Short Synthesis of Structurally Diverse N-Acylhomoserine Lactone Analogs and Discovery of Novel Quorum Quenchers Against Gram-Negative Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Libraries
2.2. Evaluation of Quorum Quencher and Antimicrobial Activities
2.3. In Silico ADME Study of the AHL Analogs
3. Materials and Methods
3.1. Synthetic Procedures and Characterization Data
3.2. Biological Screenings
3.2.1. Quorum-Quenching Activity: Quantification of Violacein Production
3.2.2. Antimicrobial Activity
3.3. In Silico ADME Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 28 December 2024).
- FAO. Tackling Antimicrobial Resistance in Food and Agriculture. Available online: https://openknowledge.fao.org/handle/20.500.14283/cc9185en (accessed on 8 February 2025).
- Naga, N.G.; El-Badan, D.E.; Ghanem, K.M.; Shaaban, M.I. It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Cell Commun. Signal. 2023, 21, 133. [Google Scholar] [CrossRef] [PubMed]
- Konda, M.; Tippani, R.; Porika, M.; Banoth, L. Quorum Sensing: A new target for anti-infective drug therapy, Chapter 11. In Quorum Quenching, a Chemical Biological Approach for Microbial Biofilm Mitigation and Drug Development; Maddela, N.R., Kondakindi, V.R., Pabbati, R., Eds.; Royal Society of Chemistry: Cambridge, UK, 2023; Volume 22, pp. 250–281. [Google Scholar]
- Sionov, R.V.; Steinberg, D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022, 10, 1239. [Google Scholar] [CrossRef] [PubMed]
- O’Loughin, C.T.; Miller, L.C.; Siryaporn, A.; Drescher, K.; Semmelhack, M.F.; Bassler, B.L. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. USA 2013, 110, 17981. [Google Scholar] [CrossRef]
- Rütschlin, S.; Böttcher, T. Inhibitors of bacterial swarming behavior. Chem. Eur. J. 2020, 26, 964. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Y.; Ge, Y.; Zhu, X.; Pan, J. Regulatory Mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front. Microbiol. 2020, 11, 589640. [Google Scholar] [CrossRef]
- Sikdar, R.; Elias, M.H. Evidence for complex interplay between quorum sensing and antibiotic resistance in Pseudomonas aeruginosa. Microbiol. Spectr. 2022, 10, e01269-22. [Google Scholar] [CrossRef]
- Jothi, R.; Hari-Prasath, N.; Gowrishankar, S.; Pandian, S.K. Bacterial quorum-sensing molecules as promising natural inhibitors of Candida albicans virulence dimorphism: An in silico and in vitro study. Front. Cell. Infect. Microbiol. 2021, 11, 781790. [Google Scholar] [CrossRef]
- Padder, S.A.; Prasad, R.; Shah, H.A. Quorum sensing: A less known mode of communication among fungi. Microb. Res. 2018, 210, 51–58. [Google Scholar] [CrossRef]
- Mehmood, A.; Liu, G.; Wang, X.; Meng, G.; Wang, C.; Liu, Y. Fungal Quorum-Sensing Molecules and Inhibitors with Potential Antifungal Activity: A Review. Molecules 2019, 24, 1950. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, H.; Mao, C.; Li, J.; Zhang, X.; Grenier, D.; Yi, L.; Wang, Y. Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. J. Agric. Food Chem. 2022, 70, 429. [Google Scholar] [CrossRef]
