Expression Profiles of Five Common Cancer Membrane Protein Antigens Collected for the Development of Cocktail CAR-T Cell Therapies Applicable to Most Solid Cancer Patients
Abstract
:1. Introduction
2. Results
2.1. Representative Examples of Plasma Membrane Expression of Five Common Cancer Antigens in Cancer Cells
2.2. Frequency of Expression of Five Common Cancer-Specific Antigens as Cell Membrane Proteins in Various Solid Cancers
2.3. Expression of Five Common Cancer Membrane Protein Antigens in Non-Cancerous Normal Organs Adjacent to Various Cancers
2.4. Development of a Companion Diagnostic Method for Simultaneously Determining the Expression of Common Cancer Membrane Protein Antigens and HLA Class I Using a Multiplexed Fluorescent Immunostaining System
2.5. A Scheme for Cocktail CAR-T Cell Therapy to Overcome the Diversity of Solid Tumors
3. Discussion
4. Materials and Methods
4.1. Clinical Samples
4.2. Immunohistochemical Analysis of Expression of Five Kinds of Common Cancer Membrane Protein Antigens
4.3. Multiplex Fluorescence Immunohistochemical Staining and Analysis of Cancer Antigens and HLA Class I
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAR | chimeric antigen receptor |
GPC3 | glypican-3 |
ROBO1 | roundabout guidance receptor 1 |
EphB4 | Eph receptor B4 |
CLDN1 | claudin-1 |
LAT1 | L-type amino acid transporter 1 |
References
- Sawada, Y.; Yoshikawa, T.; Nobuoka, D.; Shirakawa, H.; Kuronuma, T.; Motomura, Y.; Mizuno, S.; Ishii, H.; Nakachi, K.; Konishi, M.; et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: Immunologic evidence and potential for improving overall survival. Clin. Cancer Res. 2012, 18, 3686–3696. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Yoshikawa, T.; Ofuji, K.; Yoshimura, M.; Tsuchiya, N.; Takahashi, M.; Nobuoka, D.; Gotohda, N.; Takahashi, S.; Kato, Y.; et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Oncoimmunology 2016, 5, e1129483. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Sakata, J.; Utsumi, F.; Sekiya, R.; Kajiyama, H.; Shibata, K.; Kikkawa, F.; Nakatsura, T. Efficacy of glypican-3-derived peptide vaccine therapy on the survival of patients with refractory ovarian clear cell carcinoma. Oncoimmunology 2016, 5, e1238542. [Google Scholar] [CrossRef]
- Taniguchi, M.; Mizuno, S.; Yoshikawa, T.; Fujinami, N.; Sugimoto, M.; Kobayashi, S.; Takahashi, S.; Konishi, M.; Gotohda, N.; Nakatsura, T. Peptide vaccine as an adjuvant therapy for glypican-3-positive hepatocellular carcinoma induces peptide-specific CTLs and improves long prognosis. Cancer Sci. 2020, 111, 2747–2759. [Google Scholar] [CrossRef]
- Tsuchiya, N.; Hosono, A.; Yoshikawa, T.; Shoda, K.; Nosaka, K.; Shimomura, M.; Hara, J.; Nitani, C.; Manabe, A.; Yoshihara, H.; et al. Phase I study of glypican-3-derived peptide vaccine therapy for patients with refractory pediatric solid tumors. Oncoimmunology 2017, 7, e1377872. [Google Scholar] [CrossRef] [PubMed]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.; Joseph, S.K.; Pashankar, F.; DeRenzo, C.; Sanber, K.; Navai, S.; Byrd, T.T.; Hicks, J.; Xu, M.L.; Gerken, C.; et al. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat. Commun. 2020, 11, 3549. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, M.; Chen, Y.; Liu, Y. Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors. Cancer Cell Int. 2024, 24, 133. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Sharma, S.; Heczey, A.A.; Woods, M.L.; Steffin, D.H.M.; Louis, C.U.; Grilley, B.J.; Thakkar, S.G.; Wu, M.; Wang, T.; et al. Long-term outcomes of GD2-directed CAR-T cell therapy in patients with neuroblastoma. Nat. Med. