activity of PPARα
2.3. ApoA-I Attenuates IR in MASLD Mice
2.4. ApoA-I Alleviates Diet-Induced Liver Injury and Promotes PPARα Expression
3. Discussion
4. Materials and Methods
4.1. Animal Studies
4.2. Intraperitoneal Glucose Tolerance Test (IPGTT)
4.3. Intraperitoneal Insulin Tolerance Test (IPITT)
4.4. Morphological Analysis
4.5. Biochemical Analysis
4.6. Cell Culture
4.7. Glucose Uptake Analysis
4.8. Luciferase Reporter Analysis
4.9. Western Blot Analysis
4.10. RNA Extraction and Reverse Transcription
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ludwig, J.; Viggiano, T.R.; McGill, D.B.; Oh, B.J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 1980, 55, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The global burden of liver disease. Clin. Gastroenterol. Hepatol. 2023, 21, 1978–1991. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A.; Reibe, S.; Shalapour, S.; Ooi, G.J.; Watt, M.J.; Karin, M. Preclinical models for studying NASH-driven HCC: How useful are they? Cell Metab. 2019, 29, 18–26. [Google Scholar] [CrossRef]
- Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 223–238. [Google Scholar] [CrossRef]
- Pagano, G.; Pacini, G.; Musso, G.; Gambino, R.; Mecca, F.; Depetris, N.; Cassader, M.; David, E.; Cavallo-Perin, P.; Rizzetto, M. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: Further evidence for an etiologic association. Hepatology 2002, 35, 367–372. [Google Scholar] [CrossRef]
- Bugianesi, E.; Gastaldelli, A.; Vanni, E.; Gambino, R.; Cassader, M.; Baldi, S.; Ponti, V.; Pagano, G.; Ferrannini, E.; Rizzetto, M. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: Sites and mechanisms. Diabetologia 2005, 48, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Korenblat, K.M.; Fabbrini, E.; Mohammed, B.S.; Klein, S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008, 134, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.; Kowalski, G.M.; Leslie, S.J.; Risis, S.; Yang, C.; Lee-Young, R.S.; Babb, J.R.; Meikle, P.J.; Lancaster, G.I.; Henstridge, D.C.; et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013, 56, 1638–1648. [Google Scholar] [CrossRef]
- Berthier, A.; Johanns, M.; Zummo, F.P.; Lefebvre, P.; Staels, B. PPARs in liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166097. [Google Scholar] [CrossRef] [PubMed]
- Gross, B.; Pawlak, M.; Lefebvre, P.; Staels, B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 2017, 13, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Dubois, V.; Eeckhoute, J.; Lefebvre, P.; Staels, B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J. Clin. Investig. 2017, 127, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, Y.; Li, P.F. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front. Endocrinol. 2022, 13, 1074911. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Damdimopoulos, A.; Goñi, S.; Huang, Z.; Vedin, L.L.; Jakobsson, T.; Giudici, M.; Ahmed, O.; Pedrelli, M.; Barilla, S.; et al. Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nat. Commun. 2019, 10, 1684. [Google Scholar] [CrossRef] [PubMed]
- Régnier, M.; Polizzi, A.; Smati, S.; Lukowicz, C.; Fougerat, A.; Lippi, Y.; Fouché, E.; Lasserre, F.; Naylies, C.; Bétoulières, C.; et al. Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity. Sci. Rep. 2020, 10, 6489. [Google Scholar] [CrossRef] [PubMed]
