The Diverse Functions of the Calcium- and Integrin-Binding Protein Family
Abstract
:1. Introduction
2. Structure and Evolutionary Conservation of CIB Family Proteins
2.1. Protein Structure and Its Influence on Function
2.2. Evolutionary Conservation
3. The Diverse Functions of the CIB Family
3.1. CIBs Are Associated with Neurodegenerative Diseases in the Brain
3.2. CIB2 Is Involved in mTORC1 Signaling and Autophagy in the Eyes
3.3. Roles in the Heart and Blood Vessels
3.3.1. The Function of CIB1 and CIB2 in Pathological Hypertrophic and Atrial Fibrillation
3.3.2. CIB1 Regulates Platelet Function by Binding to Integrin αIIbβ3
3.3.3. CIB1 Is Essential for Endothelial Cells (ECs)
3.4. In Vitro Studies on the Role of CIB1 in the Liver
3.5. CIB1 May Collaborate with ITGA11 in the Lungs
3.6. The Role of CIB1 in SC-Islets
3.7. CIB1 and CIB4 Are Related to Male Fertility
3.8. CIB2 Is Highly Expressed in Skeletal Muscles
3.9. Roles of CIB1 and CIB2 in Cancer
3.10. CIB1 and CIB2 in Viral Infections
- HIV
- HPV
- KSHV
4. Important Roles of CIB Family Proteins in the Inner Ear
4.1. CIB2 Is Essential for Auditory Function
4.1.1. Abnormal CIB2 Causes Hearing Loss
4.1.2. CIB2 Deletion Affects the Morphology of Stereocilia
4.1.3. CIB2 Is Part of MET Complex and Regulates MET Function
4.2. CIB2 and CIB3 Work Together in the Vestibule
4.2.1. Balance Defects in Knockout Mice
4.2.2. The Expression of CIB2 and CIB3 in the Vestibule
4.2.3. The Influence of CIB2/3 on Vestibular Hair Cell Stereocilia and MET Function
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gentry, H.R.; Singer, A.U.; Betts, L.; Yang, C.; Ferrara, J.D.; Sondek, J.; Parise, L.V. Structural and Biochemical Characterization of CIB1 Delineates a New Family of EF-Hand-Containing Proteins. J. Biol. Chem. 2005, 280, 8407–8415. [Google Scholar] [CrossRef]
- Huang, H.; Bogstie, J.N.; Vogel, H.J. Biophysical and Structural Studies of the Human Calcium- and Integrin-Binding Protein Family: Understanding Their Functional Similarities and Differences. Biochem. Cell Biol. 2012, 90, 646–656. [Google Scholar] [CrossRef]
- Naik, U.P.; Patel, P.M.; Parise, L.V. Identification of a Novel Calcium-Binding Protein That Interacts with the Integrin αIIb Cytoplasmic Domain. J. Biol. Chem. 1997, 272, 4651–4654. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Yao, X.; Li, W.; Du, H.; Tang, M.; Xiong, W.; Chai, R.; Xu, Z. Loss of CIB2 Causes Profound Hearing Loss and Abolishes Mechanoelectrical Transduction in Mice. Front. Mol. Neurosci. 2017, 10, 401. [Google Scholar] [CrossRef]
- Riazuddin, S.; Belyantseva, I.A.; Giese, A.P.J.; Lee, K.; Indzhykulian, A.A.; Nandamuri, S.P.; Yousaf, R.; Sinha, G.P.; Lee, S.; Terrell, D.; et al. Alterations of the CIB2 Calcium- and Integrin-Binding Protein Cause Usher Syndrome Type 1J and Nonsyndromic Deafness DFNB48. Nat. Genet. 2012, 44, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Giese, A.P.; Grossheim, J.M.; Hegde, R.S.; Delio, M.; Samanich, J.; Riazuddin, S.; Frolenkov, G.I.; Cai, J.; Ahmed, Z.M.; et al. A Novel C-Terminal CIB2 (Calcium and Integrin Binding Protein 2) Mutation Associated with Non-Syndromic Hearing Loss in a Hispanic Family. PLoS ONE 2015, 10, e0133082. [Google Scholar] [CrossRef]
