Mining the Candidate Transcription Factors Modulating Tanshinones’ and Phenolic Acids’ Biosynthesis Under Low Nitrogen Stress in Salvia miltiorrhiza
Abstract
:1. Introduction
2. Results
2.1. LN Stress Decreases TAs and PHAs Accumulation
2.2. Transcriptome Sequencing and De Novo Assembly
2.3. Functional Annotation and Classification of Unigenes
2.4. Differential Expression Gene and Enrichment Analysis
2.5. Differential Expression Genes Involved in TAs’ and PHAs’ Biosynthetic Pathway
2.6. Differential Expression Profile of TF Family
2.7. Transcription Factors Involved in LN Stress
2.8. Transcription Factors Involved in TAs’ and PHAs’ Biosynthesis
2.9. Mining the Candidate TFs Modulating TAs’ and PHAs’ Biosynthesis Under LN Stress
2.10. Validation of Differential Expressed TFs by qRT-PCR Detection
3. Discussion
4. Materials and Methods
4.1. Plant Material and Stress Treatment
4.2. Measuring the TA and PHA Content
4.3. RNA Isolation, cDNA Library Preparation, and Sequencing
4.4. Data Filtering and De Novo Assembly
4.5. Functional Annotation and Classification
4.6. Enrichment of Differentially Expressed Genes
4.7. Co-Expression Analysis
4.8. Quantitative Real-Time PCR Detection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TAs | Tanshinones |
PHAs | Phenolic acids |
MVA | Mevalonate |
MEP | 2-C-methyl-D-erythritol 4-phosphate |
IPP | Isopentenyl diphosphate |
DMAPP | Dimethylallyl diphosphate |
IDI | Iso-pentenyl diphosphate isomerase |
GGPPS | Geranylgeranyl pyrophosphate synthase |
GGPP | Geranylgeranyl pyrophosphate |
RAS | Rosmarinic acid synthetase |
RA | Rosmarinic acid |
CYP98A14 | Cytochrome P450-dependent monooxygenase |
TF | Transcription factor |
PHH | Post-harvest hardening |
DEG | Differential expression gene |
qRT-PCR | Quantitative real-time PCR |
DT | Dihydrotanshinone |
CT | Cryptotanshinone |
TIIA | Tanshinone IIA |
TT | Total tanshinones |
Sm | Salvia miltiorrhiza |
TPA | Total of phenolic acids |
CA | Caffeic acid |
SalB | Salvianolic acid B |
PCA | Principal component analysis |
BP | Biological process |
CC | Cellular component |
MF | Molecular function |
TPM | Transcripts Per Million |
AMT | Ammonium transporter |
GS | Glutamine synthetase |
NR | Nitrate reductase |
NiR | Nitrite reductase |
GCN | General control non-derepressible |
MS | Murashige and Skoog |
HPLC | High-performance liquid chromatography |
WGCNA | Weighted gene co-expression network analysis |
References
- Li, Z.M.; Xu, S.W.; Liu, P.Q. Salvia miltiorrhiza Burge (Danshen): A golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol. Sin. 2018, 39, 802–824. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, Y.; Xue, L.; Severino, R.P.; Gao, S.; Niu, J.; Qin, L.P.; Zhang, D.; Brömme, D. Salvia miltiorrhiza: An ancient Chinese herbal medicine as a source for anti-osteoporotic drugs. J. Ethnopharmacol. 2014, 155, 1401–1416. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Morris-Natschke, S.L.; Lee, K.H. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat. Prod. Rep. 2011, 28, 529–542. [Google Scholar] [CrossRef]
- Lin, T.H.; Hsieh, C.L. Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction. Chin. Med. 2010, 5, 22. [Google Scholar] [CrossRef]
- Vranová, E.; Coman, D.; Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 2013, 64, 700. [Google Scholar] [CrossRef]
- Phillips, M.A.; León, P.; Boronat, A.; Rodríguez-Concepción, M. The plastidial MEP pathway: Unified nomenclature and resources. Trends Plant Sci. 2008, 13, 619–623. [Google Scholar] [CrossRef]
