Immune Modulatory Effects of Vitamin D on Herpesvirus Infections
Abstract
:1. Introduction
2. Vitamin D Status: Discrepancies in Minimum Levels and Global Deficiency
3. Vitamin D and Viral Infections
3.1. Vitamin D Boosts Cathelicidin LL-37 Synthesis
3.2. Vitamin D and Other Innate Immunity Mechanisms
3.3. Vitamin D and Adaptative Immunity
4. Immunomodulatory Activity of Vitamin D in Herpesvirus Infection
4.1. Alphaherpesvirus
4.1.1. In Vitro Studies
4.1.2. Studies in the Human Population
4.2. Betaherpesvirus
4.2.1. In Vitro Studies
4.2.2. Studies in the Human Population
4.3. Gammaherpesvirus
4.3.1. In Vitro Studies
4.3.2. Studies in the Human Population
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
1,25-(OH)2D3 | Calcitriol |
25(OH)D | Calcifediol/calcidiol |
HSV-1/HHV1 | Herpes simplex virus 1 |
HSV2/HHV2 | Herpes simplex virus 2 |
VZV/HHV-3 | Varicella zoster virus |
HCMV/HHV-5 | Human Cytomegalovirus |
EBV/HHV-4 | Epstein–Barr virus |
KSHV/HHV-8 | Human herpesvirus 8 |
VDR | Vitamin D receptor |
MS | Multiple sclerosis |
HIV | Human immunodeficiency virus |
RHL | Recurrent Herpes Labialis |
KTR | Kidney transplant recipient |
EBNA | Epstein–Barr virus nuclear antigen |
CIRDC | Canine infectious respiratory disease complex |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
WHO | World Health Organization |
CDC | Centers for Disease Control and Prevention |
TLR | Toll-Like receptor |
References
- Holick, M.F.; Chen, T.C. Vitamin D Deficiency: A Worldwide Problem with Health Consequences. Am. J. Clin. Nutr. 2008, 84, 1080S–1086S. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin d on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef] [PubMed]
- Sîrbe, C.; Rednic, S.; Grama, A.; Pop, T.L. An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int. J. Mol. Sci. 2022, 23, 9784. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.; Manansala, J.S.; Abdulrahman, H.A.; Nasrallah, G.K.; Smatti, M.K.; Younes, N.; Althani, A.A.; Yassine, H.M. Immune Modulatory Effects of Vitamin d on Viral Infections. Nutrients 2020, 12, 2879. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Ligand-Independent Actions of the Vitamin D Receptor: More Questions Than Answers. JBMR Plus 2021, 5, e10578. [Google Scholar] [CrossRef]
- Al-Jaberi, F.A.H.; Kongsbak-Wismann, M.; Aguayo-Orozco, A.; Krogh, N.; Buus, T.B.; Lopez, D.V.; Rode, A.K.O.; Gravesen, E.; Olgaard, K.; Brunak, S.; et al. Impaired Vitamin D Signaling in T Cells From a Family With Hereditary Vitamin D Resistant Rickets. Front. Immunol. 2021, 12, 684015. [Google Scholar] [CrossRef]
- Bergwitz, C.; Jüppner, H. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annu. Rev. Med. 2010, 61, 91–104. [Google Scholar] [CrossRef]
- Charoenngam, N.; Shirvani, A.; Holick, M.F. Vitamin D for Skeletal and Non-Skeletal Health: What We Should Know. J. Clin. Orthop. Trauma. 2019, 10, 1082–1093. [Google Scholar] [CrossRef]
- Abramovitch, S.; Sharvit, E.; Weisman, Y.; Bentov, A.; Brazowski, E.; Cohen, G.; Volovelsky, O.; Reif, S. Vitamin D Inhibits Development of Liver Fibrosis in an Animal Model but Cannot Ameliorate Established Cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, 112–120. [Google Scholar] [CrossRef]
- Jain, S.K.; Micinski, D. Vitamin D Upregulates Glutamate Cysteine Ligase and Glutathione Reductase, and GSH Formation, and Decreases ROS and MCP-1 and IL-8 Secretion in High-Glucose Exposed U937 Monocytes. Biochem. Biophys. Res. Commun. 2013, 437, 7–11. [Google Scholar] [CrossRef]
- Adams, J.S.; Rafison, B.; Witzel, S.; Reyes, R.E.; Shieh, A.; Chun, R.; Zavala, K.; Hewison, M.; Liu, P.T. Regulation of the Extrarenal CYP27B1-Hydroxylase. J. Steroid Biochem. Mol. Biol. 2014, 144, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Bscheider, M.; Butcher, E.C. Vitamin D Immunoregulation through Dendritic Cells. Immunology 2016, 148, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Leung, P.S.C.; Adamopoulos, I.E.; Gershwin, M.E. The Implication of Vitamin D and Autoimmunity: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2013, 45, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Andrukhova, O.; Slavic, S.; Zeitz, U.; Riesen, S.C.; Heppelmann, M.S.; Ambrisko, T.D.; Markovic, M.; Kuebler, W.M.; Erben, R.G. Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice. Mol. Endocrinol. 2014, 28, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, L.; Kostoglou-Athanassiou, I.; Koutsilieris, M.; Shoenfeld, Y. Vitamin D and Autoimmune Rheumatic Diseases. Biomolecules 2023, 13, 709. [Google Scholar] [CrossRef]