- Michel, V.; Booth, K.T.; Patni, P.; Cortese, M.; Azaiez, H.; Bahloul, A.; Kahrizi, K.; Labbé, M.; Emptoz, A.; Lelli, A.; et al. CIB2, Defective in Isolated Deafness, Is Key for Auditory Hair Cell Mechanotransduction and Survival. EMBO Mol. Med. 2017, 9, 1711–1731. [Google Scholar] [CrossRef] [PubMed]
- Giese, A.P.J.; Tang, Y.-Q.; Sinha, G.P.; Bowl, M.R.; Goldring, A.C.; Parker, A.; Freeman, M.J.; Brown, S.D.M.; Riazuddin, S.; Fettiplace, R.; et al. CIB2 Interacts with TMC1 and TMC2 and Is Essential for Mechanotransduction in Auditory Hair Cells. Nat. Commun. 2017, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, S.; Cheng, Q.; Qu, C.; Ren, R.; Du, H.; Li, N.; Yan, K.; Wang, Y.; Xiong, W.; et al. CIB2 and CIB3 Regulate Stereocilia Maintenance and Mechanoelectrical Transduction in Mouse Vestibular Hair Cells. J. Neurosci. 2023, 43, 3219–3231. [Google Scholar] [CrossRef]
- Giese, A.P.J.; Weng, W.-H.; Kindt, K.S.; Chang, H.H.V.; Montgomery, J.S.; Ratzan, E.M.; Beirl, A.J.; Rivera, R.A.; Lotthammer, J.M.; Walujkar, S.; et al. Complexes of Vertebrate TMC1/2 and CIB2/3 Proteins Form Hair-Cell Mechanotransduction Cation Channels. bioRxiv 2024. [Google Scholar] [CrossRef]
- Liang, X.; Qiu, X.; Dionne, G.; Cunningham, C.L.; Pucak, M.L.; Peng, G.; Kim, Y.-H.; Lauer, A.; Shapiro, L.; Müller, U. CIB2 and CIB3 Are Auxiliary Subunits of the Mechanotransduction Channel of Hair Cells. Neuron 2021, 109, 2131–2149.e15. [Google Scholar] [CrossRef] [PubMed]
- Vallone, R.; Dal Cortivo, G.; D’Onofrio, M.; Dell’Orco, D. Preferential Binding of Mg2+ Over Ca2+ to CIB2 Triggers an Allosteric Switch Impaired in Usher Syndrome Type 1J. Front. Mol. Neurosci. 2018, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Braunewell, K.-H.; Gundelfinger, E.D. Intracellular Neuronal Calcium Sensor Proteins: A Family of EF-Hand Calcium-Binding Proteins in Search of a Function. Cell Tissue Res. 1999, 295, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.-H. Evolview v3: A Webserver for Visualization, Annotation, and Management of Phylogenetic Trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Yamniuk, A.P.; Silver, D.M.; Anderson, K.L.; Martin, S.R.; Vogel, H.J. Domain Stability and Metal-Induced Folding of Calcium- and Integrin-Binding Protein 1. Biochemistry 2007, 46, 7088–7098. [Google Scholar] [CrossRef]
- Yamniuk, A.P.; Nguyen, L.T.; Hoang, T.T.; Vogel, H.J. Metal Ion Binding Properties and Conformational States of Calcium- and Integrin-Binding Protein. Biochemistry 2004, 43, 2558–2568. [Google Scholar] [CrossRef]