- Frank, A.; Groll, M. The methylerythritol phosphate pathway to isoprenoids. Chem. Rev. 2017, 117, 5675–5703. [Google Scholar] [CrossRef]
- Banerjee, A.; Sharkey, T.D. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat. Prod. Rep. 2014, 31, 1043–1055. [Google Scholar] [CrossRef]
- Bergman, M.E.; Davis, B.; Phillips, M.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules 2019, 24, 3961. [Google Scholar] [CrossRef]
- Wang, B.; Sun, W.; Li, Q.; Li, Y.; Luo, H.; Song, J.; Sun, C.; Qian, J.; Zhu, Y.; Hayward, A.; et al. Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza. Planta 2015, 241, 711–725. [Google Scholar] [CrossRef]
- Shi, M.; Huang, F.; Deng, C.; Wang, Y.; Kai, G. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza. Crit. Rev. Food Sci. Nutr. 2019, 59, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Alami, M.M.; Guo, S.; Mei, Z.; Yang, G.; Wang, X. Environmental factors on secondary metabolism in medicinal plants: Exploring accelerating factors. Med. Plant Biol. 2024, 3, e016. [Google Scholar] [CrossRef]
- Wang, W.; Hu, B.; Yuan, D.; Liu, Y.; Che, R.; Hu, Y.; Ou, S.; Liu, Y.; Zhang, Z.; Wang, H.; et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 2018, 30, 638–651. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Shen, C.; Li, W.; Peng, L.; Hu, M.; Zhang, Y.; Zhao, X.; Teng, W.; Tong, Y.; He, X. TaLBD41 interacts with TaNAC2 to regulate nitrogen uptake and metabolism in response to nitrate availability. New Phytol. 2024, 242, 641–657. [Google Scholar] [CrossRef]
- Qi, J.; Yu, L.; Ding, J.; Ji, C.; Wang, S.; Wang, C.; Ding, G.; Shi, L.; Xu, F.; Cai, H. Transcription factor OsSNAC1 positively regulates nitrate transporter gene expression in rice. Plant Physiol. 2023, 192, 2923–2942. [Google Scholar] [CrossRef]
- Gou, Y.; Jing, Y.; Song, J.; Nagdy, M.M.; Peng, C.; Zeng, L.; Chen, M.; Lan, X.; Htun, Z.L.; Liao, Z.; et al. A novel bHLH gene responsive to low nitrogen positively regulates the biosynthesis of medicinal tropane alkaloids in Atropa belladonna. Int. J. Biol. Macromol. 2024, 266, 131012. [Google Scholar] [CrossRef]
- Pal, S.; Yadav, A.K.; Singh, A.K.; Rastogi, S.; Gupta, M.M.; Verma, R.K.; Nagegowda, D.A.; Pal, A.; Shasany, A.K. Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in Withania somnifera (L.) Dunal. Protoplasma 2017, 254, 389–399. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.H.; Park, T.K.; Kim, Y.P.; Lee, J.W.; Kim, T.W. Transcription factors BZR1 and PAP1 cooperate to promote anthocyanin biosynthesis in Arabidopsis shoots. Plant Cell 2024, 36, 3654–3673. [Google Scholar] [CrossRef]
- Wang, X.; Chai, X.; Gao, B.; Deng, C.; Günther, C.S.; Wu, T.; Zhang, X.; Xu, X.; Han, Z.; Wang, Y. Multi-omics analysis reveals the mechanism of bHLH130 responding to low-nitrogen stress of apple rootstock. Plant Physiol. 2023, 191, 1305–1323. [Google Scholar] [CrossRef]
- Yuan, L.; Pan, K.; Li, Y.; Yi, B.; Gao, B. Comparative transcriptome analysis of Alpinia oxyphylla Miq. reveals tissue-specific expression of flavonoid biosynthesis genes. BMC Genom. Data 2021, 22, 19. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, J.; Lan, T.; Kong, W.; Wang, X.; Liu, L.; Chen, X.; Mo, B. High resolution RNA-seq profiling of genes encoding ribosomal proteins across different organs and developmental stages in Arabidopsis thaliana. Plant Direct 2021, 5, e00320. [Google Scholar] [CrossRef] [PubMed]
- Siadjeu, C.; Mayland-Quellhorst, E.; Pande, S.; Laubinger, S.; Albach, D.C. Transcriptome sequence reveals candidate genes involving in the post-harvest hardening of trifoliate yam Dioscorea dumetorum. Plants 2021, 10, 787. [Google Scholar] [CrossRef] [PubMed]