- Disphanurat, W.; Viarasilpa, W.; Chakkavittumrong, P.; Pongcharoen, P. The Clinical Effect of Oral Vitamin D2 Supplementation on Psoriasis: A Double-Blind, Randomized, Placebo-Controlled Study. Dermatol. Res. Pract. 2019, 2019, 5237642. [Google Scholar] [CrossRef]
- Orgaz-Molina, J.; Buendía-Eisman, A.; Arrabal-Polo, M.A.; Ruiz, J.C.; Arias-Santiago, S. Deficiency of Serum Concentration of 25-Hydroxyvitamin D in Psoriatic Patients: A Case-Control Study. J. Am. Acad. Dermatol. 2012, 67, 931–938. [Google Scholar] [CrossRef]
- Nimer, A.; Mouch, A. Vitamin D Improves Viral Response in Hepatitis C Genotype 2–3 Naïve Patients. World J. Gastroenterol. 2012, 18, 800–805. [Google Scholar] [CrossRef]
- Abu-Mouch, S.; Fireman, Z.; Jarchovsky, J.; Zeina, A.R.; Assy, N. Vitamin D Supplementation Improves Sustained Virologic Response in Chronic Hepatitis C (Genotype 1)-Naïve Patients. World J. Gastroenterol. 2011, 17, 5184–5190. [Google Scholar] [CrossRef]
- Mettenleiter, T.C.; Ehlers, B.; Müller, T.; Yoon, K.; Teifke, J.P. Herpesviruses. In Diseases of Swine; Wiley: Hoboken, NJ, USA, 2019; pp. 548–575. [Google Scholar]
- Carneiro, V.C.d.S.; Pereira, J.G.; de Paula, V.S. Family Herpesviridae and Neuroinfections: Current Status and Research in Progress. Mem. Inst. Oswaldo Cruz 2022, 117, e220200. [Google Scholar] [CrossRef]
- Zhu, S.; Viejo-Borbolla, A. Pathogenesis and Virulence of Herpes Simplex Virus. Virulence 2021, 12, 2670–2702. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Neumann, D.M.; Zhu, L. Host Factors Associated with Either VP16 or VP16-Induced Complex Differentially Affect HSV-1 Lytic Infection. Rev. Med. Virol. 2022, 32, e2394. [Google Scholar] [CrossRef] [PubMed]
- Bello-Morales, R.; Andreu, S.; López-Guerrero, J.A. The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System. Int. J. Mol. Sci. 2020, 21, 5026. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Physiological Basis for Using Vitamin D to Improve Health. Biomedicines 2023, 11, 1542. [Google Scholar] [CrossRef]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T.; et al. Vitamin D Supplementation Guidelines. J. Steroid Biochem. Mol. Biol. 2018, 175, 125–135. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Formenti, A.M.; Adler, R.A.; Binkley, N.; Bouillon, R.; Lazaretti-Castro, M.; Marcocci, C.; Napoli, N.; Rizzoli, R.; Giustina, A. Vitamin D: Dosing, Levels, Form, and Route of Administration: Does One Approach Fit All? Rev. Endocr. Metab. Disord. 2021, 22, 1201–1218. [Google Scholar] [CrossRef]
- Bouillon, R. Comparative Analysis of Nutritional Guidelines for Vitamin D. Nat. Rev. Endocrinol. 2017, 13, 466–479. [Google Scholar] [CrossRef]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M.; et al. Global Prevalence and Disease Burden of Vitamin D Deficiency: A Roadmap for Action in Low-and Middle-Income Countries. Ann. N. Y. Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.A.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef]
- Grant, W.B.; Whiting, S.J.; Schwalfenberg, G.K.; Genuis, S.J.; Kimball, S.M. Estimated Economic Benefit of Increasing 25-Hydroxyvitamin D Concentrations of Canadians to or above 100 Nmol/L. Derm.-Endocrinol. 2016, 8, e1248324. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and Regional Prevalence of Vitamin D Deficiency in Population-Based Studies from to 2000 to 2022: A Pooled Analysis of Million Participants Participants from Mm Countries Were Eligible for This Study. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.M.; Gomes, A.P.O.; Araújo, M.M.; Coelho, A.S.G.; Carvalho, K.M.B.; Botelho, P.B. Prevalence of Vitamin D Deficiency in South America: A Systematic Review and Meta-Analysis. Nutr. Rev. 2023, 81, 1290–1309. [Google Scholar] [CrossRef] [PubMed]
- Feehan, O.; Magee, P.J.; Pourshahidi, L.K.; Armstrong, D.J.; Mcsorley, E.M. Vitamin D Deficiency in Nursing Home Residents: A Systematic Review. Nutr. Rev. 2023, 81, 804–822. [Google Scholar] [CrossRef]
- Holick, M.F. The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Pludowski, P.; Grant, W.B.; Konstantynowicz, J.; Holick, M.F. Editorial: Classic and Pleiotropic Actions of Vitamin D. Front. Endocrinol. 2019, 10, 217–230. [Google Scholar] [CrossRef]