- Blazejczyk, M.; Sobczak, A.; Debowska, K.; Wisniewska, M.B.; Kirilenko, A.; Pikula, S.; Jaworski, J.; Kuznicki, J.; Wojda, U. Biochemical Characterization and Expression Analysis of a Novel EF-Hand Ca2+ Binding Protein Calmyrin2 (Cib2) in Brain Indicates Its Function in NMDA Receptor Mediated Ca2+ Signaling. Arch. Biochem. Biophys. 2009, 487, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.H.; Heal, W.P.; Mann, D.J.; Tate, E.W. Protein Myristoylation in Health and Disease. J. Chem. Biol. 2010, 3, 19–35. [Google Scholar] [CrossRef]
- Dal Cortivo, G.; Dell’Orco, D. Calcium- and Integrin-Binding Protein 2 (CIB2) in Physiology and Disease: Bright and Dark Sides. Int. J. Mol. Sci. 2022, 23, 3552. [Google Scholar] [CrossRef]
- Stabler, S.M.; Ostrowski, L.L.; Janicki, S.M.; Monteiro, M.J. A Myristoylated Calcium-Binding Protein That Preferentially Interacts with the Alzheimer’s Disease Presenilin 2 Protein. J. Cell Biol. 1999, 145, 1277–1292. [Google Scholar] [CrossRef]
- Jarman, K.E.; Moretti, P.A.B.; Zebol, J.R.; Pitson, S.M. Translocation of Sphingosine Kinase 1 to the Plasma Membrane Is Mediated by Calcium- and Integrin-Binding Protein 1. J. Biol. Chem. 2010, 285, 483–492. [Google Scholar] [CrossRef]
- Wang, X.; Peng, X.; Zhang, X.; Xu, H.; Lu, C.; Liu, L.; Song, J.; Zhang, Y. The Emerging Roles of CIB1 in Cancer. Cell. Physiol. Biochem. 2017, 43, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Vogel, H.J. Structural Basis for the Activation of Platelet Integrin αIIbβ3 by Calcium- and Integrin-Binding Protein 1. J. Am. Chem. Soc. 2012, 134, 3864–3872. [Google Scholar] [CrossRef]
- DeNofrio, J.C.; Yuan, W.; Temple, B.R.; Gentry, H.R.; Parise, L.V. Characterization of Calcium- and Integrin-Binding Protein 1 (CIB1) Knockout Platelets: Potential Compensation by CIB Family Members. Thromb. Haemost. 2008, 100, 847–856. [Google Scholar] [CrossRef]
- Yu, Y.; Song, X.; Du, L.; Wang, C. Molecular Characterization of the Sheep CIB1 Gene. Mol. Biol. Rep. 2009, 36, 1799–1809. [Google Scholar] [CrossRef]
- Xu, Z.; Miyata, H.; Kaneda, Y.; Castaneda, J.M.; Lu, Y.; Morohoshi, A.; Yu, Z.; Matzuk, M.M.; Ikawa, M. CIB4 Is Essential for the Haploid Phase of Spermatogenesis in Mice. Biol. Reprod. 2020, 103, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Shock, D.D.; Naik, U.P.; Brittain, J.E.; Alahari, S.K.; Sondek, J.; Parise, L.V. Calcium-Dependent Properties of CIB Binding to the Integrin αIIb Cytoplasmic Domain and Translocation to the Platelet Cytoskeleton. Biochem. J. 1999, 342, 729–735. [Google Scholar] [CrossRef]
- Yamniuk, A.P.; Vogel, H.J. Calcium- and Magnesium-dependent Interactions between Calcium- and Integrin-binding Protein and the Integrin αIIb Cytoplasmic Domain. Protein Sci. 2005, 14, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Kostyak, J.C.; Naik, U.P. Calcium- and Integrin-Binding Protein 1 Regulates Endomitosis and Its Interaction with Polo-like Kinase 3 Is Enhanced in Endomitotic Dami Cells. PLoS ONE 2011, 6, e14513. [Google Scholar] [CrossRef]