- Alami, M.M.; Shu, S.; Liu, S.; Alami, M.J.; Feng, S.; Mei, Z.; Yang, G.; Wang, X. Impact of nitrogen rates on biosynthesis pathways: A comparative study of diterpene synthases in clerodane diterpenoids and enzymes in benzylisoquinoline alkaloids. Int. J. Biol. Macromol. 2024, 280, 135985. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wan, G.; Liang, Z. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol. 2010, 148, 99–104. [Google Scholar] [CrossRef]
- Shi, M.; Hua, Q.; Kai, G. Comprehensive transcriptomic analysis in response to abscisic acid in Salvia miltiorrhiza. Plant Cell Tissue Organ. Cult. 2021, 147, 389–404. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, Q.; Wu, X.; Zhou, Z.; Ding, M.; Shi, M.; Huang, F.; Li, S.; Wang, Y.; Kai, G. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci. Rep. 2017, 7, 10554. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, Q.; Ma, X.; Ying, Q.; Shen, B.; Qian, Y.; Song, H.; Wang, H. Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza. PLoS ONE 2014, 9, e111679. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Deng, Y.; Wei, H.; Lu, S. Characteristics of Salvia miltiorrhiza methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis. Hortic. Res. 2023, 10, uhad114. [Google Scholar] [CrossRef]
- Zeng, D.D.; Qin, R.; Li, M.; Alamin, M.; Jin, X.L.; Liu, Y.; Shi, C.H. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Mol. Genet. Genom. 2017, 292, 385–395. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Chen, P.; Liang, T.; Li, X.; Liu, H. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J. 2020, 39, e101928. [Google Scholar] [CrossRef]
- Niu, F.; Cui, X.; Yang, B.; Wang, R.; Zhao, P.; Zhao, X.; Zhang, H.; Fan, X.; Li, Y.; Deyholos, M.K.; et al. WRKY6 transcription factor modulates root potassium acquisition through promoting expression of in Arabidopsis. Plant J. 2024, 118, 1652–1667. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Wang, Q.; Mao, H.; Xu, J.; Wang, Y.; Hu, H.; He, S.; Tu, J.; Cheng, C.; Tian, G.; et al. AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling. Plant Cell Rep. 2018, 37, 1499–1511. [Google Scholar] [CrossRef] [PubMed]
- Boyle, E. Nitrogen pollution knows no bounds. Science 2017, 356, 700–701. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhong, Y.; Han, J.; Huang, L.; Wang, Y.; Shi, X.; Li, M.; Zhuang, Y.; Ren, W.; Liu, X.; et al. NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen. Plant Cell 2024, 36, 4388–4403. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, H.; He, Y.; Hao, Y.; Yan, J.; Liu, S.; Huang, X.; Yan, Z.; Zhang, D.; Ban, X.; et al. Regulatory mechanisms of strigolactone perception in rice. Cell 2024, 187, 7551–7567.e17. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Wu, Y.; Lan, T.; Liu, F.; Wei, G.; Lv, C.; Kong, F.; Yuan, J. Improved yield by optimizing carbon, nitrogen metabolism and hormone balance in apical kernels under low nitrogen conditions using the low nitrogen–tolerant maize variety. Field Crops Res. 2024, 310, 109358. [Google Scholar] [CrossRef]
- Fan, H.; Quan, S.; Ye, Q.; Zhang, L.; Liu, W.; Zhu, N.; Zhang, X.; Ruan, W.; Yi, K.; Crawford, N.M.; et al. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana. Mol. Plant 2023, 16, 756–774. [Google Scholar] [CrossRef]
- Camut, L.; Gallova, B.; Jilli, L.; Sirlin-Josserand, M.; Carrera, E.; Sakvarelidze-Achard, L.; Ruffel, S.; Krouk, G.; Thomas, S.G.; Hedden, P.; et al. Nitrate signaling promotes plant growth by upregulating gibberellin biosynthesis and destabilization of DELLA proteins. Curr. Biol. 2021, 31, 4971–4982.e74. [Google Scholar] [CrossRef]