- Shin, Y.H.; Shin, H.J.; Lee, Y.J. Vitamin D Status and Childhood Health. Korean J. Pediatr. 2013, 56, 417–423. [Google Scholar] [CrossRef]
- Tebben, P.J.; Singh, R.J.; Kumar, R. Vitamin D-Mediated Hypercalcemia: Mechanisms, Diagnosis, and Treatment. Endocr. Rev. 2016, 37, 521–547. [Google Scholar] [CrossRef]
- Yim, S.; Dhawan, P.; Ragunath, C.; Christakos, S.; Diamond, G. Induction of Cathelicidin in Normal and CF Bronchial Epithelial Cells by 1,25-Dihydroxyvitamin D3. J. Cyst. Fibros. 2007, 6, 403–410. [Google Scholar] [CrossRef]
- Brice, D.C.; Toth, Z.; Diamond, G. LL-37 Disrupts the Kaposi’s Sarcoma-Associated Herpesvirus Envelope and Inhibits Infection in Oral Epithelial Cells. Antivir. Res. 2018, 158, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Wan, C.; Chen, J.; Li, G.; Li, Y.; Wang, Y.; Tao, Q.; Peng, L.; Fang, R. Cathelicidin CATH-B1 Inhibits Pseudorabies Virus Infection via Direct Interaction and TLR4/JNK/IRF3-Mediated Interferon Activation. J. Virol. 2023, 97, e00706-23. [Google Scholar] [CrossRef] [PubMed]
- Tenesaca, S.; Vasquez, M.; Fernandez-Sendin, M.; Di Trani, C.A.; Ardaiz, N.; Gomar, C.; Cuculescu, D.; Alvarez, M.; Otano, I.; Melero, I.; et al. Scavenger Receptor Class B Type I Is Required for 25-Hydroxycholecalciferol Cellular Uptake and Signaling in Myeloid Cells. Mol. Nutr. Food Res. 2020, 64, 1901213. [Google Scholar] [CrossRef]
- van Harten, R.M.; van Woudenbergh, E.; van Dijk, A.; Haagsman, H.P. Cathelicidins: Immunomodulatory Antimicrobials. Vaccines 2018, 6, 63. [Google Scholar] [CrossRef]
- Gordon, Y.J.; Huang, L.C.; Romanowski, E.G.; Yates, K.A.; Proske, R.J.; Mcdermott, A.M. Human Cathelicidin (LL-37), a Multifunctional Peptide, Is Expressed by Ocular Surface Epithelia and Has Potent Antibacterial and Antiviral Activity. Curr. Eye Res. 2005, 30, 385–394. [Google Scholar] [CrossRef]
- Coorens, M.; van Dijk, A.; Bikker, F.; Veldhuizen, E.J.A.; Haagsman, H.P. Importance of Endosomal Cathelicidin Degradation To Enhance DNA-Induced Chicken Macrophage Activation. J. Immunol. 2015, 195, 3970–3977. [Google Scholar] [CrossRef]
- Decout, A.; Katz, J.D.; Venkatraman, S.; Ablasser, A. The CGAS–STING Pathway as a Therapeutic Target in Inflammatory Diseases. Nat. Rev. Immunol. 2021, 21, 548–569. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, L.; Yang, Y.; Hou, Y.; Xu, Y.; Wang, Z.; Su, H.; Han, F.; Han, J.; Liu, P.; et al. LL-37 Transports Immunoreactive CGAMP to Activate STING Signaling and Enhance Interferon-Mediated Host Antiviral Immunity. Cell Rep. 2022, 39, 110880. [Google Scholar] [CrossRef]
- Lishko, V.K.; Moreno, B.; Podolnikova, N.P.; Ugarova, T.P. Identification of Human Cathelicidin Peptide LL-37 as a Ligand for Macrophage Integrin αMβ2 (Mac-1, CD11b/CD18) That Promotes Phagocytosis by Opsonizing Bacteria HHS Public Access. Res. Rep. Biochem. 2016, 6, 39–55. [Google Scholar]
- Yu, Y.; Zhang, Y.; Zhang, Y.; Lai, Y.; Chen, W.; Xiao, Z.; Zhang, W.; Jin, M.; Yu, B. LL-37-Induced Human Mast Cell Activation through G Protein-Coupled Receptor MrgX2. Int. Immunopharmacol. 2017, 49, 6–12. [Google Scholar] [CrossRef]
- Casanova, V.; Sousa, F.H.; Shakamuri, P.; Svoboda, P.; Buch, C.; D’Acremont, M.; Christophorou, M.A.; Pohl, J.; Stevens, C.; Barlow, P.G. Citrullination Alters the Antiviral and Immunomodulatory Activities of the Human Cathelicidin LL-37 During Rhinovirus Infection. Front. Immunol. 2020, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Telcian, A.G.; Zdrenghea, M.T.; Edwards, M.R.; Laza-Stanca, V.; Mallia, P.; Johnston, S.L.; Stanciu, L.A. Vitamin D Increases the Antiviral Activity of Bronchial Epithelial Cells in Vitro. Antivir. Res. 2017, 137, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, T.; Dam, B.; Khedkar, S.U.; Lall, S.; Pandey, S.; Kataria, S.; Ajnabi, J.; Gulzar, S.E.J.; Dias, P.M.; Waskar, M.; et al. Niacinamide Enhances Cathelicidin Mediated SARS-CoV-2 Membrane Disruption. Front. Immunol. 2023, 14, 1255478. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; An, Y.; Tan, W.; Ma, L.; Wang, M.; Li, J.; Li, B.; Hou, W.; Wu, L. Cathelicidin-Derived Antiviral Peptide Inhibits Herpes Simplex Virus 1 Infection. Front. Microbiol. 2023, 14, 1201505. [Google Scholar] [CrossRef]
- Fakhoury, H.M.A.; Kvietys, P.R.; AlKattan, W.; Al Anouti, F.; Elahi, M.A.; Karras, S.N.; Grant, W.B. Vitamin D and Intestinal Homeostasis: Barrier, Microbiota, and Immune Modulation. J. Steroid Biochem. Mol. Biol. 2020, 200, 105663. [Google Scholar] [CrossRef]
