Association of Genetic Polymorphisms in SLC45A2, TYR, HERC2, and SLC24A in African Women with Melasma: A Pilot Study
Abstract
:1. Introduction
- Total mMASI score = 0.3 A(f)D(f) + 0.3 A(lm)D(lm) + 0.3 A(rm) D(rm) + 0.1 A(c) D(c)
- The range of the total score is from 0 to 24. Area and darkness are scored as follows:
- Area of involvement:
- 0 = absent
- 1 = <10%
- 2 = 10–29%
- 3 = 30–49%
- 4 = 50–69%
- 5 = 70–89%,
- 6 = 90–100%
- Darkness:0 = absent
- 1 = slight,
- 2 = mild,
- 3 = marked
- 4 = severe
1.1. Clinical Features
1.2. Key Molecular Pathways in Melasma
2. Results
Melasma vs. Control Groups
3. Discussion
Limitations and Significance of the Study
4. Materials and Methods
4.1. Ethics Statement
4.2. Study Participants and Clinical Examination
4.3. DNA Extraction and Genotyping
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Elia, M.P.B.; Brandão, M.C.; de Andrade Ramos, B.R.; da Silva, M.G.; Miot, L.D.B.; Dos Santos, S.E.B.; Miot, H.A. African ancestry is associated with facial melasma in women: A cross-sectional study. BMC Med. Genet. 2017, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Mpofana, N.; Chibi, B.; Visser, T.; Paulse, M.; Finlayson, A.J.; Ghuman, S.; Gqaleni, N.; Hussein, A.A.; Dlova, N.C. Treatment of melasma on darker skin types: A scoping review. Cosmetics 2023, 10, 25. [Google Scholar] [CrossRef]
- Majid, I.; Aleem, S. Melasma: Update on epidemiology, clinical presentation, assessment, and scoring. J. Ski. Stem Cell 2021, 8, e120283. [Google Scholar] [CrossRef]
- Espósito, A.C.C.; Cassiano, D.P.; da Silva, C.N.; Lima, P.B.; Dias, J.A.; Hassun, K.; Bagatin, E.; Miot, L.D.; Miot, H.A. Update on melasma—Part I: Pathogenesis. Dermatol. Ther. 2022, 12, 1967–1988. [Google Scholar] [CrossRef] [PubMed]
- Hernando, B.; Ibarrola-Villava, M.; Fernandez, L.P.; Peña-Chilet, M.; Llorca-Cardeñosa, M.; Oltra, S.S.; Alonso, S.; Boyano, M.D.; Martinez-Cadenas, C.; Ribas, G. Sex-specific genetic effects associated with pigmentation, sensitivity to sunlight, and melanoma in a population of Spanish origin. Biol. Sex Differ. 2016, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Mpofana, N.; Abrahamse, H. The management of melasma on skin types V and VI using light emitting diode treatment. Photomed. Laser Surg. 2018, 36, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Pandya, A.G.; Hynan, L.S.; Bhore, R.; Riley, F.C.; Guevara, I.L.; Grimes, P.; Nordlund, J.J.; Rendon, M.; Taylor, S.; Gottschalk, R.W.; et al. Reliability assessment and validation of the Melasma Area and Severity Index (MASI) and a new modified MASI scoring method. J. Am. Acad. Dermatol. 2011, 64, 78–83.e2. [Google Scholar] [CrossRef]
- Tamega, A.; Miot, L.; Bonfietti, C.; Gige, T.; Marques, M.; Miot, H. Clinical patterns and epidemiological characteristics of facial melasma in Brazilian women. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 151–156. [Google Scholar] [CrossRef]
- Kang, H.Y.; Bahadoran, P.; Suzuki, I.; Zugaj, D.; Khemis, A.; Passeron, T.; Andres, P.; Ortonne, J. In vivo reflectance confocal microscopy detects pigmentary changes in melasma at a cellular level resolution. Exp. Dermatol. 2010, 19, e228–e233. [Google Scholar] [CrossRef]
