Noninversion Variants in Sporadic Hemophilia A Originate Mostly from Females
Abstract
:1. Introduction
2. Results
2.1. Clinical and Genetic Characteristics of Patients with Sporadic Noninversion HA
2.2. Identifying the Origin of Sporadic HA by Linkage Analysis, Genetic Testing, and Amplification Refractory Mutation System–Quantitative Polymerase Chain Reaction (ARMS-qPCR)
2.2.1. Analysis and Testing in Families 1 to 19, 23, 24, Who Have Sporadic HA-NIVs Without Mosaic Variants
2.2.2. Analysis and Testing in Families 20–22, Who Had Mosaic Variants
2.2.3. Analysis and Testing in Carrier Mothers of Families 10–19, in Which the Confirmed Origins of Sporadic NIVs Were Designated as Maternal Grandparents (MGPs)
2.3. Sex Differences in the Origin of Noninversion Variants in 23 Families with Sporadic HA
3. Discussion
4. Materials and Methods
4.1. Patients and Family Groups and Study Design
4.2. DNA Extraction from Blood and Tissue Cells
4.3. Laboratory Diagnosis of HA
4.4. Identification of the Possible Origin of Sporadic NIVs by Linkage Analysis and Genetic Testing
4.5. ARMS-qPCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gitschier, J.; Wood, W.I.; Goralka, T.M.; Wion, K.L.; Chen, E.Y.; Eaton, D.H.; Vehar, G.A.; Capon, D.J.; Lawn, R.M. Characterization of the human factor VIII gene. Nature 1984, 312, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Lakich, D.; Kazazian, H.H., Jr.; Antonarakis, S.E.; Gitschier, J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat. Genet. 1993, 5, 236–241. [Google Scholar] [CrossRef]
- Naylor, J.; Brinke, A.; Hassock, S.; Green, P.M.; Giannelli, F. Characteristic mRNA abnormality found in half the patients with severe haemophilia A is due to large DNA inversions. Hum. Mol. Genet. 1993, 2, 1773–1778. [Google Scholar] [CrossRef]
- Tuddenham, E.G.; Schwaab, R.; Seehafer, J.; Millar, D.S.; Gitschier, J.; Higuchi, M.; Bidichandani, S.; Connor, J.M.; Hoyer, L.W.; Yoshioka, A.; et al. Haemophilia A: Database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, 2nd ed. Nucleic Acids Res. 1994, 22, 4851–4868. [Google Scholar] [CrossRef] [PubMed]
- van Dieijen, G.; Tans, G.; Rosing, J.; Hemker, H.C. The role of phospholipid and factor VIIIa in the activation of bovine factor X. J. Biol. Chem. 1981, 256, 3433–3442. [Google Scholar] [CrossRef] [PubMed]
- Mutucumarana, V.P.; Duffy, E.J.; Lollar, P.; Johnson, A.E. The active site of factor IXa is located far above the membrane surface and its conformation is altered upon association with factor VIIIa. A fluorescence study. J. Biol. Chem. 1992, 267, 17012–17021. [Google Scholar] [CrossRef]
- Srivastava, A.; Santagostino, E.; Dougall, A.; Kitchen, S.; Sutherland, M.; Pipe, S.W.; Carcao, M.; Mahlangu, J.; Ragni, M.V.; Windyga, J.; et al. WFH guidelines for the management of hemophilia, 3rd edition. Haemophilia 2020, 26, 1–158. [Google Scholar] [CrossRef] [PubMed]