- Lowery, C.A.; Dickerson, T.J.; Janda, K.D. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem. Soc. Rev. 2008, 37, 1337. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.L. Interkingdom signaling and its consequences for human health. Virulence 2014, 5, 243. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, K.; Pinto, R.M.; Pully, D.; Van Dijck, P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021, 9, 412. [Google Scholar] [CrossRef] [PubMed]
- Shiner, E.K.; Rumbaugh, K.P.; Williams, S.C. Interkingdom signaling: Deciphering the language of acyl homoserine lactones. FEMS Microb. Rev. 2005, 29, 935. [Google Scholar] [CrossRef]
- Mion, S.; Carriot, N.; Lopez, J.; Planer, L.; Ortalo-Magné, A.; Chabrière, E.; Culioli, G.; Daudé, D. Disrupting quorum sensing alters social interactions in Chromobacterium violaceum. NPJ Biofilms Microbiomes 2021, 7, 40. [Google Scholar] [CrossRef]
- Boban, T.; Nadar, S.; Tauro, S. Breaking down bacterial communication: A review of quorum quenching agents. Future J. Pharm. Sci. 2023, 9, 77. [Google Scholar] [CrossRef]
- D’Aquila, P.; De Rose, E.; Sena, G.; Scorza, A.; Cretella, B.; Passarino, G.; Bellizzi, D. Quorum Quenching Approaches against Bacterial-Biofilm-Induced Antibiotic Resistance. Antibiotics 2024, 13, 619. [Google Scholar] [CrossRef]
- Sundar, K.; Prabu, R.; Jayalakshmi, G. Quorum Sensing Inhibition Based Drugs to Conquer Antimicrobial Resistance; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Gadar, K.; McCarthy, R.R. Using next generation antimicrobials to target the mechanisms of infection. NPJ Antimicrob. Resist. 2023, 1, 11. [Google Scholar] [CrossRef]
- Wang, J.; Lu, X.; Wang, C.; Yue, Y.; Wei, B.; Zhang, H.; Wang, H.; Chen, J. Research Progress on the Combination of Quorum-Sensing Inhibitors and Antibiotics against Bacterial Resistance. Molecules 2024, 29, 1674. [Google Scholar] [CrossRef]
- Rezzoagli, C.; Archetti, M.; Mignot, I.; Baumgartner, M.; Kümmerli, R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol. 2020, 18, e3000805. [Google Scholar] [CrossRef]
- Shaw, E.; Wuest, W. Virulence attenuating combination therapy: A potential multi-target synergy approach to treat: Pseudomonas aeruginosa infections in cystic fibrosis patients. RSC Med. Chem. 2020, 11, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yu, Z.; Ding, T. Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms 2020, 17, 425. [Google Scholar] [CrossRef] [PubMed]
- Soukarieh, F.; Williams, P.; Stocks, M.J.; Cámara, M. Pseudomonas aeruginosa Quorum Sensing Systems as Drug Discovery Targets: Current Position and Future Perspectives. J. Med. Chem. 2018, 61, 10385. [Google Scholar] [CrossRef] [PubMed]
- Acet, Ö.; Erdönmez, D.; Acet, B.Ö.; Odabasi, M. N-acyl homoserine lactone molecules assisted quorum sensing: Effects consequences and monitoring of bacteria talking in real life. Arch. Microbiol. 2021, 203, 3739. [Google Scholar] [CrossRef]
- Qin, X.; Totha, G.K.; Singh, R.; Balamurugan, R.; Goycoolea, F. M Synthetic homoserine lactone analogues as antagonists of bacterial quorum sensing. Bioorg. Chem. 2020, 98, 103698. [Google Scholar] [CrossRef]