- Pownall, H.J.; Rosales, C.; Gillard, B.K.; Gotto, A.M., Jr. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol. 2021, 18, 712–723. [Google Scholar] [CrossRef]
- Wygrecka, M.; Alexopoulos, I.; Potaczek, D.P.; Schaefer, L. Diverse functions of apolipoprotein A-I in lung fibrosis. Am. J. Physiol. Cell. Physiol. 2023, 324, C438–C446. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Qin, L.; Yu, H.; Lv, F.; Wang, Y. Apolipoprotein A-I and adenosine triphosphate-binding cassette transporter A1 expression alleviates lipid accumulation in hepatocytes. J. Gastroenterol. Hepatol. 2014, 29, 614–622. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, C.; Wang, Y. Overexpression of apolipoprotein A-I alleviates endoplasmic reticulum stress in hepatocytes. Lipids Health Dis. 2017, 16, 105. [Google Scholar] [CrossRef]
- Rao, X.; Wang, Y. Apolipoprotein A-I improves hepatic autophagy through the AMPK pathway. Biochimie 2019, 165, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Liu, W.; Wang, Y. Apolipoprotein A-I expression suppresses COX-2 expression by reducing reactive oxygen species in hepatocytes. Biochem. Biophys. Res. Commun. 2014, 454, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Tabet, F.; Cochran, B.J.; Cuesta Torres, L.F.; Wu, B.J.; Barter, P.J.; Rye, K.A. Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci. Rep. 2019, 9, 1350. [Google Scholar] [CrossRef] [PubMed]
- Tie, F.; Ding, J.; Hu, N.; Dong, Q.; Chen, Z.; Wang, H. Kaempferol and Kaempferide Attenuate oleic acid-induced lipid accumulation and oxidative stress in HepG2 cells. Int. J. Mol. Sci. 2021, 22, 8847. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.Y.; Zhang, J.; Zeng, F.Y.; Zhu, Y.Z. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol. Res. 2023, 192, 106786. [Google Scholar] [CrossRef]
- Vu-Dac, N.; Chopin-Delannoy, S.; Gervois, P.; Bonnelye, E.; Martin, G.; Fruchart, J.C.; Laudet, V.; Staels, B. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J. Biol. Chem. 1998, 273, 25713–25720. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Mantovani, A.; Lombardi, R.; Cattazzo, F.; Zusi, C.; Cappelli, D.; Dalbeni, A. MAFLD and CKD: An updated narrative review. Int. J. Mol. Sci. 2022, 23, 7007. [Google Scholar] [CrossRef] [PubMed]
- Jahn, D.; Kircher, S.; Hermanns, H.M.; Geier, A. Animal models of NAFLD from a hepatologist’s point of view. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 943–953. [Google Scholar] [CrossRef]
- Dixon, J.L.; Ginsberg, H.N. Hepatic synthesis of lipoproteins and apolipoproteins. Semin. Liver Dis. 1992, 12, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, E.M.; Hansen, G.H.; Poulsen, M.D. Apical secretion of apolipoproteins from enterocytes. J. Cell. Biol. 1993, 120, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Parks, J.S. ATP-binding cassette transporter AI and its role in HDL formation. Curr. Opin. Lipidol. 2005, 16, 19–25. [Google Scholar] [CrossRef]
- Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int. J. Mol. Sci. 2020, 21, 2061. [Google Scholar] [CrossRef]
- Tahri-Joutey, M.; Andreoletti, P.; Surapureddi, S.; Nasser, B.; Cherkaoui-Malki, M.; Latruffe, N. Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα. Int. J. Mol. Sci. 2021, 22, 8969. [Google Scholar] [CrossRef]