- Kasper, C.K.; Lin, J.C. Prevalence of sporadic and familial haemophilia. Haemophilia 2007, 13, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, J.; Schwaab, R.; Grimm, T.; Zerres, K.; Hakenberg, P.; Brackmann, H.H.; Olek, K. Direct and indirect estimation of the sex ratio of mutation frequencies in hemophilia A. Am. J. Hum. Genet. 1993, 53, 1229–1238. [Google Scholar] [PubMed]
- Rossiter, J.P.; Young, M.; Kimberland, M.L.; Hutter, P.; Ketterling, R.P.; Gitschier, J.; Horst, J.; Morris, M.A.; Schaid, D.J.; de Moerloose, P. Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. Hum. Mol. Genet. 1994, 3, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, S.E.; Rossiter, J.P.; Young, M.; Horst, J.; de Moerloose, P.; Sommer, S.S.; Ketterling, R.P.; Kazazian, H.H.; Négrier, C.; Vinciguerra, C.; et al. Factor VIII gene inversions in severe hemophilia A: Results of an international consortium study. Blood 1995, 86, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shen, M.C.; Chang, S.P.; Ma, G.C.; Lee, D.J.; Yan, A. De novo noninversion variants implicated in sporadic hemophilia a: A variant origin and timing study. Int. J. Mol. Sci. 2024, 25, 1763. [Google Scholar] [CrossRef]
- Freed, D.; Stevens, E.L.; Pevsner, J. Somatic mosaicism in the human genome. Genes 2014, 5, 1064–1094. [Google Scholar] [CrossRef]
- Kosower, N.; Christiansen, R.; Morton, N.E. Sporadic cases of hemophilia and the question of a possible sex difference in mutation rates. Am. J. Hum. Genet. 1962, 14, 159–169. [Google Scholar] [PubMed]
- Barrai, I.; Cann, H.M.; Cavalli-Sforza, L.L.; Barbujani, G.; De Nicola, P. Segregation analysis of hemophilia A and B. Am. J. Hum. Genet. 1985, 37, 680–699. [Google Scholar]
- Biggs, R.; Rizza, C.R. The sporadic case of haemophilia A. Lancet 1976, 2, 431–433. [Google Scholar] [CrossRef]
- Winter, R.M.; Tuddenham, E.G.; Goldman, E.; Matthews, K.B. A maximum likelihood estimate of the sex ratio of mutation rates in haemophilia A. J. Comput. Assist. Tomogr. 1986, 10, 654–663. [Google Scholar] [CrossRef]
- Rosendaal, F.R.; Bröcker-Vriends, A.H.; van Houwelingen, J.C.; Smit, C.; Varekamp, I.; van Dijck, H.; Suurmeijer, T.P.; Vandenbroucke, J.P.; Briët, E. Sex ratio of the mutation frequencies in haemophilia A: Estimation and meta-analysis. Hum. Genet. 1990, 86, 139–146. [Google Scholar] [CrossRef]
- Becker, J.; Schwaab, R.; Möller-Taube, A.; Schwaab, U.; Schmidt, W.; Brackmann, H.H.; Grimm, T.; Olek, K.; Oldenburg, J. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: Family studies indicate a mutation type-dependent sex ratio of mutation frequencies. Am. J. Hum. Genet. 1996, 58, 657–670. [Google Scholar]
- Ljung, R.C.; Sjörin, E. Origin of mutation in sporadic cases of haemophilia A. Br. J. Haematol. 1999, 106, 870–874. [Google Scholar] [CrossRef]
- Lu, Y.; Xin, Y.; Dai, J.; Wu, X.; You, G.; Ding, Q.; Wu, W.; Wang, X. Spectrum and origin of mutations in sporadic cases of haemophilia A in China. Haemophilia 2018, 24, 291–298. [Google Scholar] [CrossRef]
- Chen, M.; Shen, M.C.; Chang, S.P.; Ma, G.C.; Huang, Y.C.; Lin, C.Y. Origin and timing of de novo variants implicated in type 2 von Willebrand disease. J. Cell. Mol. Med. 2022, 26, 5403–5413. [Google Scholar] [CrossRef] [PubMed]