- Yuan, W.; Leisner, T.M.; McFadden, A.W.; Clark, S.; Hiller, S.; Maeda, N.; O’Brien, D.A.; Parise, L.V. CIB1 Is Essential for Mouse Spermatogenesis. Mol. Cell. Biol. 2006, 26, 8507–8514. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Song, X.; Jin, M.; Guan, Q.; Zhang, Q.; Li, S.; Wei, C.; Lu, G.; Zhang, J.; et al. Alternative Splicing and Tissue Expression of CIB4 Gene in Sheep Testis. Anim. Reprod. Sci. 2010, 120, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Braunewell, K.-H. The Darker Side of Ca2+ Signaling by Neuronal Ca2+-Sensor Proteins: From Alzheimer’s Disease to Cancer. Trends Pharmacol. Sci. 2005, 26, 345–351. [Google Scholar] [CrossRef]
- Bernstein, H.-G.; Blazejczyk, M.; Rudka, T.; Gundelfinger, E.D.; Dobrowolny, H.; Bogerts, B.; Kreutz, M.R.; Kuznicki, J.; Wojda, U. The Alzheimer Disease-Related Calcium-Binding Protein Calmyrin Is Present in Human Forebrain with an Altered Distribution in Alzheimer’s as Compared to Normal Ageing Brains. Neuropathol. Appl. Neurobiol. 2005, 31, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.W.; Yang, H.-S.; Kim, Y.M.; Kim, Y.; Kang, S.; Sun, W.; Naik, U.P.; Parise, L.V.; Choi, E.-J. CIB1 Protects against MPTP-Induced Neurotoxicity through Inhibiting ASK1. Sci. Rep. 2017, 7, 12178. [Google Scholar] [CrossRef] [PubMed]
- Jeanclos, E.; Knobloch, G.; Hoffmann, A.; Fedorchenko, O.; Odersky, A.; Lamprecht, A.-K.; Schindelin, H.; Gohla, A. Ca2+ Functions as a Molecular Switch That Controls the Mutually Exclusive Complex Formation of Pyridoxal Phosphatase with CIB1 or Calmodulin. FEBS Lett. 2020, 594, 2099–2115. [Google Scholar] [CrossRef]
- Wiegert, J.S.; Bengtson, C.P.; Bading, H. Diffusion and Not Active Transport Underlies and Limits ERK1/2 Synapse-to-Nucleus Signaling in Hippocampal Neurons. J. Biol. Chem. 2007, 282, 29621–29633. [Google Scholar] [CrossRef]
- Sethna, S.; Scott, P.A.; Giese, A.P.J.; Duncan, T.; Jian, X.; Riazuddin, S.; Randazzo, P.A.; Redmond, T.M.; Bernstein, S.L.; Riazuddin, S.; et al. CIB2 Regulates mTORC1 Signaling and Is Essential for Autophagy and Visual Function. Nat. Commun. 2021, 12, 3906. [Google Scholar] [CrossRef]
- Linnert, J.; Knapp, B.; Güler, B.E.; Boldt, K.; Ueffing, M.; Wolfrum, U. Usher Syndrome Proteins ADGRV1 (USH2C) and CIB2 (USH1J) Interact and Share a Common Interactome Containing TRiC/CCT-BBS Chaperonins. Front. Cell Dev. Biol. 2023, 11, 1199069. [Google Scholar] [CrossRef]
- Heineke, J.; Auger-Messier, M.; Correll, R.N.; Xu, J.; Benard, M.J.; Yuan, W.; Drexler, H.; Parise, L.V.; Molkentin, J.D. CIB1 Is a Regulator of Pathological Cardiac Hypertrophy. Nat. Med. 2010, 16, 872–879. [Google Scholar] [CrossRef]
- Levy, D.; Larson, M.G.; Vasan, R.S.; Kannel, W.B.; Ho, K.K.L. The Progression from Hypertension to Congestive Heart Failure. JAMA 1996, 275, 1557–1562. [Google Scholar] [CrossRef]