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Mao, L.; Wu, M.; Liu, J.; Yu, S. Challenges of Anti-Mesothelin CAR-T-Cell Therapy. Cancers 2023, 15, 1357. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Liu, C.; Gong, J.; Liu, D.; Wang, X.; Zhang, P.; Qin, Y.; Ge, S.; Zhang, M.; Peng, Z.; et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial final results. Nat. Med. 2024, 30, 2224–2234. [Google Scholar] [CrossRef]
- Shi, D.; Shi, Y.; Kaseb, A.O.; Qi, X.; Zhang, Y.; Chi, J.; Lu, Q.; Gao, H.; Jiang, H.; Wang, H.; et al. Chimeric Antigen Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clin. Cancer Res. 2020, 26, 3979–3989. [Google Scholar] [CrossRef] [PubMed]
- Chokshi, C.R.; Shaikh, M.V.; Brakel, B.; Rossotti, M.A.; Tieu, D.; Maich, W.; Anand, A.; Chafe, S.C.; Zhai, K.; Suk, Y.; et al. Targeting axonal guidance dependencies in glioblastoma with ROBO1 CAR T cells. Nat. Med. 2024, 30, 2936–2946. [Google Scholar] [CrossRef]
- Ito, H.; Funahashi, S.; Yamauchi, N.; Shibahara, J.; Midorikawa, Y.; Kawai, S.; Kinoshita, Y.; Watanabe, A.; Hippo, Y.; Ohtomo, T.; et al. Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin. Cancer Res. 2006, 12, 3257–3264. [Google Scholar] [CrossRef] [PubMed]
- Seki, M.; Watanabe, A.; Enomoto, S.; Kawamura, T.; Ito, H.; Kodama, T.; Hamakubo, T.; Aburatani, H. Human ROBO1 is cleaved by metalloproteinases and gamma-secretase and migrates to the nucleus in cancer cells. FEBS Lett. 2010, 584, 2909–2915. [Google Scholar] [CrossRef] [PubMed]
- Kubo, H.; Yagyu, S.; Nakamura, K.; Yamashima, K.; Tomida, A.; Kikuchi, K.; Iehara, T.; Nakazawa, Y.; Hosoi, H. Development of non-viral, ligand-dependent, EPHB4-specific chimeric antigen receptor T cells for treatment of rhabdomyosarcoma. Mol. Ther. Oncolytics 2021, 20, 646–658. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.R.; Scehnet, J.S.; Ley, E.J.; Singh, J.; Krasnoperov, V.; Liu, R.; Manchanda, P.K.; Ladner, R.D.; Hawes, D.; Weaver, F.A.; et al. Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res. 2009, 69, 3736–3745. [Google Scholar] [CrossRef]
- Kumar, S.R.; Singh, J.; Xia, G.; Krasnoperov, V.; Hassanieh, L.; Ley, E.J.; Scehnet, J.; Kumar, N.G.; Hawes, D.; Press, M.F.; et al. Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am. J. Pathol. 2006, 169, 279–293. [Google Scholar] [CrossRef]
- Liu, S.; Li, D.; Park, R.; Liu, R.; Xia, Z.; Guo, J.; Krasnoperov, V.; Gill, P.S.; Li, Z.; Shan, H.; et al. PET imaging of colorectal and breast cancer by targeting EphB4 receptor with 64Cu-labeled hAb47 and hAb131 antibodies. J. Nucl. Med. 2013, 54, 1094–1100. [Google Scholar] [CrossRef]
- Masood, R.; Kumar, S.R.; Sinha, U.K.; Crowe, D.L.; Krasnoperov, V.; Reddy, R.K.; Zozulya, S.; Singh, J.; Xia, G.; Broek, D.; et al. EphB4 provides survival advantage to squamous cell carcinoma of the head and neck. Int. J. Cancer 2006, 119, 1236–1248. [Google Scholar] [CrossRef]
- Yagyu, S.; Mochizuki, H.; Yamashima, K.; Kubo, H.; Saito, S.; Tanaka, M.; Sakamoto, K.; Shimoi, A.; Nakazawa, Y. A lymphodepleted non-human primate model for the assessment of acute on-target and off-tumor toxicity of human chimeric antigen receptor-T cells. Clin. Transl. Immunol. 2021, 10, e1291. [Google Scholar] [CrossRef]