- Boursier, M.E.; Combs, J.B.; Blackwell, H.E. N-Acyl L-homocysteine thiolactones are potent and stable synthetic modulators of the RhlR quorum sensing receptor in Pseudomonas aeruginosa. ACS Chem. Biol. 2019, 14, 186. [Google Scholar] [CrossRef]
- Ali, A.I.M.; O’Donnell, M.J.; Scott, W.L.; Samaritoni, J.G. A solid-phase synthetic route to N-acylated α-alkyl-D,L-homoserine lactones. Tetrahedron Lett. 2020, 61, 152328. [Google Scholar] [CrossRef]
- Higgins, E.L.; Kellner-Rogers, J.S.; Estanislau, A.M.; Esposito, A.C.; Vail, N.R.; Payne, S.R.; Stockwell, J.G.; Ulrich, S.M. Design, synthesis, and evaluation of transition-state analogs as inhibitors of the bacterial quorum sensing autoinducer synthase CepI. Bioorg. Med. Chem. Lett. 2021, 39, 127873. [Google Scholar] [CrossRef]
- Zhang, Q.; Jeanneau, E.; Queneau, Y.; Soulère, L. (2R)- and (2S)- 2-hydroxy- hexanoyl and octanoyl-L-homoserine lactones: New highly potent Quorum Sensing modulators with opposite activities. Bioorg. Chem. 2020, 104, 104307. [Google Scholar] [CrossRef]
- Shin, D.; Gorgulla, C.; Boursier, M.E.; Rexrode, N.; Brown, E.C.; Arthanari, H.; Blackwell, H.E.; Nagarajan, R. N-Acyl Homoserine Lactone Analog Modulators of the Pseudomonas aeruginosa Rhll Quorum Sensing Signal Synthase. ACS Chem. Biol. 2019, 14, 2305. [Google Scholar] [CrossRef]
- Muimhneacháin, E.O.; Reen, F.J.; O’Gara, F.; McGlacken, G.P. Analogues of Pseudomonas aeruginosa signalling molecules to tackle infections. Org. Biomol. Chem. 2018, 16, 169. [Google Scholar] [CrossRef] [PubMed]
- Chbib, C. Impact of the structure-activity relationship of AHL analogues on quorum sensing in Gram-negative bacteria. Bioorg. Med. Chem. 2020, 28, 115282. [Google Scholar] [CrossRef] [PubMed]
- Borkar, M.R.; Khade, K.; Sherje, K. A comprehensive review on structural attributes of biofilm inhibitors against potential targets. J. Mol. Str. 2023, 1293, 136262. [Google Scholar] [CrossRef]
- Ampomah-Wireko, M.; Luo, C.; Cao, Y.; Wang, H.; Nininahazwe, L.; Wu, C. Chemical probe of AHL modulators on quorum sensing in Gram-negative bacteria and as antiproliferative agents: A review. Eur. J. Med. Chem. 2021, 226, 113864. [Google Scholar] [CrossRef]
- Styles, M.J.; Early, S.A.; Tucholski, T.; West, K.H.J.; Ge, Y.; Blackwell, H.E. Chemical Control of Quorum Sensing in E. coli: Identification of Small Molecule Modulators of SdiA and Mechanistic Characterization of a Covalent Inhibitor. ACS Infect. Dis. 2020, 6, 3092. [Google Scholar] [CrossRef]
- Palmer, A.G.; Senechal, A.C.; Haire, T.C.; Mehta, N.P.; Valiquette, S.D.; Blackwell, H.E. Selection of Appropriate Autoinducer Analogues for the Modulation of Quorum Sensing at the Host−Bacterium Interface. ACS Chem. Biol. 2018, 13, 3115. [Google Scholar] [CrossRef]
- Ziegler, E.W.; Brown, A.B.; Nesnas, N.; Chouinard, C.D.; Mehta, A.K.; Palmer, A.G. β-Cyclodextrin Encapsulation of Synthetic AHLs: Drug Delivery Implications and Quorum-Quenching Exploits. ChemBioChem 2021, 22, 1292. [Google Scholar] [CrossRef]