- Lu, R.; Zhang, Y.G.; Xia, Y.; Zhang, J.; Kaser, A.; Blumberg, R.; Sun, J. Paneth Cell Alertness to Pathogens Maintained by Vitamin D Receptors. Gastroenterology 2021, 160, 1269–1283. [Google Scholar] [CrossRef]
- Wilson, S.S.; Wiens, M.E.; Holly, M.K.; Smith, J.G. Defensins at the Mucosal Surface: Latest Insights into Defensin-Virus Interactions. J. Virol. 2016, 90, 5216–5218. [Google Scholar] [CrossRef]
- Bergamo, A.; Sava, G. Lysozyme: A Natural Product with Multiple and Useful Antiviral Properties. Molecules 2024, 29, 652. [Google Scholar] [CrossRef]
- Dickie, L.J.; Church, L.D.; Coulthard, L.R.; Mathews, R.J.; Emery, P.; McDermott, M.F. Vitamin D3 Down-Regulates Intracellular Toll-like Receptor 9 Expression and Toll-like Receptor 9-Induced IL-6 Production in Human Monocytes. Rheumatology 2010, 49, 1466–1471. [Google Scholar] [CrossRef]
- Yu, S.; Cantorna, M.T. Epigenetic Reduction in Invariant NKT Cells Following In Utero Vitamin D Deficiency in Mice. J. Immunol. 2011, 186, 1384–1390. [Google Scholar] [CrossRef]
- Crosby, C.M.; Kronenberg, M. Tissue-Specific Functions of Invariant Natural Killer T Cells. Nat. Rev. Immunol. 2018, 18, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Paget, C.; Ivanov, S.; Fontaine, J.; Blanc, F.; Pichavant, M.; Renneson, J.; Bialecki, E.; Pothlichet, J.; Vendeville, C.; Barba-Speath, G.; et al. Potential Role of Invariant NKT Cells in the Control of Pulmonary Inflammation and CD8+ T Cell Response during Acute Influenza A Virus H3N2 Pneumonia. J. Immunol. 2011, 186, 5590–5602. [Google Scholar] [CrossRef] [PubMed]
- Karki, R.; Kanneganti, T.D. Innate Immunity, Cytokine Storm, and Inflammatory Cell Death in COVID-19. J. Transl. Med. 2022, 20. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Wang, B.; Mao, J. The Pathogenesis and Treatment of the ‘Cytokine Storm’’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Greiller, C.L.; Suri, R.; Jolliffe, D.A.; Kebadze, T.; Hirsman, A.G.; Griffiths, C.J.; Johnston, S.L.; Martineau, A.R. Vitamin D Attenuates Rhinovirus-Induced Expression of Intercellular Adhesion Molecule-1 (ICAM-1) and Platelet-Activating Factor Receptor (PAFR) in Respiratory Epithelial Cells. J. Steroid Biochem. Mol. Biol. 2019, 187, 152–159. [Google Scholar] [CrossRef]
- Fernandez, G.J.; Castillo, J.A.; Giraldo, D.M.; Urcuqui-Inchima, S. Vitamin D Regulates the Expression of Immune and Stress Response Genes in Dengue Virus-Infected Macrophages by Inducing Specific MicroRNAs. MicroRNA 2021, 10, 240–249. [Google Scholar] [CrossRef]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of Angiotensin-Converting Enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24. [Google Scholar] [CrossRef]
- Cui, C.; Xu, P.; Li, G.; Qiao, Y.; Han, W.; Geng, C.; Liao, D.; Yang, M.; Chen, D.; Jiang, P. Vitamin D Receptor Activation Regulates Microglia Polarization and Oxidative Stress in Spontaneously Hypertensive Rats and Angiotensin II-Exposed Microglial Cells: Role of Renin-Angiotensin System. Redox Biol. 2019, 26, 101295. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- White, D.W.; Suzanne Beard, R.; Barton, E.S. Immune Modulation during Latent Herpesvirus Infection. Immunol. Rev. 2012, 245, 189–208. [Google Scholar] [CrossRef]
- Jin, X.; Wang, W.; Zhao, X.; Jiang, W.; Shao, Q.; Chen, Z.; Huang, C. The Battle between the Innate Immune CGAS-STING Signaling Pathway and Human Herpesvirus Infection. Front. Immunol. 2023, 14, 1235590. [Google Scholar] [CrossRef] [PubMed]
- Bello-Morales, R.; Andreu, S.; Ripa, I.; López-Guerrero, J.A. Hsv-1 and Endogenous Retroviruses as Risk Factors in Demyelination. Int. J. Mol. Sci. 2021, 22, 5738. [Google Scholar] [CrossRef] [PubMed]
- Andreu, S.; Agúndez, C.; Ripa, I.; López-Guerrero, J.A.; Bello-Morales, R. Pseudorabies Virus Uses Clathrin Mediated Endocytosis to Enter PK15 Swine Cell Line. Front. Microbiol. 2024, 15, 1332175. [Google Scholar] [CrossRef]
- Menendez, C.M.; Jinkins, J.K.; Carr, D.J.J. Resident T Cells Are Unable To Control Herpes Simplex Virus-1 Activity in the Brain Ependymal Region during Latency. J. Immunol. 2016, 197, 1262–1275. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Virus Del Herpes Simplex. Available online: https://www.who.int/es/news-room/fact-sheets/detail/herpes-simplex-virus (accessed on 18 June 2024).
- Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Lee, J.R.; Dadhania, D.; August, P.; Lee, J.B.; Suthanthiran, M.; Muthukumar, T. Circulating Levels of 25-Hydroxyvitamin D and Acute Cellular Rejection in Kidney Allograft Recipients. Transplantation 2014, 98, 292–299. [Google Scholar] [CrossRef]
- Yasin, B.; Pang, M.; Turner, J.S.; Cho, Y.; Dinh, N.-N.; Waring, A.J.; Lehrer, R.I.; Wagar, E.A. Evaluation of the Inactivation of Infectious Herpes Simplex Virus by Host-Defense Peptides. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 187–194. [Google Scholar] [CrossRef]
- Howell, M.D.; Wollenberg, A.; Gallo, R.L.; Flaig, M.; Streib, J.E.; Wong, C.; Pavicic, T.; Boguniewicz, M.; Leung, D.Y.M. Cathelicidin Deficiency Predisposes to Eczema Herpeticum. J. Allergy Clin. Immunol. 2006, 117, 836–841. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, M.P.; Kumar, R.S.; Ratho, R.K. 25-Hydroxyvitamin D3 and 1,25 Dihydroxyvitamin D3 as an Antiviral and Immunomodulator Against Herpes Simplex Virus-1 Infection in HeLa Cells. Viral Immunol. 2018, 31, 589–593. [Google Scholar] [CrossRef]
- Mowry, E.M.; James, J.A.; Krupp, L.B.; Waubant, E. Vitamin D Status and Antibody Levels to Common Viruses in Pediatric-Onset Multiple Sclerosis. Mult. Scler. J. 2011, 17, 666–671. [Google Scholar] [CrossRef]
- Parvaie, P. Evaluation between Vitamin D Serum Level and Herpes Simplex Virus Type 1 in the Field of Dentistry. Clin. Lab. Res. Den. 2021, 1–5. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Wang, M.; Lin, S. The Association between Serum 25-hydroxyvitamin D and the Prevalence of Herpes Simplex Virus. J. Med. Virol. 2022, 95, e28297. [Google Scholar] [CrossRef]
- Öztekin, A.; Öztekin, C. Vitamin D Levels in Patients with Recurrent Herpes Labialis. Viral Immunol. 2019, 32, 258–262. [Google Scholar] [CrossRef]
- Ranjbar, Z.; Lavaee, F.; Karandish, M.; Peiravian, F.; Zarei, F. Vitamin D Serum Level in Participants with Positive History of Recurrent Herpes Labialis. BMC Oral. Health 2023, 23. [Google Scholar] [CrossRef]
- Chao, C.T.; Lee, S.Y.; Yang, W.S.; Yen, C.J.; Chiang, C.K.; Huang, J.W.; Hung, K.Y. Serum Vitamin D Levels Are Positively Associated with Varicella Zoster Immunity in Chronic Dialysis Patients. Sci. Rep. 2014, 4, 7371. [Google Scholar] [CrossRef]
- Lin, L.Y.; Mathur, R.; Mulick, A.; Smeeth, L.; Langan, S.M.; Warren-Gash, C. Association between Vitamin D and Incident Herpes Zoster: A UK Biobank Study. Br. J. General. Pract. 2022, 72, E842–E848. [Google Scholar] [CrossRef]
- Centers for Disease Control (CDC). Cytomegalovirus (CMV) and Congenital CMV Infection. Available online: https://www.cdc.gov/cytomegalovirus/about/index.html (accessed on 24 October 2024).
- Griffiths, P.; Reeves, M. Pathogenesis of Human Cytomegalovirus in the Immunocompromised Host. Nat. Rev. Microbiol. 2021, 19, 759–773. [Google Scholar] [CrossRef]
- Rieder, F.J.J.; Gröschel, C.; Kastner, M.T.; Kosulin, K.; Laengle, J.; Zadnikar, R.; Marculescu, R.; Schneider, M.; Lion, T.; Bergmann, M.; et al. Human Cytomegalovirus Infection Downregulates Vitamin-D Receptor in Mammalian Cells. J. Steroid Biochem. Mol. Biol. 2017, 165, 356–362. [Google Scholar] [CrossRef]
- Stecher, C.; Maurer, K.P.; Kastner, M.T.; Steininger, C. Human Cytomegalovirus Induces Vitamin-D Resistance In Vitro by Dysregulating the Transcriptional Repressor Snail. Viruses 2022, 14, 2004. [Google Scholar] [CrossRef]
- Lin, L.Y.; Bhate, K.; Forbes, H.; Smeeth, L.; Warren-Gash, C.; Langan, S.M. Vitamin D Deficiency or Supplementation and the Risk of Human Herpesvirus Infections or Reactivation: A Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2020, 8, ofaa570. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, S.U.; Lee, K.H.; Lee, J.H.; Kwon, E.; Jung, H.Y.; Choi, J.Y.; Cho, J.H.; Park, S.H.; Kim, Y.L.; et al. Vitamin D Deficiency Is Associated with Increased Risk of Bacterial Infections after Kidney Transplantation. Korean J. Intern. Med. 2017, 32, 505–513. [Google Scholar] [CrossRef]
- Saber, A.; Fotuhi, F.; Rostami, Z.; Einollahi, B.; Nemati, E. Vitamin D Levels after Kidney Transplantation and the Risk of Cytomegalovirus Infection. Nephrourol. Mon. 2015, 7, e29677. [Google Scholar] [CrossRef]
- Astor, B.C.; Djamali, A.; Mandelbrot, D.A.; Parajuli, S.; Melamed, M.L. The Association of 25-Hydroxyvitamin D Levels with Late Cytomegalovirus Infection in Kidney Transplant Recipients: The Wisconsin Allograft Recipient Database. Transplantation 2019, 103, 1683–1688. [Google Scholar] [CrossRef]
- Wang, H.; Du, Y.; Wu, Z.; Geng, H.; Zhu, X.; Zhu, X. Serum Vitamin D Insufficiency in Hospitalized Full-Term Neonates at a Tertiary Hospital in Eastern China. Front. Pediatr. 2022, 10, 878992. [Google Scholar] [CrossRef]