- Ötvös, K.; Marconi, M.; Vega, A.; O’Brien, J.; Johnson, A.; Abualia, R.; Antonielli, L.; Montesinos, J.C.; Zhang, Y.; Tan, S.; et al. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO J. 2021, 40, e106862. [Google Scholar] [CrossRef]
- Jia, Z.; Giehl, R.F.; Hartmann, A.; Estevez, J.M.; Bennett, M.J.; von Wirén, N. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Curr. Biol. 2023, 33, 3926–3941.e5. [Google Scholar] [CrossRef]
- Luo, J.; Hang, J.; Wu, B.; Wei, X.; Zhao, Q.; Fang, Z. Co-overexpression of genes for nitrogen transport, assimilation, and utilization boosts rice grain yield and nitrogen use efficiency. Crop J. 2023, 11, 785–799. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, T.; Niu, K.; Ma, H. Co-expression analyses reveal key Cd stress response-related metabolites and transcriptional regulators in Kentucky bluegrass. Chemosphere 2024, 363, 142937. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, C.; Xu, F.; Zang, S.; Wang, D.; Sun, T.; Su, Y.; Yang, S.; Ding, Y.; Que, Y. Transcriptional regulation of sugar cane response to Sporisorium scitamineum: Insights from time-course gene coexpression and Ca2+ signaling. J. Agric. Food Chem. 2024, 72, 10506–10520. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zhu, M.; Liu, Y.; Zheng, J.; Cui, Y.; Xiong, C.; Liu, J.; Chen, J.; Cai, H. Phenotypical and gene co-expression network analyses of seed shattering in divergent sorghum (Sorghum spp.). Crop J. 2023, 11, 478–489. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Hao, S.; Zhu, J.; Kai, G.; Zhou, W. Genome-wide identification and characterization of Dof gene family in Salvia miltiorrhiza. Ornam. Plant Res. 2024, 4, e031. [Google Scholar] [CrossRef]
- Yang, S.M.; Chu, H.Y.; Wang, Y.X.; Guo, B.L.; An, T.Y.; Shen, Q. Analysis of monoterpene biosynthesis and functional TPSs of Perilla frutescens based on transcriptome and metabolome. Med. Plant Biol. 2024, 3, e017. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, M.; Li, J.; Xu, Y.; Li, C.; Lu, S. Genome-wide identification and functional analysis of Salvia miltiorrhiza MicroRNAs reveal the negative regulatory role of smi-miR159a in phenolic acid biosynthesis. Int. J. Mol. Sci. 2024, 25, 5148. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, J.; Chen, H.; Jin, W.; Liang, Z. Characterization of NAC family genes in Salvia miltiorrhiza and NAC2 potentially involved in the biosynthesis of tanshinones. Phytochemistry 2021, 191, 112932. [Google Scholar] [CrossRef]
- Devaiah, B.N.; Madhuvanthi, R.; Karthikeyan, A.S.; Raghothama, K.G. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol. Plant 2009, 2, 43–58. [Google Scholar] [CrossRef]
- Meng, J.; Wang, H.; Chi, R.; Qiao, Y.; Wei, J.; Zhang, Y.; Han, M.; Wang, Y.; Li, H. The eTM–miR858–MYB62-like module regulates anthocyanin biosynthesis under low-nitrogen conditions in Malus spectabilis. New Phytol. 2023, 238, 2524–2544. [Google Scholar] [CrossRef]
- Cui, M.H.; Yoo, K.S.; Hyoung, S.; Nguyen, H.T.; Kim, Y.Y.; Kim, H.J.; Ok, S.H.; Yoo, S.D.; Shin, J.S. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett. 2013, 587, 1773–1778. [Google Scholar] [CrossRef] [PubMed]
- Spears, B.J.; McInturf, S.A.; Collins, C.A.; Chlebowski, M.; Cseke, L.J.; Su, J.; Mendoza-Cózatl, D.G.; Gassmann, W. Class I TCP transcription factor AtTCP8 modulates key brassinosteroid-responsive genes. Plant Physiol. 2022, 2, 1457–1473. [Google Scholar] [CrossRef] [PubMed]