- Acuna-Hidalgo, R.; Veltman, J.A.; Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 2016, 17, 241. [Google Scholar] [CrossRef] [PubMed]
- Rahbari, R.; Wuster, A.; Lindsay, S.J.; Hardwick, R.J.; Alexandrov, L.B.; Turki, S.A.; Dominiczak, A.; Morris, A.; Porteous, D.; Smith, B.; et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 2016, 48, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Nordgård, O.; Oltedal, S.; Janssen, E.A.; Gilje, B.; Kørner, H.; Tjensvoll, K.; Smaaland, R. Comparison of a PNA clamp PCR and an ARMS/scorpion PCR assay for the detection of K-ras mutations. Diagn. Mol. Pathol. 2012, 21, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.; Eder, J.; Pratscher, B.; Brandt, S.; Schneller, D.; Müllegger, R.; Vogl, C.; Trautinger, F.; Brem, G.; Burgstaller, J.P. SNPase-ARMS qPCR: Ultrasensitive mutation-based detection of cell-free tumor DNA in melanoma patients. PLoS ONE 2015, 10, e0142273. [Google Scholar] [CrossRef] [PubMed]
- Cioppi, F.; Casamonti, E.; Krausz, C. Age-dependent de novo mutations during spermatogenesis and their consequences. Adv. Exp. Med. Biol. 2019, 1166, 29–46. [Google Scholar] [PubMed]
- Crow, J.F. The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 2000, 1, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Makova, K.D.; Li, W.H. Strong male-driven evolution of DNA sequences in humans and apes. Nature 2002, 416, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Tyekucheva, S.; Zody, M.; Chiaromonte, F.; Makova, K.D. Strong and weak male mutation bias at different sites in the primate genomes: Insights from the human-chimpanzee comparison. Mol. Biol. Evol. 2006, 23, 565–573. [Google Scholar] [CrossRef]
- Cochard, L.R. Early Embryonic Development and the Placenta. Netter’s Atlas of Human Embryology; updated ed.; Elsevier Health Sciences: London, UK, 2012; pp. 27–50. [Google Scholar]
- Carlson, B.M. Human Embryology and Developmental Biology; Elsevier Health Sciences: Lious, MO, USA, 2019; pp. 87–109. [Google Scholar]
- Shen, M.C.; Chang, S.P.; Lee, D.J.; Lin, W.H.; Chen, M.; Ma, G.C. Skewed X-chromosome inactivation and parental gonadal mosaicism are implicated in X-linked recessive female hemophilia patients. Diagnostics 2022, 12, 2267. [Google Scholar] [CrossRef]
- Ma, G.C.; Chang, S.P.; Chen, M.; Kuo, S.J.; Chang, C.S.; Shen, M.C. The spectrum of the factor 8 (F8) defects in Taiwanese patients with haemophilia A. Haemophilia 2008, 14, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.B.; Medina-Acosta, E. High-resolution combined linkage physical map of short tandem repeat loci on human chromosome band Xq28 for indirect haemophilia A carrier detection. Haemophilia 2009, 15, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Laurie, A.D.; Hill, A.M.; Harraway, J.R.; Fellowes, A.P.; Phillipson, G.T.; Benny, P.S.; Smith, M.P.; George, P.M. Preimplantation genetic diagnosis for hemophilia A using indirect linkage analysis and direct genotyping approaches. J. Thromb. Haemost. 2010, 8, 783–789. [Google Scholar] [CrossRef] [PubMed]