- Mpofana, N. Effectiveness of Light Emitting Diode Treatment for Melasma on Skin Types V–VI; University of Johannesburg: Johannesburg, South Africa, 2017. [Google Scholar]
- Hexsel, D.; Lacerda, D.A.; Cavalcante, A.S.; Filho, C.A.S.M.; Kalil, C.L.P.V.; Ayres, E.L.; Azulay-Abulafia, L.; Weber, M.B.; Serra, M.S.; Lopes, N.F.P.; et al. Epidemiology of melasma in Brazilian patients: A multicenter study. Int. J. Dermatol. 2014, 53, 440–444. [Google Scholar] [CrossRef]
- Amatya, B. Evaluation of dermoscopic features in facial melanosis with wood lamp examination. Dermatol. Pract. Concept. 2022, 12, e2022030. [Google Scholar] [CrossRef] [PubMed]
- Achar, A.; Rathi, S.K. Melasma: A clinico-epidemiological study of 312 cases. Indian J. Dermatol. 2011, 56, 380. [Google Scholar]
- Maddaleno, A.S.; Camargo, J.; Mitjans, M.; Vinardell, M.P. Melanogenesis and melasma treatment. Cosmetics 2021, 8, 82. [Google Scholar] [CrossRef]
- D’Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [PubMed]
- Passeron, T.; Picardo, M. Melasma, a photoaging disorder. Pigment Cell Melanoma Res. 2018, 31, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, Q.; Xia, Y. New mechanistic insights of melasma. Clin. Cosmet. Investig. Dermatol. 2023, 16, 429–442. [Google Scholar] [CrossRef]
- Roider, E.; Lakatos, A.I.T.; McConnell, A.M.; Wang, P.; Mueller, A.; Kawakami, A.; Tsoi, J.; Szabolcs, B.L.; Ascsillán, A.A.; Suita, Y.; et al. MITF regulates IDH1, NNT, and a transcriptional program protecting melanoma from reactive oxygen species. Sci. Rep. 2024, 14, 21527. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, J.J.; Fisher, D.E. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch. Biochem. Biophys. 2014, 563, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, A.; Fisher, D.E. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab. Investig. 2017, 97, 649–656. [Google Scholar] [CrossRef]
- Wiriyasermkul, P.; Moriyama, S.; Nagamori, S. Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183318. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Kayser, M.; Palstra, R.-J. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res. 2012, 22, 446–455. [Google Scholar] [CrossRef]
- Al-Koofee, D.A.; Mubarak, S.M. Genetic polymorphisms. In The Recent Topics in Genetic Polymorphisms; IntechOpen: London, UK, 2019; pp. 1–10. [Google Scholar]
- Sherry, S.T.; Ward, M.; Sirotkin, K. dbSNP—Database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999, 9, 677–679. [Google Scholar] [CrossRef] [PubMed]
- Alam, O.; Khan, N.; Ullah, A. Unlocking Rare Diseases Genetics: Insights from Genome-Wide Association Studies and Single Nucleotide Polymorphisms. Int. J. Mol. Microbiol. 2024, 7, 1–28. [Google Scholar]
- Bin, B.-H.; Bhin, J.; Yang, S.H.; Shin, M.; Nam, Y.-J.; Choi, D.-H.; Shin, D.W.; Lee, A.-Y.; Hwang, D.; Cho, E.-G.; et al. Membrane-associated transporter protein (MATP) regulates melanosomal pH and influences tyrosinase activity. PLoS ONE 2015, 10, e0129273. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Association of pigmentation related-genes polymorphisms and geographic environmental variables in the Chinese population. Hereditas 2021, 158, 24. [Google Scholar] [CrossRef]
