Special Issue “Molecular Genetics and Plant Breeding 3.0 and 4.0”
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- 1
- Qin, Y.; Zhao, H.; Han, H.; Zhu, G.; Wang, Z.; Li, F. Chromosome-Level Genome Assembly and Population Genomic Analyses Reveal Geographic Variation and Population Genetic Structure of Prunus tenella. Int. J. Mol. Sci. 2023, 24, 11735. https://doi.org/10.3390/ijms241411735.
- 2
- Qureshi, N.; Singh, R.P.; Gonzalez, B.M.; Velazquez-Miranda, H.; Bhavani, S. Genomic Regions Associated with Resistance to Three Rusts in CIMMYT Wheat Line “Mokue#1”. Int. J. Mol. Sci. 2023, 24, 12160. https://doi.org/10.3390/ijms241512160.
- 3
- Sobiech, A.; Tomkowiak, A.; Bocianowski, J.; Szymańska, G.; Nowak, B.; Lenort, M. Identification and Analysis of Candidate Genes Associated with Maize Fusarium Cob Resistance Using Next-Generation Sequencing Technology. Int. J. Mol. Sci. 2023, 24, 16712. https://doi.org/10.3390/ijms242316712.
- 4
- Lu, X.; Liu, P.; Tu, L.; Guo, X.; Wang, A.; Zhu, Y.; Jiang, Y.; Zhang, C.; Xu, Y.; Chen, Z.; et al. Joint-GWAS, Linkage Mapping, and Transcriptome Analysis to Reveal the Genetic Basis of Plant Architecture-Related Traits in Maize. Int. J. Mol. Sci. 2024, 25, 2694.https://doi.org/10.3390/ijms25052694.
- 5
- Zhang, Y.; Du, A.; Tong, L.; Yan, G.; Lu, L.; Yin, Y.; Fu, X.; Yang, H.; Li, H.; Huang, W.; et al. Genome Resequencing for Autotetraploid Rice and Its Closest Relatives Reveals Abundant Variation and High Potential in Rice Breeding. Int. J. Mol. Sci. 2024, 25, 9012. https://doi.org/10.3390/ijms25169012.
- 6
- He, L.; Sui, Y.; Che, Y.; Liu, L.; Liu, S.; Wang, X.; Cao, G. New Insights into the Genetic Basis of Lysine Accumulation in Rice Revealed by Multi-Model GWAS. Int. J. Mol. Sci. 2024, 25, 4667. https://doi.org/10.3390/ijms25094667.
- 7
- Gianinetti, A.; Ghizzoni, R.; Desiderio, F.; Morcia, C.; Terzi, V.; Baronchelli, M. QTL Analysis ofβ-Glucan Content and Other Grain Traits in a Recombinant Population of Spring Barley. Int. J. Mol. Sci. 2024, 25, 6296. https://doi.org/10.3390/ijms25126296 10.
- 8
- Liao, J.; Zhang, Z.; Shang, Y.; Jiang, Y.; Su, Z.; Deng, X.; Pu, X.; Yang, R.; Zhang, L. Anatomy and Comparative Transcriptome Reveal the Mechanism of Male Sterility in Salvia miltiorrhiza. Int. J. Mol. Sci. 2023, 24, 10259. https://doi.org/10.3390/ijms241210259.
- 9
- Keller-Przybylkowicz, S.; Oskiera, M.; Liu, X.; Song, L.; Zhao, L.; Du, X.; Kruczynska, D.; Walencik, A.; Kowara, N.; Bartoszewski, G. Transcriptome Analysis of White- and Red-Fleshed Apple Fruits Uncovered Novel Genes Related to the Regulation of Anthocyanin Biosynthesis. Int. J. Mol. Sci. 2024, 25, 1778. https://doi.org/10.3390/ijms25031778.
- 10
- Li, H.; Suo, Y.; Li, H.; Sun, P.; Li, S.; Yuan, D.; Han, W.; Fu, J. Cytological and Transcriptome Analyses Provide Insights into Persimmon Fruit Size Formation (Diospyros kaki Thunb.). Int. J. Mol. Sci. 2024, 25, 7238. https://doi.org/10.3390/ijms25137238.
- 11
- Jiang, C.; Lyu, K.; Zeng, S.; Wang, X.; Chen, X. A Combined Metabolome and Transcriptome Reveals the Lignin Metabolic Pathway during the Developmental Stages of Peel Coloration in the ‘Xinyu’ Pear. Int. J. Mol. Sci. 2024, 25, 7481. https://doi.org/10.3390/ijms25137481.