- Yan, T.; Luo, Y.; Yan, N.; Hamada, K.; Zhao, N.; Xia, Y.; Wang, P.; Zhao, C.; Qi, D.; Yang, S.; et al. Intestinal peroxisome proliferator-activated receptor α-fatty acid-binding protein 1 axis modulates nonalcoholic steatohepatitis. Hepatology 2023, 77, 239–255. [Google Scholar] [CrossRef]
- Hajer, G.R.; van Haeften, T.W.; Visseren, F.L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 2008, 29, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Antuna-Puente, B.; Feve, B.; Fellahi, S.; Bastard, J.P. Adipokines: The missing link between insulin resistance and obesity. Diabetes Metab. 2008, 34, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Scherer, P.E. The many secret lives of adipocytes: Implications for diabetes. Diabetologia 2019, 62, 223–232. [Google Scholar] [CrossRef]
- Fang, H.; Judd, R.L. Adiponectin regulation and function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [PubMed]
- Yamauchi, T.; Nio, Y.; Maki, T.; Kobayashi, M.; Takazawa, T.; Iwabu, M.; Okada-Iwabu, M.; Kawamoto, S.; Kubota, N.; Kubota, T.; et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 2007, 13, 332–339. [Google Scholar] [CrossRef] [PubMed]
WT Chow | Tg Chow | WT HFCFD | Tg HFCFD | |
---|---|---|---|---|
ALT (U/L) | 44.92 ± 2.81 | 63.55 ± 6.6 | 474.5 ± 23.10 **** | 108.7 ± 24.6 #### |
AST (U/L) | 171.6 ± 23.63 | 156.1 ± 24.03 | 343.3 ± 55.25 * | 219.0 ± 45.09 |
TG (mmol/L) | 0.73 ± 0.08 | 1.15 ± 0.14 + | 0.62 ± 0.07 | 1.21 ± 0.12 ## |
Cho (mmol/L) | 2.43 ± 0.16 | 6.07 ± 0.25 ++++ | 4.63 ± 0.11 **** | 7.50 ± 0.62 ### |
FFA (mmol/L) | 0.70 ± 0.05 | 0.69 ± 0.04 | 0.89 ± 0.04 ** | 1.41 ± 0.13 ## |
Human apoA-I (mg/mL) | 0 | 36.99 ± 4.67 | 0 | 32.21 ± 4.33 |
Mouse apoA-I (ng/mL) | 138.2 ± 9.826 | 63.43 ± 7.866 +++ | 62.83 ± 9.777 *** | 68.04 ± 15.81 |
Genes | Forward Primers (5′ to 3′) | Reverse Primers (5′ to 3′) |
---|---|---|
LPL | GGGAGTTTGGCTCCAGAGTTT | TGTGTCTTCAGGGGTCCTTAG |
CD36 | AAGCTATTGCGACATGATT | GATCCGAACACAGCGTAGAT |
FABP1 | ATGAACTTCTCCGGCAAGTACC | CTGACACCCCCTTGATGTCC |
CPT1 | CACCAACGGGCTCATCTTCTA | CAAAATGACCTAGCCTTCTATCGAA |
CPT2 | AGCCTACCTGGTCAATGCATATC | GGGTTTGGGTATACGAGTTGAATT |
CYP8B1 | TTGCAAATGCTGCCTCAACC | TAACAGTCGCACACATGGCT |
CYP7A1 | TTCTGCGAAGGCATTTGGAC | AGCATCTCCCTGGAGGGTTT |
CYP27A1 | CAGGAGGGCAAGTACCCAAT | CATTGCTCTCCTTGTGCGATG |
SCD1 | TTCTTGCGATACACTCTGGTGC | CGGGATTGAATGTTCTTGTCGT |
HMGCS2 | GAAGAGAGCGATGCAGGAAAC | GTCCACATATTGGGCTGGAAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Y.; Wang, Y. Overexpression of Apolipoprotein A-I Alleviates Insulin Resistance in MASLD Mice Through the PPARα Pathway. Int. J. Mol. Sci. 2025, 26, 1051. https://doi.org/10.3390/ijms26031051
Wang Y, Zhang Y, Wang Y. Overexpression of Apolipoprotein A-I Alleviates Insulin Resistance in MASLD Mice Through the PPARα Pathway. International Journal of Molecular Sciences. 2025; 26(3):1051. https://doi.org/10.3390/ijms26031051
Chicago/Turabian StyleWang, Yifan, Yudian Zhang, and Yutong Wang. 2025. "Overexpression of Apolipoprotein A-I Alleviates Insulin Resistance in MASLD Mice Through the PPARα Pathway" International Journal of Molecular Sciences 26, no. 3: 1051. https://doi.org/10.3390/ijms26031051
APA StyleWang, Y., Zhang, Y., & Wang, Y. (2025). Overexpression of Apolipoprotein A-I Alleviates Insulin Resistance in MASLD Mice Through the PPARα Pathway. International Journal of Molecular Sciences, 26(3), 1051. https://doi.org/10.3390/ijms26031051