- Bearden, A.; van Winden, K.; Frederick, T.; Kono, N.; Operskalski, E.; Pandian, R.; Barton, L.; Stek, A.; Kovacs, A. Low Maternal Vitamin D Is Associated with Increased Risk of Congenital and Peri/ Postnatal Transmission of Cytomegalovirus in Women with HIV. PLoS ONE 2020, 15, e0228900. [Google Scholar] [CrossRef]
- Moscarelli, L.; Antognoli, G.; Buti, E.; Dervishi, E.; Fani, F.; Caroti, L.; Tsalouchos, A.; Romoli, E.; Ghiandai, G.; Minetti, E. 1,25 Dihydroxyvitamin D Circulating Levels, Calcitriol Administration, and Incidence of Acute Rejection, CMV Infection, and Polyoma Virus Infection in Renal Transplant Recipients. Clin. Transplant. 2016, 30, 1347–1359. [Google Scholar] [CrossRef]
- Houen, G.; Trier, N.H. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front. Immunol. 2021, 11, 587380. [Google Scholar] [CrossRef]
- Hladik, W.; Dollard, S.C.; Mermin, J.; Fowlkes, A.L.; Downing, R.; Amin, M.M.; Banage, F.; Nzaro, E.; Kataaha, P.; Dondero, T.J.; et al. Transmission of Human Herpesvirus 8 by Blood Transfusion. N. Engl. J. Med. 2006, 355, 1331–1338. [Google Scholar] [CrossRef]
- González-Pardo, V.; Verstuyf, A.; Boland, R.; Russo De Boland, A. Vitamin D Analogue TX 527 Down-Regulates the NF-ΚB Pathway and Controls the Proliferation of Endothelial Cells Transformed by Kaposi Sarcoma Herpesvirus. Br. J. Pharmacol. 2013, 169, 1635–1645. [Google Scholar] [CrossRef]
- Suares, A.; Tapia, C.; González-Pardo, V. VDR Agonists down Regulate PI3K/Akt/MTOR Axis and Trigger Autophagy in Kaposi’s Sarcoma Cells. Heliyon 2019, 5, e02367. [Google Scholar] [CrossRef]
- Kumar, A.; Mohanty, S.; Das, P.; Sahu, S.K.; Rajasubramaniam, S.; Choudhuri, T. 1, 25(OH)2 D3 Induces Reactivation and Death of Kaposi’s Sarcoma-Associated Herpesvirus of Primary Effusion Lymphoma Cells. Sci. Rep. 2017, 7, 12438. [Google Scholar] [CrossRef]
- Bjornevik, K.; Münz, C.; Cohen, J.I.; Ascherio, A. Epstein–Barr Virus as a Leading Cause of Multiple Sclerosis: Mechanisms and Implications. Nat. Rev. Neurol. 2023, 19, 160–171. [Google Scholar] [CrossRef]
- Soldan, S.S.; Lieberman, P.M. Epstein–Barr Virus and Multiple Sclerosis. Nat. Rev. Microbiol. 2023, 21, 51–64. [Google Scholar] [CrossRef]
- Pender, M.P.; Csurhes, P.A.; Lenarczyk, A.; Pfluger, C.M.M.; Burrows, S.R. Decreased T Cell Reactivity to Epstein-Barr Virus Infected Lymphoblastoid Cell Lines in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2009, 80, 498–505. [Google Scholar] [CrossRef]
- Hedström, A.K.; Olsson, T.; Kockum, I.; Hillert, J.; Alfredsson, L. Low Sun Exposure Increases Multiple Sclerosis Risk Both Directly and Indirectly. J. Neurol. 2020, 267, 1045–1052. [Google Scholar] [CrossRef]
- Ascherio, A.; Munger, K.L.; White, R.; Köchert, K.; Simon, K.C.; Polman, C.H.; Freedman, M.S.; Hartung, H.P.; Miller, D.H.; Montalbán, X.; et al. Vitamin D as an Early Predictor of Multiple Sclerosis Activity and Progression. JAMA Neurol. 2014, 71, 306–314. [Google Scholar] [CrossRef]
- Ricigliano, V.A.G.; Handel, A.E.; Sandve, G.K.; Annibali, V.; Ristori, G.; Mechelli, R.; Cader, M.Z.; Salvetti, M. EBNA2 Binds to Genomic Intervals Associated with Multiple Sclerosis and Overlaps with Vitamin D Receptor Occupancy. PLoS ONE 2015, 10, e0119605. [Google Scholar] [CrossRef]
- Yenamandra, S.P.; Hellman, U.; Kempkes, B.; Darekar, S.D.; Petermann, S.; Sculley, T.; Klein, G.; Kashuba, E. Epstein-Barr Virus Encoded EBNA-3 Binds to Vitamin D Receptor and Blocks Activation of Its Target Genes. Cell. Mol. Life Sci. 2010, 67, 4249–4256. [Google Scholar] [CrossRef]
- Zhao, B.; Zou, J.; Wang, H.; Johannsen, E.; Peng, C.W.; Quackenbush, J.; Mar, J.C.; Morton, C.C.; Freedman, M.L.; Blacklow, S.C.; et al. Epstein-Barr Virus Exploits Intrinsic B-Lymphocyte Transcription Programs to Achieve Immortal Cell Growth. Proc. Natl. Acad. Sci. USA 2011, 108, 14902–14907. [Google Scholar] [CrossRef]
- Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. J. Immunol. 2007, 179, 1634–1647. [Google Scholar] [CrossRef]
- Erlandson, K.M.; Gudza, I.; Fiorillo, S.; Ndemera, B.; Schooley, R.T.; Gwanzura, L.; Borok, M.; Campbell, T.B. Relationship of Vitamin D Insufficiency to AIDS-Associated Kaposi’s Sarcoma Outcomes: Retrospective Analysis of a Prospective Clinical Trial in Zimbabwe. Int. J. Infect. Dis. 2014, 24, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Rolf, L.; Muris, A.H.; Mathias, A.; Du Pasquier, R.; Koneczny, I.; Disanto, G.; Kuhle, J.; Ramagopalan, S.; Damoiseaux, J.; Smolders, J.; et al. Exploring the Effect of Vitamin D3 Supplementation on the Anti-EBV Antibody Response in Relapsing-Remitting Multiple Sclerosis. Mult. Scler. J. 2018, 24, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Zwart, S.R.; Mehta, S.K.; Ploutz-Snyder, R.; Bourbeau, Y.V.; Locke, J.P.; Pierson, D.L.; Smith, S.M. Response to Vitamin D Supplementation during Antarctic Winter Is Related to BMI, and Supplementation Can Mitigate Epstein-Barr Virus Reactivation. J. Nutr. 2011, 141, 692–697. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Design | Viral Infection | Study Population | Intervention (Measurement) | Comparison/ Definition | Outcome Definition | Conclusion |