- Fracasso, N.C.d.A.; de Andrade, E.S.; Wiezel, C.E.V.; Andrade, C.C.F.; Zanão, L.R.; da Silva, M.S.; Marano, L.A.; Donadi, E.A.; Castelli, E.C.; Simões, A.L.; et al. Haplotypes from the SLC45A2 gene are associated with the presence of freckles and eye, hair and skin pigmentation in Brazil. Leg. Med. 2017, 25, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Dorgaleleh, S.; Naghipoor, K.; Barahouie, A.; Dastaviz, F.; Oladnabi, M. Molecular and biochemical mechanisms of human iris color: A comprehensive review. J. Cell. Physiol. 2020, 235, 8972–8982. [Google Scholar] [CrossRef]
- Le, L.; Escobar, I.E.; Ho, T.; Lefkovith, A.J.; Latteri, E.; Haltaufderhyde, K.D.; Dennis, M.K.; Plowright, L.; Sviderskaya, E.V.; Bennett, D.C.; et al. SLC45A2 protein stability and regulation of melanosome pH determine melanocyte pigmentation. Mol. Biol. Cell 2020, 31, 2687–2702. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.L.; Chen, W.; Thurber, A.E.; Smit, D.J.; Smith, A.G.; Bladen, T.G.; Brown, D.L.; Duffy, D.L.; Pastorino, L.; Bianchi-Scarra, G.; et al. Analysis of cultured human melanocytes based on polymorphisms within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P loci. J. Investig. Dermatol. 2009, 129, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Tamiya, G.; Nakamura, T.; Hozumi, Y.; Suzuki, T. Association of melanogenesis genes with skin color variation among Japanese females. J. Dermatol. Sci. 2013, 69, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Hudjashov, G.; Villems, R.; Kivisild, T. Global patterns of diversity and selection in human tyrosinase gene. PLoS ONE 2013, 8, e74307. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bitsue, H.K.; Yang, Z. Skin colour: A window into human phenotypic evolution and environmental adaptation. Mol. Ecol. 2024, 33, e17369. [Google Scholar] [CrossRef] [PubMed]
- Wilde, S.; Timpson, A.; Kirsanow, K.; Kaiser, E.; Kayser, M.; Unterländer, M.; Hollfelder, N.; Potekhina, I.D.; Schier, W.; Thomas, M.G.; et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5000 y. Proc. Natl. Acad. Sci. USA 2014, 111, 4832–4837. [Google Scholar] [CrossRef] [PubMed]
- GENE, Z.G. Oral Presentations (OP001–OP129). Cell. Biol. 2003, 23, 5245–5255. [Google Scholar]
- Durso, D.F.; Bydlowski, S.P.; Hutz, M.H.; Suarez-Kurtz, G.; Magalhães, T.R.; Pena, S.D.J. Association of genetic variants with self-assessed color categories in Brazilians. PLoS ONE 2014, 9, e83926. [Google Scholar] [CrossRef]
- Ainger, S.A.; Jagirdar, K.; Lee, K.J.; Soyer, H.P.; Sturm, R.A. Skin pigmentation genetics for the clinic. Dermatology 2017, 233, 1–15. [Google Scholar] [CrossRef]
- Stokowski, R.P.; Pant, P.K.; Dadd, T.; Fereday, A.; Hinds, D.A.; Jarman, C.; Filsell, W.; Ginger, R.S.; Green, M.R.; van der Ouderaa, F.J.; et al. A genomewide association study of skin pigmentation in a South Asian population. Am. J. Hum. Genet. 2007, 81, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- A Sturm, R.; Duffy, D.L. Human pigmentation genes under environmental selection. Genome Biol. 2012, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Ibarrola-Villava, M.; Hu, H.