- Wei, Z.; Li, T.; Gu, Y.; Zhang, Q.; Wang, E.; Li, W.; Wang, X.; Li, Y.; Li, H. Design, Synthesis, and Biological Evaluation of N-Acyl-Homoserine Lactone Analogs of Quorum Sensing in Pseudomonas aeruginosa. Front. Chem. 2022, 10, 948687. [Google Scholar] [CrossRef]
- Sánchez-Sanz, G.; Crowe, D.; Nicholson, A.; Fleming, A.; Carey, E.; Kelleher, F. Conformational studies of Gram-negative bacterial quorum sensing acyl homoserine lactone (AHL) molecules: The importance of the n → π* interaction. Biophys. Chem. 2018, 238, 16. [Google Scholar] [CrossRef]
- Reverchon, S.; Chantegrel, B.; Deshayes, C.; Doutheau, A.; Cotte-Pattat, N. New synthetic analogues of N- acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg. Med. Chem Lett. 2002, 12, 1153. [Google Scholar] [CrossRef]
- Schmucker, D.J.; Dunbar, S.R.; Shepherd, T.D.; Bertucci, M.A. n → π* Interactions in N-Acyl Homoserine Lactone Derivatives and Their Effects on Hydrolysis Rates. J Phys Chem A 2019, 123, 2537. [Google Scholar] [CrossRef] [PubMed]
- Mattmann, M.E.; Geske, G.D.; Worzalla, G.A.; Chandler, J.R.; Sappington, K.J.; Greenberg, E.P.; Blackwell, H.E. Synthetic ligands that activate and inhibit a quorum-sensing regulator in Pseudomonas aeruginosa. Bioorg. Med. Chem. 2008, 18, 3072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Queneau, Y.; Soulère, L. Biological Evaluation and Docking Studies of New Carbamate, Thiocarbamate, and Hydrazide Analogues of Acyl Homoserine Lactones as Vibrio fischeri-Quorum Sensing Modulators. Biomolecules 2020, 10, 455. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gong, Q.; Luo, C.; Liang, Y.; Kong, X.; Wu, C.; Feng, P.; Wang, Q.; Zhang, H.; Wireko, M.A. Synthesis and Biological Evaluation of Novel L-Homoserine Lactone Analogs as Quorum Sensing Inhibitors of Pseudomonas aeruginosa. Chem. Pharm. Bull. 2019, 67, 1088. Available online: https://www.jstage.jst.go.jp/article/cpb/67/10/67_c19-00359/_pdf (accessed on 8 February 2025). [CrossRef] [PubMed]
- Yadav, U.R.; Devender, K.; Poornima, M.; Sekhar, C.C.; Atcha, K.R.; Reddy, B.V.S.; Padmaja, P. Design, synthesis and biological evaluation of triazole, sulfonamide and sulfonyl urea derivatives of N-acylhomoserine lactone as quorum sensing inhibitors. J. Mol. Str. 2024, 1295, 136547. [Google Scholar] [CrossRef]
- Castang, S.; Chantegrel, B.; Deshayes, C.; Dolmazon, R.; Gouet, P.; Haser, R.; Reverchon, S.; Nasser, W.; Hugouvieux-Cotte-Pattat, N.; Doutheau, A. N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorg. Med. Chem. Lett. 2004, 14, 5145. [Google Scholar] [CrossRef]
- Zhao, M.; Yu, Y.; Hua, Y.; Feng, F.; Tong, Y.; Yang, X.; Xiao, J.; Song, H. Design, synthesis and biological evaluation of N-sulfonyl homoserine lactone derivatives as inhibitors of quorum sensing in Chromobacterium violaceum. Molecules 2013, 18, 3266–3278. [Google Scholar] [CrossRef]
- Frezza, M.; Soulère, L.; Reverchon, S.; Guiliani, N.; Jerez, C.; Queneau, Y.; Doutheau, A. Synthetic homoserine lactone-derived sulfonylureas as inhibitors of Vibrio fischeri quorum sensing regulator. Bioorg. Med. Chem. 2008, 16, 3550. [Google Scholar] [CrossRef]