- Dhawan, P.; Singh, A.B.; Deane, N.G.; No, Y.; Shiou, S.R.; Schmidt, C.; Neff, J.; Washington, M.K.; Beauchamp, R.D. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J. Clin. Investig. 2005, 115, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Oku, N.; Sasabe, E.; Ueta, E.; Yamamoto, T.; Osaki, T. Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 gamma2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1. Cancer Res. 2006, 66, 5251–5257. [Google Scholar] [CrossRef]
- Visco, Z.R.; Sfakianos, G.; Grenier, C.; Boudreau, M.H.; Simpson, S.; Rodriguez, I.; Whitaker, R.; Yao, D.Y.; Berchuck, A.; Murphy, S.K.; et al. Epigenetic Regulation of Claudin-1 in the Development of Ovarian Cancer Recurrence and Drug Resistance. Front. Oncol. 2021, 11, 620873. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J.; Jiang, Y.; Xu, W.; Li, X.; Jing, W. CLDN1 Increases Drug Resistance of Non-Small Cell Lung Cancer by Activating Autophagy via Up-Regulation of ULK1 Phosphorylation. Med. Sci. Monit. 2017, 23, 2906–2916. [Google Scholar] [CrossRef]
- Kanai, Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol. Ther. 2022, 230, 107964. [Google Scholar] [CrossRef]
- Nozaki, S.; Nakatani, Y.; Mawatari, A.; Hume, W.E.; Wada, Y.; Ishii, A.; Tanaka, M.; Tsuyuguchi, N.; Doi, H.; Watanabe, Y. First-in-human assessment of the novel LAT1 targeting PET probe (18)F-FIMP. Biochem. Biophys. Res. Commun. 2022, 596, 83–87. [Google Scholar] [CrossRef]
- Ohno, Y.; Suda, K.; Masuko, K.; Yagi, H.; Hashimoto, Y.; Masuko, T. Production and characterization of highly tumor-specific rat monoclonal antibodies recognizing the extracellular domain of human L-type amino-acid transporter 1. Cancer Sci. 2008, 99, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Holst, J. L-type amino acid transport and cancer: Targeting the mTORC1 pathway to inhibit neoplasia. Am. J. Cancer Res. 2015, 5, 1281–1294. [Google Scholar]
- Gardner, R.; Wu, D.; Cherian, S.; Fang, M.; Hanafi, L.A.; Finney, O.; Smithers, H.; Jensen, M.C.; Riddell, S.R.; Maloney, D.G.; et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 2016, 127, 2406–2410. [Google Scholar] [CrossRef] [PubMed]
- Dulery, R.; Guiraud, V.; Choquet, S.; Thieblemont, C.; Bachy, E.; Barete, S.; Todesco, È.; Arnulf, B.; Boissel, N.; Baruchel, A.; et al. T cell malignancies after CAR T cell therapy in the DESCAR-T registry. Nat. Med. 2025. [Google Scholar] [CrossRef]
- Kaneko, S. Successful organoid-mediated generation of iPSC-derived CAR-T cells. Cell Stem Cell 2022, 29, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Tomida, A.; Yagyu, S.; Nakamura, K.; Kubo, H.; Yamashima, K.; Nakazawa, Y.; Hosoi, H.; Iehara, T. Inhibition of MEK pathway enhances the antitumor efficacy of chimeric antigen receptor T cells against neuroblastoma. Cancer Sci. 2021, 112, 4026–4036. [Google Scholar] [CrossRef] [PubMed]
Common Cancer Antigens * | CLDN1 | EphB4 | LAT1 | ROBO1 | GPC3 |
---|---|---|---|---|---|
Head and neck cancer | 44/44 (100) | 53/56 (95) | 41/44 (93) | 13/44 (30) | 3/57 (5) |
oral cancer | 14/14 (100) | 20/20 (100) | 14/14 (100) | 2/14 (14) | 0/21 (0) |
pharyngeal cancer | 30/30 (100) | 33/36 (92) | 27/30 (90) | 11/30 (37) | 3/36 (8) |
Breast cancer | 7/36 (20) | 30/36 (83) | 15/36 (42) | 2/35 (6) | 0/36 (0) |
Esophageal cancer | 15/16 (94) | 15/16 (94) | 15/16 (94) | 6/16 (38) | 1/16 (6) |
Lung cancer | 45/72 (63) | 57/72 (79) | 49/72 (68) | 19/72 (26) | 4/72 (6) |
adenocarcinoma | 20/45 (44) | 35/45 (78) | 22/45 (49) | 5/45 (11) | 1/45 (2) |
squamous cell carcinoma | 25/27 (93) | 22/27 (81) | 27/27 (100) | 14/27 (52) | 3/27 (11) |
Gastric cancer | 14/29 (48) | 27/29 (93) | 12/29 (41) | 0/29 (0) | 0/19 (0) |