-H.; Guedj, M.; Fernandez, L.P.; Descamps, V.; Basset-Seguin, N.; Bagot, M.; Benssussan, A.; Saiag, P.; Fargnoli, M.C.; et al. MC1R, SLC45A2 and TYR genetic variants involved in melanoma susceptibility in southern European populations: Results from a meta-analysis. Eur. J. Cancer 2012, 48, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.; Kraft, P.; Hunter, D.J.; Han, J. Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians. Int. J. Cancer 2009, 125, 909–917. [Google Scholar] [CrossRef]
- Aponte, J.L.; Chiano, M.N.; Yerges-Armstrong, L.M.; Hinds, D.A.; Tian, C.; Gupta, A.; Guo, C.; Fraser, D.J.; Freudenberg, J.M.; Rajpal, D.K.; et al. Assessment of rosacea symptom severity by genome-wide association study and expression analysis highlights immuno-inflammatory and skin pigmentation genes. Hum. Mol. Genet. 2018, 27, 2762–2772. [Google Scholar] [CrossRef]
- Muralidharan, C. Elucidating the Mechanisms or Interactions Involved in Differing Hair Color Follicles. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2016. [Google Scholar]
- Dimisianos, G.; Stefanaki, I.; Nicolaou, V.; Sypsa, V.; Antoniou, C.; Poulou, M.; Papadopoulos, O.; Gogas, H.; Kanavakis, E.; Nicolaidou, E.; et al. A study of a single variant allele (rs1426654) of the pigmentation-related gene SLC24A5 in Greek subjects. Exp. Dermatol. 2009, 18, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Jonnalagadda, M.; Faizan, M.A.; Ozarkar, S.; Ashma, R.; Kulkarni, S.; Norton, H.L.; Parra, E. A Genome-Wide Association Study of Skin and Iris Pigmentation among Individuals of South Asian Ancestry. Genome Biol. Evol. 2019, 11, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- de Araújo Lima, F.; de Toledo Gonçalves, F.; Fridman, C. SLC24A5 and ASIP as phenotypic predictors in Brazilian population for forensic purposes. Leg. Med. 2015, 17, 261–266. [Google Scholar]
- Valenzuela, R.K.; Ito, S.; Wakamatsu, K.; Brilliant, M.H. Prediction model validation: Normal human pigmentation variation. J. Forensic Res. 2011, 2, 2. [Google Scholar] [CrossRef]
- Jonnalagadda, M.; Norton, H.; Ozarkar, S.; Kulkarni, S.; Ashma, R. Association of genetic variants with skin pigmentation phenotype among populations of west Maharashtra, India. Am. J. Hum. Biol. 2016, 28, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, C.; Damodaran, A.; Green, M.R.; Rocha, S.; Pauloski, N.; Vora, S. Multiple genes and diverse hierarchical pathways affect human pigmentation. In Skin Pigmentation; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 89–119. [Google Scholar]
- Lamason, R.L.; Mohideen, M.-A.P.; Mest, J.R.; Wong, A.C.; Norton, H.L.; Aros, M.C.; Jurynec, M.J.; Mao, X.; Humphreville, V.R.; Humbert, J.E.; et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 2005, 310, 1782–1786. [Google Scholar] [CrossRef] [PubMed]
Gene | Pathway Influence | Role in Melanogenesis | Reference |
---|---|---|---|
SLC45A2 | Melanin synthesis and transport | Maintains melanosome pH; essential for tyrosinase activity; mutations lead to reduced pigmentation (OCA4) | [21] |
TYR | Melanin biosynthesis | Encodes tyrosinase, the key enzyme for melanin biosynthesis; mutations affect pigmentation levels | [18] |