- Bueno, O.F.; van Rooij, E.; Molkentin, J.D.; Doevendans, P.A.; De Windt, L.J. Calcineurin and Hypertrophic Heart Disease: Novel Insights and Remaining Questions. Cardiovasc. Res. 2002, 53, 806–821. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, B.J.; Dai, Y.-S.; Bueno, O.F.; Parsons, S.A.; Xu, J.; Plank, D.M.; Jones, F.; Kimball, T.R.; Molkentin, J.D. Calcineurin/NFAT Coupling Participates in Pathological, but Not Physiological, Cardiac Hypertrophy. Circ. Res. 2004, 94, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhang, S.; Chen, L.; Wu, Y.; Qin, J.; Shao, Y.; Wang, X.; Chen, Y. Calcium- and Integrin-Binding Protein-1 and Calcineurin Are Upregulated in the Right Atrial Myocardium of Patients with Atrial Fibrillation. EP Eur. 2012, 14, 1726–1733. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Shi, L.; Chen, X.; Li, D.; Cui, C.; Yang, K.; Lu, M.; Huang, J.; Zhang, L.; et al. CIB2 Is a Novel Endogenous Repressor of Atrial Remodeling. Circulation 2023, 147, 1758–1776. [Google Scholar] [CrossRef]
- Tsuboi, S. Calcium Integrin-Binding Protein Activates Platelet Integrin αIIbβ3. J. Biol. Chem. 2002, 277, 1919–1923. [Google Scholar] [CrossRef]
- Shattil, S.J.; Leavitt, A.D. All in the Family: Primary Megakaryocytes for Studies of Platelet αIIbβ3 Signaling. Thromb. Haemost. 2001, 86, 259–265. [Google Scholar]
- Freeman, T.C.; Black, J.L.; Bray, H.G.; Dagliyan, O.; Wu, Y.I.; Tripathy, A.; Dokholyan, N.V.; Leisner, T.M.; Parise, L.V. Identification of Novel Integrin Binding Partners for Calcium and Integrin Binding Protein 1 (CIB1): Structural and Thermodynamic Basis of CIB1 Promiscuity. Biochemistry 2013, 52, 7082–7090. [Google Scholar] [CrossRef] [PubMed]
- Naik, M.U.; Naik, U.P. Calcium-and Integrin-Binding Protein Regulates Focal Adhesion Kinase Activity during Platelet Spreading on Immobilized Fibrinogen. Blood 2003, 102, 3629–3636. [Google Scholar] [CrossRef]
- Naik, M.U.; Nigam, A.; Manrai, P.; Millili, P.; Czymmek, K.; Sullivan, M.; Naik, U.P. CIB1 Deficiency Results in Impaired Thrombosis: The Potential Role of CIB1 in Outside-in Signaling through Integrin αIIbβ3. J. Thromb. Haemost. 2009, 7, 1906–1914. [Google Scholar] [CrossRef]
- Ng, Y.-S.; D’Amore, P.A. Therapeutic Angiogenesis for Cardiovascular Disease. Trials 2001, 2, 278–285. [Google Scholar] [CrossRef]
- Zayed, M.A.; Yuan, W.; Leisner, T.M.; Chalothorn, D.; McFadden, A.W.; Schaller, M.D.; Hartnett, M.E.; Faber, J.E.; Parise, L.V. CIB1 Regulates Endothelial Cells and Ischemia-Induced Pathological and Adaptive Angiogenesis. Circ. Res. 2007, 101, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Leisner, T.M.; Liu, M.; Jaffer, Z.M.; Chernoff, J.; Parise, L.V. Essential Role of CIB1 in Regulating PAK1 Activation and Cell Migration. J. Cell Biol. 2005, 170, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Felli, E.; Selicean, S.; Nulan, Y.; Lozano, J.J.; Guixé-Muntet, S.; Bosch, J.; Berzigotti, A.; Gracia-Sancho, J. Role of Calcium Integrin-Binding Protein 1 in the Mechanobiology of the Liver Endothelium. J. Cell. Physiol. 