- Hernández, D.; Porras, M.; Boto, A. Conversion of Hydroxyproline “Doubly Customizable Units” to Hexahydropyrimidines: Access to Conformationally Constrained Peptides. J. Org. Chem. 2023, 88, 9910. [Google Scholar] [CrossRef]
- Hernández, D.; Carro, C.; Boto, A. Structural Diversity by Using Amino Acid “Customizable Units:” Conversion of Hydroxyproline (Hyp) into Nitrogen Heterocycles. Amino Acids 2022, 54, 955. [Google Scholar] [CrossRef]
- Hernández, D.; Carro, C.; Boto, A. “Doubly Customizable” Unit for the Generation of Structural Diversity: From Pure Enantiomeric Amines to Peptide Derivatives. J. Org. Chem. 2021, 86, 2796. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, C.J.; Carro, C.; Hernández, D.; Boto, A. Conversion of “Customizable Units” into N-Alkyl Amino Acids and Generation of N-Alkyl Peptides. J. Org. Chem. 2019, 84, 8392. [Google Scholar] [CrossRef] [PubMed]
- Romero-Estudillo, I.; Boto, A. Domino Process Achieves Site-Selective Peptide Modification with High Optical Purity. Applications to Chain Diversification and Peptide Ligation. J. Org. Chem. 2015, 80, 9379–9391. [Google Scholar] [CrossRef] [PubMed]
- Stauff, D.L.; Bassler, B.L. Quorum Sensing in Chromobacterium violaceum: DNA Recognition and Gene Regulation by the CviR Receptor. J. Bacteriol. 2011, 193, 3871–3878. [Google Scholar] [CrossRef]
- Dimitrova, P.D.; Damyanova, T.; Paunova-Krasteva, T. Chromobacterium violaceum: A Model for Evaluating the Anti-Quorum Sensing Activities of Plant Substances. Sci. Pharm. 2023, 91, 33. [Google Scholar] [CrossRef]
- Choo, J.H.; Rukayadi, Y.; Hwang, J.-K. Inhibition of Bacterial Quorum Sensing by Vanilla Extract. Lett. Appl. Microbiol. 2006, 42, 637–641. [Google Scholar] [CrossRef]
- Syrpas, M.; Ruysbergh, E.; Blommaert, L.; Vanelslander, B.; Sabbe, K.; Vyverman, W.; De Kimpe, N.; Mangelinckx, S. Haloperoxidase Mediated Quorum Quenching by Nitzschia cf pellucida: Study of the Metabolization of N-Acyl Homoserine Lactones by a Benthic Diatom. Mar. Drugs 2014, 12, 352–367. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Breakpoint Tables for Interpretation of MICs and Zone Diameters. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 28 December 2024).
- The European Committee on Antimicrobial Susceptibility Testing—EUCAST. Antimicrobial Susceptibility Testing. EUCAST Disk Diffusion Method. Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology (accessed on 28 December 2024).
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg to predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284. [Google Scholar] [CrossRef] [PubMed]
- XLOGP Program, CCBG; Shanghai Institute of Organic Chemistry: Shanghai, China, 2007.
- Wildman, S.A.; Crippen, G.M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3. [Google Scholar] [CrossRef]
- SILICOS-IT and logS: FILTER-IT Program from SILICOS-IT, Version 1.0.2. Available online: https://www.silicos-it.be (accessed on 8 February 2025).
- P-gp: SVM model built on 1033 molecules (training set) and tested on 415 molecules (test set). as stated in the SwissADME application.