---|---|---|---|---|---|---|---|
Ranjbar et al., 2023 [86] | Cross- sectional study | HSV-1 | Patients with recurrent herpes labialis (RHL) in the past 2 years (n = 85) | 25(OH)D serum levels by ELISA KIT | Vitamin D serum levels compared to a control group | RHL recurrency in the last 2 years | No statistical differences between control and RHL patient serum levels |
Mowry et al., 2011 [82] | Cross- sectional study | HSV-1 and HVS-2 | Pediatric-onset multiple sclerosis (MS) (n = 140) | 25(OH)D serum levels by chemiluminescent assay | 25(OH)D insufficiency/ deficiency (<30 ng/mL) | HSV-1 and HSV-2 IgG serum titers measured via ELISA | Weak association between 25(OH)D deficiency and HSV-2 IgG viral titers |
Chao et al., 2014 [87] | Case- control study | VZV | Patients undergoing maintenance hemodialysis for more than three months (n = 88) | 25(OH)D and 1,25(OH)D serum levels by radio- immunoassay. | 25(OH)D deficiency (<20 ng/mL) 25(OH)D insufficiency (20–30 ng/mL) | VZV-IgG and VZV- IgM serum titers | Statistical differences in VZV-IgG, but not in VZV-IgM serum titers |
Lin et al., 2022 [88] | Cohort study | VZV | Patients of UK Biobank database (n = 177,572) | 25(OH)D serum levels Self-reported Vitamin D supplementation | 25(OH)D deficiency (<25 ng/mL) 25(OH)D insufficiency (25–49 ng/mL) | Clinical diagnosis of herpes zoster (HZ) | No statistical association between vitamin D supplementation and incident of HZ |
Huang et al., 2022 [84] | Retrospective cohort study | HSV-1 and HSV-2 | n = 14,174 | 25(OH)D serum levels measured via high- performance liquid chromatography- tandem mass spectrometry technique | 25(OH)D deficiency (<20 ng/mL) 25(OH)D insufficiency (20–30 ng/mL) | Immunoglobulin G antibody titers of viral specific glycoproteins | Statistical association between vitamin D deficiency and anti-HSV-1/2 Ig-G titers |
Öztekin et al., 2019 [85] | Case- control study | HSV-1 | People with RHL and a volunteer group (n = 101) | 25(OH)D serum levels | Comparison of vitamin D serum levels between people with RHL and control group | Clinical diagnosis | Association between Vitamin D serum levels and risk of RHL |
Parvaie et al., 2021 [83] | Cross- sectional study | HSV-1 | Dental students (n = 100) | 25(OH)D serum levels | 25(OH)D deficiency (<50 nmol/L) 25(OH)D insufficiency (50–75 nmol/L) | HSV-1 IgG serum titers measured via ELISA | No significant association between antibody titers and 25(OH)D serum levels |
Author, Year | Design | Viral Infection | Study Population | Intervention (Measurement) | Comparison/ Definition | Outcome Definition | Study’s Conclusion |
---|---|---|---|---|---|---|---|
Bearden et al., 2020 [98] | Retrospective cohort study | HCMV | Mothers with HIV and HCMV infections and their HIV- uninfected infants (n = 340 mother–infant pairs) | Maternal 25(OH)D serum levels measured via ELISA KIT during pregnancy Maternal 1,25(OH)D serum levels measured via ELISA KIT during pregnancy | 25(OH)D insufficiency (21–31 ng/mL) 25(OH)D inadequate (11–20 ng/mL) 25(OH)D deficiency (<10 ng/mL) | HCMV testing via culture of urine and oral swabs and PCR studies of blood in infants | Statistical association between calcitriol levels and increased congenital HCMV infection |
Astor et al., 2019 [96] | Retrospective cohort study | HCMV | Kidney transplant recipients (n = 1976) | 25(OH)D serum levels at least 6 months after transplant via liquid chromatography | 25(OH)D insufficiency (20–29 ng/mL) 25(OH)D deficiency (<20 ng/mL) | HCMV quantification via real-time PCR | Statistical association between 25(OH)D serum levels and HCMV infection |
Mowry et al., 2011 [82] | Cross-sectional study | HCMV | Pediatric-onset multiple sclerosis (MS) (n = 140) | 25(OH)D serum levels measured via chemilumuniscent assay | 25(OH)D insufficiency/deficiency (<30 ng/mL) | HCMV IgG titers measured via ELISA | Statistical association between vitamin D serum levels and HCMV-IgG titers |
Lee et al., 2014 [78] | Retrospective cohort study | HCMV | Kidney allograft recipients (n = 351) | 25(OH)D measured within the first 30 days of transplantation | 25(OH)D deficiency (<20 ng/mL) | Blood sample PCR or pp65 antigenemia | No statistical association between vitamin D deficiency and HCMV infection |