HERC2 | Regulates OCA2 expression | Regulates OCA2 expression; the interaction between HERC2 and OCA2 influences melanosome function (affects melanosomal pH) function and pigmentation traits (overall melanin production) | [22] |
SLC24A5 | Melanosome maturation | Involved in ion transport for melanosome maturation and sensitivity to UV exposure | [21] |
Characteristics | Melasma Group (n = 20) | Control Group (n = 20) | SNP ID | Genotype | Melasma Group (%) | Control Group (%) | Allele | Melasma Group (%) | Control Group (%) |
---|---|---|---|---|---|---|---|---|---|
Age (years) | 47.25 ± 7.99 | 46.80 ± 7.52 | SLC45A2—rs11568737 (G > T) | GG | 1 (5%) | 2 (10%) | G Major | 10 (25%) | 6 (15%) |
History of pregnancy (%) | Yes: 16 (84.21%) | Yes: 12 (60%) | GT | 8 (40%) | 2 (10%) | T Minor | 30 (75%) | 36 (90%) | |
No: 3 (15.79%) | No: 8 (40%) | TT | 11 (55%) | 16 (80%) | |||||
Use of contraceptives/hormone therapy (%) | Yes: 20 (100%) | Yes: 20 (100%) | SLC45A2—rs28777 (A > C) | AA | 2 (10%) | 6 (30%) | A Major | 19 (48%) | 24 (60%) |
Location of Melasma (%) | Malar: 2 (10%) | - | AC | 15 (75%) | 12 (60%) | C Minor | 21 (53%) | 16 (40%) | |
Centrofacial: 9 (45%) | - | CC | 3 (15%) | 2 (10%) | |||||
Mandibular: 9 (45%) | - | TYR—rs1042602 (A > C) | AA | 3 (15%) | 2 (10%) | A Major | 22 (55%) | 8 (20%) | |
Duration of Melasma (%) | 2 years: 5 (25%) | - | AC | 16 (80%) | 4 (20%) | C Minor | 18 (45%) | 32 (80%) | |
5 years: 7 (35%) | - | CC | 1 (5%) | 14 (70%) | |||||
10 years: 4 (20%) | - | TYR—rs1126809 (G > A) | GG | 15 (75%) | 14 (70%) | G Major | 33 (83%) | 30 (75%) | |
More than 10 years: 4 (20%) | - | GA | 2 (10%) | 4 (20%) | A Minor | 7 (18%) | 10 (25%) | ||
Family History (First-degree relative) (%) | Yes: 12 (60%) | - | AA | 3 (15%) | 2 (10%) | ||||
No: 8 (40%) | - | HERC2—rs1129038 (C > T) | CC | 11 (55%) | 2 (10%) | C Major | 24 (60%) | 21 (53%) | |
mMASI Score | Mild: 5 (25%) | - | CT | 2 (10%) | 17 (85%) | T Minor | 16 (40%) | 19 (48%) | |
Moderate: 7 (35%) | - | TT | 7 (35%) | 1 (5%) | |||||
Severe: 8 (40%) | - | SLC24A5—rs1426654 (A > G) | AA | 2 (10%) | 14 (70%) | A Major | 14 (35%) | 32 (80%) | |
AG | 10 (50%) | 4 (20%) | G Minor | 26 (65%) | 8 (20%) | ||||
GG | 8 (40%) | 2 (10%) |
SNP | Melasma vs. Control OR (95% CI), p-Value | |
---|---|---|
SLC45A2-rs11568737 G > T Genotype | ||
Codominant | AA vs. TT | 0.7273 (0.04641–6.922) p > 0.9999 |
GG vs. GT | 0.1250 (0.007879–1.793) p = 0.2028 | |
GT vs. TT | 5.818 (1.197–29.87) p = 0.0625 | |
Dominant | GG vs. GT + TT | 0.5263 (0.03471–4.882) p > 0.9999 |
Recessive | GG + GT vs. TT | 3.682 (0.9184–12.49) p = 0.0956 |
Overdominant | AA + CC vs. AC | 0.1667 (0.03278–0.8302) p = 0.0648 |
Allele (Major vs. minor) | G vs. T | 1.771 (0.5885–5.690) p = 0.4066 |
SLC45A2-rs28777 A > C Genotype | ||
Codominant | AA vs. CC | 0.2222 (0.02725–1.978) p = 0.2929 |
AA vs. AC | 0.2667 (0.04972–1.485) p = 0.2285 | |
AC vs. CC | 0.9444 (0.1501–5.220) p > 0.9999 | |
Dominant | AA vs. AC + CC | 0.2593 (0.04908–1.366) p = 0.2351 |
Recessive | AA + AC vs. CC | 0.1111 (0.02356–0.4805) p = 0.0033 ** |
Overdominant | AA + CC vs. AC | 0.4412 (0.1185–1.707) p = 0.3200 |