- Matoušek, J.; Kocábek, T.; Patzak, J.; Bříza, J.; Siglová, K.; Mishra, A.K.; Duraisamy, G.S.; Týcová, A.; Ono, E.; Krofta, K. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.). Plant Mol. Biol. 2016, 92, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Leng, J.; Ma, Y.; Fan, P.; Li, Y.; Yan, H.; Xu, Q. BrmiR828 Targets BrPAP1, BrMYB82, and BrTAS4 Involved in the light induced anthocyanin biosynthetic pathway in Brassica rapa. Int. J. Mol. Sci. 2020, 21, 4326. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Is auxin the key to improve crop nitrogen use efficiency for greener agriculture? New Phytol. 2024, 244, 2170–2175. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, H.; Zhang, M.; Ding, M.; Xu, F.; Yan, F.; Kinoshita, T.; Zhu, Y. Plasma membrane H+-ATPases in mineral nutrition and crop improvement. Trends Plant Sci. 2024, 29, 978–994. [Google Scholar] [CrossRef]
- Shen, C.; Li, Q.; An, Y.; Zhou, Y.; Zhang, Y.; He, F.; Chen, L.; Liu, C.; Mao, W.; Wang, X.; et al. The transcription factor GNC optimizes nitrogen use efficiency and growth by up-regulating the expression of nitrate uptake and assimilation genes in poplar. J. Exp. Bot. 2022, 73, 4778–4792. [Google Scholar] [CrossRef]
- Gaudinier, A.; Rodriguez-Medina, J.; Zhang, L.; Olson, A.; Liseron-Monfils, C.; Bågman, A.M.; Foret, J.; Abbitt, S.; Tang, M.; Li, B.; et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 2018, 563, 259–264. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Guo, C.; Zhao, X.; Li, Z.; Mou, Y.; Sun, Q.; Wang, J.; Yuan, C.; Li, C.; et al. Hsf transcription factor gene family in peanut (Arachis hypogaea L.): Genome-wide characterization and expression analysis under drought and salt stresses. Front. Plant Sci. 2023, 14, 1214732. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Li, Z.; Qiao, J.; Quan, R.; Wang, J.; Huang, R.; Qin, H. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiol. 2022, 189, 1110–1127. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Zhang, R.; Huang, R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J. 2012, 71, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, D.; Xie, L.; Zhou, T.; Zhao, J.; Zhang, Q.; Yang, M.; Wu, W.; Lian, X. Rice transcription factors OsLBD37/38/39 regulate nitrate uptake by repressing OsNRT2.1/2.2/2.3 under high-nitrogen conditions. Crop J. 2022, 10, 1623–1632. [Google Scholar] [CrossRef]
- Wang, P.; Zhong, Y.; Li, Y.; Zhu, W.; Zhang, Y.; Li, J.; Chen, Z.; Limpens, E. The phosphate starvation response regulator PHR2 antagonizes arbuscule maintenance in Medicago. New Phytol. 2024, 244, 1979–1993. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Gao, F.; Li, L.; He, Y.; Zhang, X.; Wang, M.; Wei, J.; Zhao, Y.; Chi, Z.; Wang, Q.M.; et al. WRKY33 negatively regulates anthocyanins biosynthesis and cooperates with PHR1 to mediate the acclimation to phosphate starvation. Plant Commun. 2024, 5, 100821. [Google Scholar] [CrossRef]
- Devaiah, B.N.; Karthikeyan, A.S.; Raghothama, K.G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 2007, 143, 1789–1801. [Google Scholar] [CrossRef]
- Squeri, C.; Miras-Moreno, B.; Gatti, M.; Garavani, A.; Poni, S.; Lucini, L.; Trevisan, M. Gas exchange, vine performance and modulation of secondary metabolism in Vitis vinifera L. cv Barbera following long-term nitrogen deficit. Planta 2021, 253, 73. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.F.; Chen, Y.; Sun, M.M.; Wang, Y.; Chen, Y.F. The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during Phosphate Starvation in Arabidopsis and Maize. Plant Cell 2020, 32, 3519–3534. [Google Scholar] [CrossRef]