Saber et al., 2015 [95] | Prospective cohort study | HCMV | Kidney transplant patients (n = 82) | 25(OH)D measured within the four months after the transplant | Comparison of 25(OH)D serum levels depending on antibody anti-HCMV | HCMV-IgG and IgM measured | No statistical association between vitamin D serum levels and antibody titers |
Park et al., 2017 [94] | Retrospective cohort study | HCMV | Kidney transplant patients (n = 164) | 25(OH)D measured before the transplant via radioimmunoassay | 25(OH)D deficiency (<20 ng/mL) | - | No statistical association between vitamin D deficiency and HCMV infection |
Moscarelli et al., 2022 [99] | Retrospective cohort study | HCMV | Kidney transplant patients (n = 373) | Calcitriol supplementation (0.25 to 0.5 μg/day) at least 1 month before transplantation 1,25(OH)D serum levels measured via radioimmunoassay | 1,25(OH)D deficiency (<20 pg/mL) | HCMV infection was defined as a blood viral load of >100,000 copies/mL | Statistical association between the incidence of HCMV infection and vitamin D supplementation |
Wang et al., 2022 [97] | Prospective cohort study | HCMV | Full-term neonates (n = 471) | Measurement of 25(OH)D serum levels for 6 months | 25(OH)D deficiency (<20 ng/mL) 25(OH)D insufficiency (20–30 ng/mL) | - | The incidence rate of HCMV infection was higher in the vitamin D insufficiency group |
Author, Year | Design | Viral Infection | Study Population | Intervention (Measurement) | Comparison/ Definition | Outcome Definition | Study’s Conclusion |
---|---|---|---|---|---|---|---|
Rolf et al., 2018 [115] | Randomized controlled trial | EBV | Patients with relapsing-remitting multiple sclerosis (RRMS) (n = 53) | Vitamin D3 supplementation (14,000 IU/day) or placebo during 48 weeks Measurements of 25(OH)D serum levels | Comparison between supplementation group and placebo group of EBNA-1 IgG levels and viral load in EBV-specific CD8+ T cells | Analysis of EBV DNA PCR and HPRT gene expression via RT-qPCR Enzyme-like immunospot assay detecting EBV-specific activated CD8+ T cells EBNA-1, VCA and CMV IgG measured via ELISA | Statistical association between certain antibody titers and vitamin D supplementation |
Zwart et al., 2011 [116] | Case–control study | EBV | People in Antarctica with no UV light exposure for 6 months (n = 41) | One group with 2000 IU/daily supplementation Another group with 10,000 IU/ weekly supplementation A group control without supplementation | 25(Oh)D insufficiency (<20 ng/mL) | EBV viral shedding in saliva | Statistical association between 25(OH)D serum levels and EBV shedding in saliva |
Mowry et al., 2011 [82] | Longitudinal cohort study | EBV | Pediatric-onset multiple sclerosis (MS) (n = 140) | 25(OH)D serum levels measured via chemiluminiscent assay | 25(OH)D insufficiency/deficiency (<30 ng/mL) | VCA and EBNA-1 IgG serum titers measured via ELISA | Higher Vitamin D levels were associated with higher antibody titers |
Erlandson et al., 2014 [114] | Prospective clinical trial | HHV-8 | People with AIDS- associated Kaposi’s sarcoma outcomes (n = 90) | 25(OH)D serum levels measured via immunoluminometric direct assay | 25(OH)D deficiency (<50 nmol/L) 25(OH)D insufficiency (50–75 nmol/L) | HHV-8 viral load in plasma | No significant association between HHV-8 viral load and vitamin D serum levels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galdo-Torres, D.; Andreu, S.; Caballero, O.; Hernández-Ruiz, I.; Ripa, I.; Bello-Morales, R.; López-Guerrero, J.A. Immune Modulatory Effects of Vitamin D on Herpesvirus Infections. Int. J. Mol. Sci. 2025, 26, 1767. https://doi.org/10.3390/ijms26041767
Galdo-Torres D, Andreu S, Caballero O, Hernández-Ruiz I, Ripa I, Bello-Morales R, López-Guerrero JA. Immune Modulatory Effects of Vitamin D on Herpesvirus Infections. International Journal of Molecular Sciences. 2025; 26(4):1767. https://doi.org/10.3390/ijms26041767
Chicago/Turabian StyleGaldo-Torres, Daniel, Sabina Andreu, Oliver Caballero, Israel Hernández-Ruiz, Inés Ripa, Raquel Bello-Morales, and José Antonio López-Guerrero. 2025. "Immune Modulatory Effects of Vitamin D on Herpesvirus Infections" International Journal of Molecular Sciences 26, no. 4: 1767. https://doi.org/10.3390/ijms26041767
APA StyleGaldo-Torres, D., Andreu, S., Caballero, O., Hernández-Ruiz, I., Ripa, I., Bello-Morales, R., & López-Guerrero, J. A. (2025). Immune Modulatory Effects of Vitamin D on Herpesvirus Infections. International Journal of Molecular Sciences, 26(4), 1767. https://doi.org/10.3390/ijms26041767