- CYP inhibitors: SVM model built on SwissADME with extensive (>1000–10000 molecules) training sets and tested on thousands of molecules (test set) as stated in the SwissADME application.
- Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res. 1992, 9, 663. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Britelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841. [Google Scholar] [CrossRef]
- Martin, Y.C. A bioavailability score. J. Med. Chem. 2005, 48, 3164. [Google Scholar] [CrossRef] [PubMed]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719. [Google Scholar] [CrossRef] [PubMed]
- Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 2008, 3, 435. [Google Scholar] [CrossRef] [PubMed]
- Enders, D.; Kirchhoff, J.H.; Köbberling, J.; Peiffer, T.H. Asymmetric Synthesis of α-Branched Primary Amines on Solid Support via Novel Hydrazine Resins. Org. Lett. 2001, 3, 1241. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.; Park, H.Y.; Park, H.J.; Kim, C.K.; Yoon, J.; Lee, J.H. Development of Inhibitors against TraR Quorum Sensing System in Agrobacterium tumefaciens by Molecular Modeling of the Ligand-Receptor Interaction. Mol. Cells 2009, 28, 447–453. [Google Scholar] [CrossRef]
- Singh, S.P.; Michaelides, A.; Merrill, A.R.; Schwan, A.L. A microwave-assisted synthesis of (S)-N-protected homoserine γ-lactones from L-aspartic acid. J. Org. Chem. 2011, 76, 6825–6831. [Google Scholar] [CrossRef]
entry | substrate | Z | Product (%) |
1 | 5a | X = H | 6a (80) |
2 | 5b | X = Me | 6b (73) |
3 | 5c | X = Cl | 6c (73) |
4 | 5d | X = I | 6d (86) |
5 | 5e | X = NO2 | 6e (71) |
6 | 5f | X = H | 6f (88) |
7 | 5g | X = F | 6g (85) |
8 | 5h | X = Cl | 6h (82) |
9 | 5i | X = I | 6i (73) |
10 | 5j | X = NO2 | 6j (87) |
11 | 5k | 6k (78) | |
12 | 5l | Ac | 6l (72) |
13 | 5m | 6m (70) | |
14 | 5n | Boc | 6n (70) |
15 | 5o | Cbz | 6o (56) |
16 | 5p | CO2Ph | 6p (79) |
entry | substrate | Z | Product (%) |
1 | 6a | X = H | 7a (63) |
2 | 6b | X = Me | 7b (65) |
3 | 6c | X = Cl | 7c (29) |
4 | 6d | X = I | 7d (52) |
5 | 6e | X = NO2 | 7e (56) |
6 | 6f | X = H | 7f (67) |
7 | 6g | X = F | 7g (67) |
8 | 6h | X = Cl | 7h (40) |
9 | 6i | X = I | 7i (59) |
10 | 6j | X = NO2 | 7j (53) |
11 | 6k | 7k (34) | |
12 | 6l | Ac | 7l (43) |
13 | 6m | 7m (57) | |
14 | 6n | Boc | 7n (70) |
15 | 6o | Cbz | 7o (30) |
16 | 6p | 7p (23) |
Compound | C (μM) | Inhibition of Violacein Production (%) μ ± DE a |
---|---|---|
7a | 200 | 70.42 ± 3.55 |
7a | 100 | 57.27 ± 5.40 |
7a | 50 | 41.94 ± 4.64 |
7b | 200 | 62.10 ± 3.89 |
7b | 100 | 49.59 ± 6.16 |
7b | 50 | 31.73 ± 7.31 |
7c | 200 | 51.55 ± 3.62 |
7c | 100 | 44.39 ± 7.43 |
7c | 50 | 39.42 ± 4.90 |
7d | 200 | 26.37 ± 10.15 |
7e | 200 | 48.74 ± 5.69 |
7e | 100 | 36.96 ± 7.51 |
7f | 200 | 4.16 ± 3.41/NS |
7g | 200 | 26.21 ± 7.63 |
7h | 200 | 32.80 ± 3.38 |
7i | 200 | 23.34 ± 4.73 |
7j | 200 | NI |
7k | 200 | 6.98 ± 3.02 |
7l | 200 | NI |
7m | 200 | NI |
7n | 200 | 30.47 ± 1.82 |
7o | 200 | 67.06 ± 3.82 |
7o | 100 | 51.94 ± 2.21 |
7o | 50 | 43.76 ± 1.28 |
7p | NT | NT |
7q | 200 | 43.52 ± 4.72 |
7r | 200 | 11.79 ± 3.77/NS |
7s | 200 | 8.19 ± 1.47/NS |
7t | 200 | 7.36 ± 2.25/NS |
7u | 200 | 10.87 ± 3.72/NS |