- Ueda, Y.; Kiba, T.; Yanagisawa, S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes. Plant J. 2020, 102, 448–466. [Google Scholar] [CrossRef]
- Ye, D.; Zhang, S.; Gao, X.; Li, X.; Jin, X.; Shi, M.; Kai, G.; Zhou, W. Mining of disease-resistance genes in Crocus sativus based on transcriptome sequencing. Front. Genet. 2024, 15, 1349626. [Google Scholar] [CrossRef]
- Ma, Y.; Cui, G.; Chen, T.; Ma, X.; Wang, R.; Jin, B.; Yang, J.; Kang, L.; Tang, J.; Lai, C.; et al. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nat. Commun. 2021, 12, 685. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw Reads | Raw Bases | Clean Reads | Clean Bases | Q30 (%) | GC Content (%) |
---|---|---|---|---|---|---|
0h_1 | 41,996,116 | 6,341,413,516 | 41,747,548 | 6,277,251,062 | 96.86 | 48.83 |
0h_2 | 44,891,932 | 6,778,681,732 | 44,612,244 | 6,711,502,350 | 96.78 | 49.01 |
0h_3 | 44,646,604 | 6,741,637,204 | 44,364,466 | 6,675,923,766 | 96.77 | 49.12 |
1h_1 | 41,331,902 | 6,241,117,202 | 41,086,500 | 6,187,491,240 | 96.65 | 48.67 |
1h_2 | 47,329,878 | 7,146,811,578 | 47,054,614 | 7,083,282,107 | 96.91 | 48.6 |
1h_3 | 42,129,134 | 6,361,499,234 | 41,895,170 | 6,287,847,014 | 96.72 | 48.74 |
4h_1 | 41,322,204 | 6,239,652,804 | 41,072,752 | 6,160,922,097 | 96.69 | 48.10 |
4h_2 | 43,243,950 | 6,529,836,450 | 42,999,830 | 6,462,453,273 | 96.91 | 48.50 |
4h_3 | 46,512,196 | 7,023,341,596 | 46,232,832 | 6,946,228,890 | 96.89 | 48.87 |
12h_1 | 43,748,030 | 6,605,952,530 | 43,488,554 | 6,535,604,044 | 96.93 | 48.80 |
12h_2 | 44,072,088 | 6,654,885,288 | 43,828,444 | 6,595,059,343 | 96.93 | 48.42 |
12h_3 | 44,827,100 | 6,768,892,100 | 44,562,632 | 6,700,988,682 | 96.93 | 48.73 |
48h_1 | 40,305,996 | 6,086,205,396 | 40,060,196 | 6,026,652,901 | 96.88 | 48.54 |
48h_2 | 44,159,486 | 6,668,082,386 | 43,814,930 | 6,587,029,688 | 96.12 | 48.95 |
48h_3 | 43,280,274 | 6,535,321,374 | 43,000,430 | 6,468,945,750 | 96.77 | 48.89 |
Total | 653,796,890 | 98,723,330,390 | 649,821,142 | 97,707,182,207 | - | - |
Average | 43,586,459 | 6,581,555,359 | 43,321,409 | 6,513,812,147 | 96.78 | 48.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Gui, S.; Hao, S.; Li, X.; Zhuang, C.; Shi, Y.; Zhou, W.; Kai, G. Mining the Candidate Transcription Factors Modulating Tanshinones’ and Phenolic Acids’ Biosynthesis Under Low Nitrogen Stress in Salvia miltiorrhiza. Int. J. Mol. Sci. 2025, 26, 1774. https://doi.org/10.3390/ijms26041774
Cheng Y, Gui S, Hao S, Li X, Zhuang C, Shi Y, Zhou W, Kai G. Mining the Candidate Transcription Factors Modulating Tanshinones’ and Phenolic Acids’ Biosynthesis Under Low Nitrogen Stress in Salvia miltiorrhiza. International Journal of Molecular Sciences. 2025; 26(4):1774. https://doi.org/10.3390/ijms26041774
Chicago/Turabian StyleCheng, Yating, Siqi Gui, Siyu Hao, Xiujuan Li, Chao Zhuang, Yifei Shi, Wei Zhou, and Guoyin Kai. 2025. "Mining the Candidate Transcription Factors Modulating Tanshinones’ and Phenolic Acids’ Biosynthesis Under Low Nitrogen Stress in Salvia miltiorrhiza" International Journal of Molecular Sciences 26, no. 4: 1774. https://doi.org/10.3390/ijms26041774
APA StyleCheng, Y., Gui, S., Hao, S., Li, X., Zhuang, C., Shi, Y., Zhou, W., & Kai, G. (2025). Mining the Candidate Transcription Factors Modulating Tanshinones’ and Phenolic Acids’ Biosynthesis Under Low Nitrogen Stress in Salvia miltiorrhiza. International Journal of Molecular Sciences, 26(4), 1774. https://doi.org/10.3390/ijms26041774