- 12
- Hu, M.; Xie, M.; Cui, X.; Huang, J.; Cheng, X.; Liu, L.; Liu, S.; Tong, C. Genome-Wide Characterization of Trehalose-6-Phosphate Synthase Gene Family of Brassica napus and Potential Links with Agronomic Traits. Int. J. Mol. Sci. 2022, 23, 15714. https://doi.org/10.3390/ijms232415714.
- 13
- Zheng, H.; Liang, Y.; Hong, B.; Xu, Y.; Ren, M.; Wang, Y.; Huang, L.; Yang, L.; Tao, J. Genome-Scale Analysis of the Grapevine KCS Genes Reveals Its Potential Role in Male Sterility. Int. J. Mol. Sci. 2023, 24, 6510. https://doi.org/10.3390/ijms24076510.
- 14
- Xuan, C.; Feng, M.; Li, X.; Hou, Y.; Wei, C.; Zhang, X. Genome-Wide Identification and Expression Analysis of Chitinase Genes in Watermelon under Abiotic Stimuli and Fusarium oxysporum Infection. Int. J. Mol. Sci. 2024, 25, 638. https://doi.org/10.3390/ijms25010638.
- 15
- Li, C.; Cong, C.; Liu, F.; Yu, Q.; Zhan, Y.; Zhu, L.; Li, Y. Abundance of Transgene Transcript Variants Associated with Somatically Active Transgenic Helitrons from Multiple T-DNA Integration Sites in Maize. Int. J. Mol. Sci. 2023, 24, 6574. https://doi.org/10.3390/ijms24076574.
- 16
- Xiong, W.; Liao, L.; Ni, Y.; Gao, H.; Yang, J.; Guo, Y. The Effects of Epicuticular Wax on Anthracnose Resistance of Sorghum bicolor. Int. J. Mol. Sci. 2023, 24, 3070. https://doi.org/10.3390/ijms24043070.
- 17
- Meng, R.; Li, Z.; Kang, X.; Zhang, Y.; Wang, Y.; Ma, Y.; Wu, Y.; Dong, S.; Li, X.; Gao, L.; et al. High Overexpression of SiAAP9 Leads to Growth Inhibition and Protein Ectopic Localization in Transgenic Arabidopsis. Int. J. Mol. Sci. 2024, 25, 5840. https://doi.org/10.3390/ijms25115840.
- 18
- Zhang, X.; Du, M.; Yang, Z.; Ang, Z.; Lim, K.-J. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int. J. Mol. Sci. 2023, 24, 10664. https://doi.org/10.3390/ijms241310664.
- 19
- Li, Z.; Xiong, K.; Wen, W.; Li, L.; Xu, D. Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. Int. J. Mol. Sci. 2023, 24, 1153. https://doi.org/10.3390/ijms24021153.
- 20
- Adhikari, P.B.; Kasahara, R.D. An Overview on MADS Box Members in Plants: A Meta-Review. Int. J. Mol. Sci. 2024, 25, 8233. https://doi.org/10.3390/ijms25158233.
- 21
- Di, X.; Wang, Q.; Zhang, F.; Feng, H.; Wang, X.; Cai, C. Advances in the Modulation of Potato Tuber Dormancy and Sprouting. Int. J. Mol. Sci. 2024, 25, 5078. https://doi.org/10.3390/ijms25105078.