Allele (Major vs. minor) | A vs. C | 0.6667 (0.2834–1.697) p = 0.4949 |
TYR-rs1042602 A > C Genotype | ||
Codominant | AA vs. CC | 21.00 (1.799–284.1) p = 0.0320 * |
AA vs. AC | 0.3750 (0.06110–2.784) p = 0.5623 | |
AC vs. CC | 56.00 (6.496–618.4) p < 0.0001 **** | |
Dominant | AA vs. AC + CC | 1.412 (0.2581–8.679) p > 0.9999 |
Recessive | AA + AC vs. CC | 44.33 (4.824–487.8) p < 0.0001 **** |
Overdominant | AA + CC vs. AC | 0.1667 (0.03149–0.9046) p = 0.0449 * |
Allele (Major vs. minor) | A vs. C | 4.889 (1.882–13.78) p = 0.0024 ** |
TYR-rs1126809 G > A Genotype | ||
Codominant | GG vs. AA | 2.143 (0.4153–12.37) p = 0.6581 |
GG vs. GA | 0.3571 (0.02590–2.718) p = 0.6074 | |
GA vs. AA | 0.7500 (0.03569–11.03) p > 0.9999 | |
Dominant | GG vs. GA + AA | 0.6429 (0.1501–3.368) p = 0.7013 |
Recessive | GG + GA vs. AA | 2.250 (0.4530–12.80) p = 0.6614 |
Overdominant | GG + AA vs. GA | 0.6296 (0.1032–3.432) p > 0.9999 |
Allele (Major vs. minor) | G vs. A | 1.473 (0.5158–4.004) p = 0.5892 |
HERC2-rs1129038 C > T Genotype | ||
Codominant | CC vs. TT | 0.6111 (0.03839–6.044) p > 0.9999 |
CC vs. CT | 46.75 (5.786–270.8) p < 0.0001 **** | |
CT vs. TT | 0.2857 (0.01344–7.970) p = 0.4909 | |
Dominant | CC vs. CT + TT | 12.38 (2.162–61.41) p = 0.0022 ** |
Recessive | CC + CT vs. TT | 0.09774 (0.008320–0.7323) p = 0.0436 * |
Overdominant | CC + TT vs. CT | 51.00 (6.786–262.2) p < 0.0001 **** |
Allele (Major vs. minor) | C vs. T | 1.357 (0.5434–3.117) p = 0.6525 |
SLC24A5-rs1426654 A > G Genotype | ||
Codominant | AA vs. GG | 0.03571 (0.005866–0.3303) p = 0.0010 ** |
AA vs. AG | 0.05714 (0.01078–0.3499) p = 0.0022 ** | |
AG vs. GG | 0.6250 (0.1010–3.827) p > 0.9999 | |
Dominant | AA vs. AG + GG | 0.1667 (0.03278–0.8302) p = 0.0648 |
Recessive | AA + AG vs. GG | 0.04762 (0.009685–0.2782) p = 0.0002 *** |
Overdominant | AA + GG vs. AG | 0.2500 (0.07356–1.000) p = 0.0958 |
Allele (Major vs. minor) | A vs. G | 0.1346 (0.05049–0.3585) p < 0.0001 **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpofana, N.; Mlambo, Z.P.; Makgobole, M.U.; Dlova, N.C.; Naicker, T. Association of Genetic Polymorphisms in SLC45A2, TYR, HERC2, and SLC24A in African Women with Melasma: A Pilot Study. Int. J. Mol. Sci. 2025, 26, 1158. https://doi.org/10.3390/ijms26031158
Mpofana N, Mlambo ZP, Makgobole MU, Dlova NC, Naicker T. Association of Genetic Polymorphisms in SLC45A2, TYR, HERC2, and SLC24A in African Women with Melasma: A Pilot Study. International Journal of Molecular Sciences. 2025; 26(3):1158. https://doi.org/10.3390/ijms26031158
Chicago/Turabian StyleMpofana, Nomakhosi, Zinhle Pretty Mlambo, Mokgadi Ursula Makgobole, Ncoza Cordelia Dlova, and Thajasvarie Naicker. 2025. "Association of Genetic Polymorphisms in SLC45A2, TYR, HERC2, and SLC24A in African Women with Melasma: A Pilot Study" International Journal of Molecular Sciences 26, no. 3: 1158. https://doi.org/10.3390/ijms26031158
APA StyleMpofana, N., Mlambo, Z. P., Makgobole, M. U., Dlova, N. C., & Naicker, T. (2025). Association of Genetic Polymorphisms in SLC45A2, TYR, HERC2, and SLC24A in African Women with Melasma: A Pilot Study. International Journal of Molecular Sciences, 26(3), 1158. https://doi.org/10.3390/ijms26031158