Compound | Zone of Inhibition (mm) | |||
---|---|---|---|---|
S. aureus (CECT 794) | C. jejuni (CECT9112) | S. enterica (CECT456) | P. aeruginosa (CECT108) | |
6a | ------ | ------ | ------ | ------ |
6b | 13.30 ± 0.60 | 15.00 ± 1.20 | NI | NI |
6c | 13.70 ± 0.30 | 14.00 ± 0.00 | NI | NI |
6d | 12.00 ± 1.00 | 12.00 ± 1.20 | NI | NI |
6e | 12.30 ± 0.30 | 17.00 ± 0.60 | NI | NI |
6f | NI | NI | NI | NI |
6g | NI | NI | NI | NI |
6h | NI | NI | NI | NI |
6i | NI | NI | NI | NI |
6j | NI | NI | NI | NI |
6k | 13.00 ± 0.90 | 16.00 ± 0.60 | NI | NI |
6l | NI | NI | NI | NI |
6m | NI | NI | NI | NI |
6n | NI | NI | NI | NI |
6o | NI | NI | NI | NI |
6p | NI | NI | NI | NI |
Tetracycline | 26.00 ± 1.00 | 25.00 ± 1.20 | 24.00 ± 1.60 | 15.00 ± 2.90 |
Compound | MW (g/mol) | N° H-Bond Donors | N° H-Bond Acceptors | N° Rotable Bonds | TPSA (Ų) | LogPo/w | LogS (SILICOS-IT) |
---|---|---|---|---|---|---|---|
7a | 241.26 | 1 | 5 | 3 | 80.85 | 0.90 | −2.89 Soluble |
7b | 255.29 | 1 | 5 | 3 | 80.85 | 1.23 | −3.27 Soluble |
7c | 275.71 | 1 | 5 | 3 | 80.85 | 1.41 | −3.50 Soluble |
7d | 367.16 | 1 | 5 | 3 | 80.85 | 1.53 | −3.78 Soluble |
7e | 286.26 | 1 | 7 | 4 | 126.67 | 0.22 | −2.74 Soluble |
7f | 205.21 | 1 | 3 | 3 | 55.40 | 1.26 | −2.91 Soluble |
7g | 223.20 | 1 | 4 | 3 | 55.40 | 1.58 | −3.19 Soluble |
7h | 239.65 | 1 | 3 | 3 | 55.40 | 1.80 | −3.53 Soluble |
7i | 331.11 | 1 | 3 | 3 | 55.40 | 1.94 | −3.83 Soluble |
7j | 250.21 | 1 | 5 | 4 | 101.22 | 0.70 | −2.77 Soluble |
7k | 295.21 | 1 | 7 | 5 | 147.04 | 0.07 | −2.62 Soluble |
7l | 143.14 | 1 | 3 | 2 | 55.40 | −0.05 | −0.75 Soluble |
7m | 382.41 | 2 | 5 | 10 | 93.73 | 2.18 | −5.96 Mod. Sol. |
7n | 201.22 | 1 | 4 | 4 | 64.63 | 0.95 | −1.34 Soluble |
7o | 235.24 | 1 | 4 | 5 | 64.63 | 1.42 | −3.06 Soluble |
7p | 159.14 | 1 | 4 | 2 | 64.63 | 0.01 | −0.50 Soluble |
7q | 269.32 | 0 | 5 | 3 | 72.06 | 1.45 | −2.94 Soluble |
7r | 237.23 | 0 | 4 | 3 | 46.61 | 1.75 | −2.86 Soluble |
7s | 267.25 | 0 | 5 | 5 | 55.84 | 1.74 | −3.00 Soluble |
7t | 235.24 | 0 | 4 | 4 | 55.84 | 1.55 | −2.33 Soluble |
7u | 293.27 | 0 | 6 | 7 | 82.14 | 1.54 | −2.40 Soluble |
6a | 343.35 | 0 | 8 | 10 | 115.43 | 0.77 | −2.58 Soluble |
6b | 357.38 | 0 | 8 | 10 | 115.43 | 1.11 | −2.96 Soluble |
6c | 377.80 | 0 | 8 | 10 | 115.43 | 1.32 | −3.17 Soluble |
6d | 469.25 | 0 | 8 | 10 | 115.43 | 1.28 | −3.42 Soluble |
6e | 388.35 | 0 | 10 | 11 | 161.25 | 0.22 | −2.41 Soluble |
6k | 397.29 | 0 | 10 | 12 | 181.62 | −0.04 | −2.29 Soluble |
Compound | GI Absorp | BBB Permeant | P-gp Substrate | CYP Inhibitor | Log Kp (cm/s) | Druglikeness: Lipinki, Ghose, etc. | Abbot Bio. Score | PAINS/Brenk Alerts |
---|---|---|---|---|---|---|---|---|
7a | High | No | No | No | −7.08 | Yes, 0 violations | 0.55 | 0 alerts |
7b | High | No | No | No | −6.91 | Yes, 0 violations | 0.55 | 0 alerts |
7c | High | No | No | No | −6.85 | Yes, 0 violations | 0.55 | 0 alerts |
7d | High | No | No | No except CYP2C19 | −7.39 | Yes, 0 violations | 0.55 | P: 0 alerts; B: Iodo |
7e | High | No | No | No | −7.48 | Yes, 0 violations | 0.55 | P: 0 alerts; B: Nitro |