advanced | 8/10 (80) | 10/10 (100) | 8/10 (80) | 0/10 (0) | NT ** |
early | 6/19 (32) | 17/19 (89) | 4/19 (21) | 0/19 (0) | 0/19 (0) |
Biliary cancer | 26/28 (93) | 24/30 (80) | 10/20 (50) | 6/29 (21) | 0/20 (0) |
intrahepatic | 7/8 (88) | 10/10 (100) | NT | 2/10 (20) | NT |
extrahepatic | 10/10 (100) | 7/10 (70) | 4/10 (40) | 3/10 (30) | 0/10 (0) |
gallbladder | 9/10 (90) | 7/10 (70) | 6/10 (60) | 1/9 (11) | 0/10 (0) |
Pancreatic cancer | 11/11 (100) | 9/12 (75) | 4/13 (31) | 0/11 (0) | 0/12 (0) |
Hepatocellular carcinoma | 13/20 (65) | 14/20 (70) | 0/14 (0) | 14/19 (74) | 1/20 (5) |
Colorectal cancer | 15/15 (100) | 14/15 (93) | 15/15 (100) | 0/15 (0) | 0/15 (0) |
Renal cell carcinoma | 3/19 (16) | 0/19 (0) | 3/19 (16) | 2/19 (11) | 0/19 (0) |
Ovarian cancer | 17/18 (94) | 15/18 (83) | 12/18 (67) | 0/18 (0) | 1/18 (6) |
serous adenocarcinoma | 16/17 (94) | 14/17 (82) | 11/17 (65) | 0/17 (0) | 0/17 (0) |
clear cell carcinoma | 1/1 (100) | 1/1 (100) | 1/1 (100) | 0/1 (0) | 1/1 (100) |
Uterine cancer | 7/7 (100) | 6/7 (86) | 7/7 (100) | 1/7 (14) | 0/7 (0) |
Pediatric cancer | 15/33 (45) | 13/33 (39) | 14/33 (42) | 16/32 (50) | 9/33 (27) |
hepatoblastoma | 9/9 (100) | 8/9 (89) | 2/9 (22) | 6/9 (67) | 3/9 (33) |
nephroblastoma | 4/10 (40) | 3/10 (30) | 3/10 (30) | 8/10 (80) | 5/10 (50) |
germ cell tumors | 2/6 (33) | 2/6 (33) | 6/6 (100) | 1/6 (17) | 1/6 (17) |
neuroblastoma | 0/8 (0) | 0/8 (0) | 3/8 (38) | 1/7 (14) | 0/8 (0) |
Melanoma | 5/20 (25) | 13/20 (65) | 11/20 (55) | 2/20 (10) | 0/20 (0) |
ALM | 0/7 (0) | 4/7 (57) | 3/7 (43) | 0/7 (0) | 0/7 (0) |
MM | 0/5 (0) | 5/5 (100) | 4/5 (80) | 2/5 (40) | 0/5 (0) |
SSM | 3/5 (60) | 3/5 (60) | 3/5 (60) | 0/5 (0) | 0/5 (0) |
LMM | 2/3 (67) | 1/3 (33) | 1/3 (33) | 0/3 (0) | 0/3 (0) |
Total | 237/368 (64) | 290/383 (76) | 208/356 (58) | 81/366 (22) | 19/364 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakatsura, T.; Takenouchi, K.; Kataoka, J.; Ito, Y.; Kikuchi, S.; Kinoshita, H.; Ohnuki, K.; Suzuki, T.; Tsukamoto, N. Expression Profiles of Five Common Cancer Membrane Protein Antigens Collected for the Development of Cocktail CAR-T Cell Therapies Applicable to Most Solid Cancer Patients. Int. J. Mol. Sci. 2025, 26, 2145. https://doi.org/10.3390/ijms26052145
Nakatsura T, Takenouchi K, Kataoka J, Ito Y, Kikuchi S, Kinoshita H, Ohnuki K, Suzuki T, Tsukamoto N. Expression Profiles of Five Common Cancer Membrane Protein Antigens Collected for the Development of Cocktail CAR-T Cell Therapies Applicable to Most Solid Cancer Patients. International Journal of Molecular Sciences. 2025; 26(5):2145. https://doi.org/10.3390/ijms26052145
Chicago/Turabian StyleNakatsura, Tetsuya, Kazumasa Takenouchi, Jun Kataoka, Yusuke Ito, Sae Kikuchi, Hiroki Kinoshita, Kazunobu Ohnuki, Toshihiro Suzuki, and Nobuo Tsukamoto. 2025. "Expression Profiles of Five Common Cancer Membrane Protein Antigens Collected for the Development of Cocktail CAR-T Cell Therapies Applicable to Most Solid Cancer Patients" International Journal of Molecular Sciences 26, no. 5: 2145. https://doi.org/10.3390/ijms26052145
APA StyleNakatsura, T., Takenouchi, K., Kataoka, J., Ito, Y., Kikuchi, S., Kinoshita, H., Ohnuki, K., Suzuki, T., & Tsukamoto, N. (2025). Expression Profiles of Five Common Cancer Membrane Protein Antigens Collected for the Development of Cocktail CAR-T Cell Therapies Applicable to Most Solid Cancer Patients. International Journal of Molecular Sciences, 26(5), 2145. https://doi.org/10.3390/ijms26052145