References
- Marks, R.A.; Hotaling, S.; Frandsen, P.B.; VanBuren, R. Representation and participation across 20 years of plant genome sequencing. Nat. Plants 2021, 7, 1571–1578. [Google Scholar] [CrossRef]
- Bolger, A.M.; Poorter, H.; Dumschott, K.; Bolger, M.E.; Arend, D.; Osorio, S.; Gundlach, H.; Mayer, K.F.X.; Lange, M.; Scholz, U.; et al. Computational aspects underlying genome to phenome analysis in plants. Plant J. 2019, 97, 182–198. [Google Scholar] [CrossRef]
- Cook, D.R.; Varshney, R.K. From genome studies to agricultural biotechnology: Closing the gap between basic plant science and applied agriculture. Curr. Opin. Plant Biol. 2010, 13, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Fernie, A.R.; Gutierrez-Marcos, J. From genome to phenome: Genome-wide association studies and other approaches that bridge the genotype to phenotype gap. Plant J. 2019, 97, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Ning, W.; Wei, D.; Jiang, M.; Zhu, K.; Wang, X.; Edwards, D.; Odeny, D.A.; Cheng, S. Plant genome resequencing and population genomics: Current status and future prospects. Mol. Plant 2023, 16, 1252–1268. [Google Scholar] [CrossRef] [PubMed]
- Thudi, M.; Palakurthi, R.; Schnable, J.C.; Chitikineni, A.; Dreisigacker, S.; Mace, E.; Srivastava, R.K.; Satyavathi, C.T.; Odeny, D.; Tiwari, V.K.; et al. Genomic resources in plant breeding for sustainable agriculture. J. Plant Physiol. 2021, 257, 153351. [Google Scholar] [CrossRef]
- Han, L.; Zhong, W.; Qian, J.; Jin, M.; Tian, P.; Zhu, W.; Zhang, H.; Sun, Y.; Feng, J.W.; Liu, X.; et al. A multi-omics integrative network map of maize. Nat. Genet. 2023, 55, 144–153. [Google Scholar] [CrossRef]
- Luo, M.C.; Gu, Y.Q.; Puiu, D.; Wang, H.; Twardziok, S.O.; Deal, K.R.; Huo, N.; Zhu, T.; Wang, L.; Wang, Y.; et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 2017, 551, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Du, H.; Li, X.; Fan, Y.; Qian, M.; Li, Y.; Wang, H.; Qu, C.; Qian, W.; Xu, X.; et al. Spatio-temporal transcriptome profiling and subgenome analysis in Brassica napus. Plant J. 2022, 111, 1123–1138. [Google Scholar] [CrossRef]
- Cañas, R.A.; Li, Z.; Pascual, M.B.; Castro-Rodríguez, V.; Ávila, C.; Sterck, L.; Van de Peer, Y.; Cánovas, F.M. The gene expression landscape of pine seedling tissues. Plant J. 2017, 91, 1064–1087. [Google Scholar] [CrossRef]
- Liang, Z.; Geng, Y.; Ji, C.; Du, H.; Wong, C.E.; Zhang, Q.; Zhang, Y.; Zhang, P.; Riaz, A.; Chachar, S.; et al. Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta. Adv. Sci. 2019, 24, 1901850. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Gu, W.; Chen, J.; Song, N.; Gao, X.; Zhang, X.; Zhou, Y.; Ma, X.; Song, W.; Zhao, H.; et al. High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development. Plant Cell 2019, 31, 974–992. [Google Scholar] [CrossRef] [PubMed]
- Purugganan, M.D.; Jackson, S.A. Advancing crop genomics from lab to field. Nat. Genet. 2021, 53, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Della Coletta, R.; Qiu, Y.; Ou, S.; Hufford, M.B.; Hirsch, C.N. How the pan-genome is changing crop genomics and improvement. Genome Biol. 2021, 22, 3. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, N.; Su, Y.; Long, Q.; Peng, Y.; Shangguan, L.; Zhang, F.; Cao, S.; Wang, X.; Ge, M.; et al. Grapevine pangenome facilitates trait genetics and genomic breeding. Nat. Genet. 2024, 56, 2804–2814. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Bao, Z.; Li, H.; Lyu, Y.; Zan, Y.; Wu, Y.; Cheng, L.; Fang, Y.; Wu, K.; et al. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 2022, 606, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, U.; Li, X.; Fan, Y.; Chang, W.; Niu, Y.; Li, J.; Qu, C.; Lu, K. Multi-omics revolution to promote plant breeding efficiency. Front. Plant Sci. 2022, 13, 1062952. [Google Scholar] [CrossRef]
- Martínez-Gómez, P. Editorial for Special Issue “Plant Genetics and Molecular Breeding”. Int. J. Mol. Sci. 2019, 20, 2659. [Google Scholar] [CrossRef]
- Cortés, A.J.; Du, H. Molecular Genetics Enhances Plant Breeding. Int. J. Mol. Sci. 2023, 24, 9977. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wen, J.; Chen, P.; Guo, P.; Ke, Y.; Wang, M.; Liu, M.; Tran, L.P.; Li, J.; Du, H. MYB Superfamily in Brassica napus: Evidence for Hormone-Mediated Expression Profiles, Large Expansion, and Functions in Root Hair Development. Biomolecules 2020, 10, 875. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, C.; Xuan, W.; An, H.; Tian, Y.; Wang, B.; Chi, W.; Chen, G.; Ge, Y.; Li, J.; et al. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nat. Commun. 2023, 14, 3550. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, X.; Zhang, B.; Xiao, Y.; Guo, J.; Liu, J.; Chen, Q.; Peng, F. Genome-wide identification, bioinformatics and expression analysis of HD-Zip gene family in peach. BMC Plant Biol. 2023, 23, 122. [Google Scholar] [CrossRef]