7f | High | Yes | No | No | −6.64 | Yes, 0 violations | 0.55 | 0 alerts |
7g | High | Yes | No | No | −6.67 | Yes, 0 violations | 0.55 | 0 alerts |
7h | High | Yes | No | No except P450 1A2 | −6.41 | Yes, 0 violations | 0.55 | 0 alerts |
7i | High | Yes | No | No except CYP1A2 | −6.94 | Yes, 0 violations | 0.55 | P:0 alerts; B: Iodine |
7j | High | No | No | No | −7.04 | Yes, 0 violations | 0.55 | P:0 alerts; B: Nitro |
7k | Low | No | No | No | −7.43 | No, Veber rules (TPSA > 140) and Egan: TPSA > 131 | 0.55 | P:0 alerts; B: Nitro |
7l | High | No | Yes | No | −7.44 | No, Muegge and Ghose, low MW | 0.55 | 0 alerts |
7m | High | No | Yes | No except CYP3A4 | −6.60 | Yes, 0 violations | 0.55 | P:0 alerts; B: >2 esters |
7n | High | No | No | No | −6.80 | Yes, 0 violations | 0.55 | P: 0 alerts; B: >2 esters |
7o | High | Yes | No | No | −6.65 | Yes, 0 violations | 0.55 | P: 0 alerts; B: >2 esters |
7p | High | No | No | No | −7.25 | No, Muegge and Ghose, low MW | 0.55 | P: 0 alerts; B: >2 esters |
7q | High | Yes | No | No except CYP2C19 | −6.86 | Yes, 0 violations | 0.56 | 0 alerts |
7r | High | Yes | No | No | −6.63 | Yes, 0 violations | 0.55 | 0 alerts |
7s | High | Yes | No | No | −6.85 | Yes, 0 violations | 0.55 | 0 alerts |
7t | High | Yes | No | No | −6.48 | Yes, 0 violations | 0.55 | 0 alerts |
7u | High | No | No | No | −6.84 | Yes, 0 violations | 0.55 | 0 alerts |
6a | High | No | No | No except CYP2C19 | −8.07 | Yes, 0 violations | 0.55 | P: 0 alerts; B: aldehyde |
6b | High | No | No | Same as 6a | −7.90 | Yes, 0 violations | 0.55 | Same as 6a |
6c | High | No | No | Same as 6a | −7.84 | Yes, 0 violations | 0.55 | Same as 6a |
6d | High | No | No | Same as 6a | −8.38 | Yes, 0 violations | 0.55 | Same as 6a |
6e | Low | No | Yes | No | −8.47 | No, high TPSA and rotors, O > 10 | 0.55 | P: 0 alerts; B: aldehyde, NO2 |
6k | Low | No | Yes | No | −8.43 | Same as 6e | 0.55 | Same as 6e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porras, M.; Hernández, D.; Boto, A. Short Synthesis of Structurally Diverse N-Acylhomoserine Lactone Analogs and Discovery of Novel Quorum Quenchers Against Gram-Negative Pathogens. Int. J. Mol. Sci. 2025, 26, 1775. https://doi.org/10.3390/ijms26041775
Porras M, Hernández D, Boto A. Short Synthesis of Structurally Diverse N-Acylhomoserine Lactone Analogs and Discovery of Novel Quorum Quenchers Against Gram-Negative Pathogens. International Journal of Molecular Sciences. 2025; 26(4):1775. https://doi.org/10.3390/ijms26041775
Chicago/Turabian StylePorras, Marina, Dácil Hernández, and Alicia Boto. 2025. "Short Synthesis of Structurally Diverse N-Acylhomoserine Lactone Analogs and Discovery of Novel Quorum Quenchers Against Gram-Negative Pathogens" International Journal of Molecular Sciences 26, no. 4: 1775. https://doi.org/10.3390/ijms26041775
APA StylePorras, M., Hernández, D., & Boto, A. (2025). Short Synthesis of Structurally Diverse N-Acylhomoserine Lactone Analogs and Discovery of Novel Quorum Quenchers Against Gram-Negative Pathogens. International Journal of Molecular Sciences, 26(4), 1775. https://doi.org/10.3390/ijms26041775