Family No. | FVIII Level (IU/dL) | Nucleotide Change | Amino Acid Substitution | Family Members Designated as the Origin of Sporadic NIV § |
---|---|---|---|---|
1 | <1 | c.6046C>G | p.R2016G | M |
2 | <1 | c.822G>T | p.W274C | M |
3 | <1 | c.1648C>T | p.R550C | M |
4 | 3.7 | c.5122C>T | p.R1708C | M |
5 | <1 | c.6131T>C | p.L2044P | M |
6 | 1 | c.4379delA | p.N1460Ifs*5 | M |
7 | <1 | c.1412T>A | p.L471* | M |
8 | <1 | c.403G>A | p.D135N | M |
9 | <1 | c.2945dupA | p.N982Kfs*9 | M |
10 | <1 | c.2945dupA | p.N982Kfs*9 | MGM |
11 | <1 | c.5343T>A | p.Y1781* | MGM |
12 | <1 | c.3637delA | p.I1213Ffs*5 | MGM |
13 | 1.2 | c.1538-1G>A | - | MGM |
14 | <1 | c.1848dupT | p.P617Sfs*7 | MGF |
15 | <1 | c.5219+1G>A | - | MGF |
16 | <1 | c.1813T>C | p.Y605H | MGF † |
17 | <1 | c.2322delA | p.Q774Hfs*12 | MGF |
18 | <1 | c.3637dupA | p.I1213Nfs*28 | MGF |
19 | <1 | c.6548_6554delTGGAGTT | p.M2183Rfs*9 | MGF |
20 | <1 | c.1525A>T | p.R509* | MGM ‡ |
21 | 25.1 | c.1636C>T | p.R546W | MGF ‡ |
22 | <1 | c.185 C>G | p.S62* | EGT M ‡ |
23 | <1 | c.3637delA | p.I1213Ffs*5 | M |
24 | 7.8 | c.6506G>A | p.R2169H | M |
Family No. (Age) | Nucleotide Change | Amino Acid Substitution | Family Members Designated as the Confirmed Origin of Sporadic NIVs | Percentage of Mutant Cells Obtained by ARMS-qPCR in Tissue Cells from Carrier Mothers of Families with Hemophilia A Sporadic NIVs | ||
---|---|---|---|---|---|---|
Blood Cells | Buccal Cells | Tonsil Epithelial Cells | ||||
10 (55) | c.2945dupA | p.N982Kfs*9 | MGM | 42.6 | 46.6 | NA |
11 (42) | c.5343T>A | p.Y1781* | MGM | 47.7 | 47.5 | NA |
12 (49) | c.3637delA | p.I1213Ffs*5 | MGM | 50.4 | 49.3 | 50.6 |
13 (33) | c.1538-1G>A | - | MGM | 47.2 | 45.6 | NA |
14 (27) | c.1848dupT | p.P617Sfs*7 | MGF | 45.8 | 46.5 | NA |
15 (32) | c.5219+1G>A | - | MGF | 47.7 | 47.2 | 50.3 |
16 (25) | c.1813T>C | p.Y605H | MGF † | 46.5 | 51.4 | NA |
17 (31) | c.2322delA | p.Q774Hfs*12 | MGF | 42.6 | 51.4 | NA |
18 (35) | c.3637dupA | p.I1213Nfs*28 | MGF | 50.3 | 51 | NA |
19 (37) | c.6548_6554delTGGAGTT | p.M2183Rfs*9 | MGF | 43.9 | 45.5 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Shen, M.-C.; Chang, S.-P.; Ma, G.-C.; Lee, D.-J.; Yan, A. Noninversion Variants in Sporadic Hemophilia A Originate Mostly from Females. Int. J. Mol. Sci. 2025, 26, 891. https://doi.org/10.3390/ijms26030891
Chen M, Shen M-C, Chang S-P, Ma G-C, Lee D-J, Yan A. Noninversion Variants in Sporadic Hemophilia A Originate Mostly from Females. International Journal of Molecular Sciences. 2025; 26(3):891. https://doi.org/10.3390/ijms26030891
Chicago/Turabian StyleChen, Ming, Ming-Ching Shen, Shun-Ping Chang, Gwo-Chin Ma, Dong-Jay Lee, and Adeline Yan. 2025. "Noninversion Variants in Sporadic Hemophilia A Originate Mostly from Females" International Journal of Molecular Sciences 26, no. 3: 891. https://doi.org/10.3390/ijms26030891
APA StyleChen, M., Shen, M.-C., Chang, S.-P., Ma, G.-C., Lee, D.-J., & Yan, A. (2025). Noninversion Variants in Sporadic Hemophilia A Originate Mostly from Females. International Journal of Molecular Sciences, 26(3), 891. https://doi.org/10.3390/ijms26030891