- Bian, X.; Cao, Y.; Zhi, X.; Ma, N. Genome-Wide Identification and Analysis of the Plant Cysteine Oxidase (PCO) Gene Family in Brassica napus and Its Role in Abiotic Stress Response. Int. J. Mol. Sci. 2023, 24, 11242. [Google Scholar] [CrossRef]
- Yan, J.; Su, P.; Meng, X.; Liu, P. Phylogeny of the plant receptor-like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses. BMC Genom. 2023, 24, 224. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, C.; Li, Z.; Ran, Q.; Xie, G.; Wang, B.; Fang, S.; Chu, J.; Zhang, J. ZmbZIP4 Contributes to Stress Resistance in Maize by Regulating ABA Synthesis and Root Development. Plant Physiol. 2018, 178, 753–770. [Google Scholar] [CrossRef]
- Mei, F.; Chen, B.; Du, L.; Li, S.; Zhu, D.; Chen, N.; Zhang, Y.; Li, F.; Wang, Z.; Cheng, X.; et al. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. Plant Cell 2022, 34, 4472–4494. [Google Scholar] [CrossRef]
Contributions | Species | Purpose | Approaches |
---|---|---|---|
1 | Prunus tenella | Geographic variation and population genetic structure | Genetics, genomics, and transcriptomics |
2 | Triticum aestivum | Genomic regions associated with rust resistance | Genetics and genomics |
3 | Zea mays | New markers linked to fusarium resistance | Genetics and genomics |
4 | Zea mays | Genetic basis of plant architecture traits | Genetics, genomics, and transcriptomics |
5 | Oryza sativa | Genomic variation in tetraploid rice and its potential in breeding | Genetics, genomics, and bioinformatics |
6 | Oryza sativa | Genetic basis of lysine content | Genetics and metabolomics |
7 | Hordeum vulgare | Quantitative trait loci for β-Glucan content and grain traits | Genetics and physiology |
8 | Salvia miltiorrhiza | Molecular mechanism of pollen abortion | Transcriptomics, genetics, and molecular biology |
9 | Malus domestica | Genes involved in anthocyanin biosynthesis | Transcriptomics and molecular biology |
10 | Diospyros kaki Thunb. | Molecular mechanism of fruit size formation | Transcriptomics and molecular biology |
11 | Pyrus pyrifolia | Lignin biosynthesis and accumulation | Metabolomics, transcriptomics, and molecular biology |
12 | Brassica napus | Genome-wide characteristics of trehalose-6-phosphate synthase (TPS) gene family | Bioinformatics and genetics |
13 | Vitis vinifera | Genome-wide characteristics of the KCS gene family and its role in male sterility | Bioinformatics and transcriptomics |
14 | Citrullus lanatus | Genome-wide characteristics of the chitinase gene family and its expression profile | Bioinformatics and molecular biology |
15 | Zea mays | Transposition and repair mechanism of Helitrons | Transcriptomics, transformation, and molecular biology |
16 | Sorghum bicolor | Effects of epicuticular wax on anthracnose resistance | Transcriptomics, transformation, and molecular biology |
17 | Foxtail millet | Function of amino acid permease (AAP) transporter SiAAP9 gene | Molecular biology and transformation |
18 | Plants | Roles and interactions of non-coding RNAs | Review |
19 | Plants | Functional endophytes in regulating secondary metabolism | Review |
20 | Plants | Functional characteristics of MADS-box genes | Review |
21 | Solanum tuberosum | Modulation of tuber dormancy and sprouting | Review |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H. Special Issue “Molecular Genetics and Plant Breeding 3.0 and 4.0”. Int. J. Mol. Sci. 2025, 26, 2030. https://doi.org/10.3390/ijms26052030
Du H. Special Issue “Molecular Genetics and Plant Breeding 3.0 and 4.0”. International Journal of Molecular Sciences. 2025; 26(5):2030. https://doi.org/10.3390/ijms26052030
Chicago/Turabian StyleDu, Hai. 2025. "Special Issue “Molecular Genetics and Plant Breeding 3.0 and 4.0”" International Journal of Molecular Sciences 26, no. 5: 2030. https://doi.org/10.3390/ijms26052030
APA StyleDu, H. (2025). Special Issue “Molecular Genetics and Plant Breeding 3.0 and 4.0”. International Journal of Molecular Sciences, 26(5), 2030. https://doi.org/10.3390/ijms26052030