2024, 239, e31198. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, K.; Ni, J.; Leung, E.; Gough, S.M.; Weaver, A.; Yao, W.-P.; Liu, D.; Wang, S.-X.; Morris, C.M.; Krissansen, G.W. Cloning, Sequence Analysis, and Chromosomal Localization of the Novel Human Integrin A11 Subunit (ITGA11). Genomics 1999, 60, 179–187. [Google Scholar] [CrossRef]
- Whitehouse, C.; Chambers, J.; Howe, K.; Cobourne, M.; Sharpe, P.; Solomon, E. NBR1 Interacts with Fasciculation and Elongation Protein Zeta-1 (FEZ1) and Calcium and Integrin Binding Protein (CIB) and Shows Developmentally Restricted Expression in the Neural Tube. Eur. J. Biochem. 2002, 269, 538–545. [Google Scholar] [CrossRef]
- Yoshida, K.; Park, A.-M.; Ozaki, S.; Munakata, H. Interaction of Calcium- and Integrin-Binding Protein 1 with Integrin α11 and Its Possible Involvement in Pulmonary Fibrosis. Adv. Biol. Chem. 2014, 4, 59–66. [Google Scholar] [CrossRef]
- Maestas, M.M.; Ishahak, M.; Augsornworawat, P.; Veronese-Paniagua, D.A.; Maxwell, K.G.; Velazco-Cruz, L.; Marquez, E.; Sun, J.; Shunkarova, M.; Gale, S.E.; et al. Identification of Unique Cell Type Responses in Pancreatic Islets to Stress. Nat. Commun. 2024, 15, 5567. [Google Scholar] [CrossRef]
- Sun, W.; Guan, Q.; Wen, J.; Zhang, Q.; Yang, W.; Zhang, B.; Cui, W.; Zou, Z.; Yu, Y. Calcium- and Integrin-Binding Protein-1 Is down-Regulated in the Sperm of Patients with Oligoasthenozoospermia: CIB1 Expression in Patients with Oligoasthenozoospermia. J. Assist. Reprod. Genet. 2014, 31, 541–547. [Google Scholar] [CrossRef]
- Mohammadabadi, M.R.; Jafari, A.H.D.; Bordbar, F. Molecular Analysis of CIB4 Gene and Protein in Kermani Sheep. Braz. J. Med. Biol. Res. 2017, 50, e6177. [Google Scholar] [CrossRef]
- Mayer, U. Integrins: Redundant or Important Players in Skeletal Muscle? J. Biol. Chem. 2003, 278, 14587–14590. [Google Scholar] [CrossRef]
- Häger, M.; Bigotti, M.G.; Meszaros, R.; Carmignac, V.; Holmberg, J.; Allamand, V.; Åkerlund, M.; Kalamajski, S.; Brancaccio, A.; Mayer, U.; et al. Cib2 Binds Integrin α7Bβ1D and Is Reduced in Laminin A2 Chain-Deficient Muscular Dystrophy. J. Biol. Chem. 2008, 283, 24760–24769. [Google Scholar] [CrossRef]
- Yuan, W.; Leisner, T.M.; McFadden, A.W.; Wang, Z.; Larson, M.K.; Clark, S.; Boudignon-Proudhon, C.; Lam, S.C.-T.; Parise, L.V. CIB1 Is an Endogenous Inhibitor of Agonist-Induced Integrin αIIbβ3 Activation. J. Cell Biol. 2006, 172, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Naik, M.U.; Golla, K.; Shaik, N.F.; Naik, U.P. Calcium-Induced Dissociation of CIB1 from ASK1 Regulates Agonist-Induced Activation of the P38 MAPK Pathway in Platelets. Biochem. J. 2019, 476, 2835–2850. [Google Scholar] [CrossRef]
- Leisner, T.M.; Freeman, T.C.; Black, J.L.; Parise, L.V. CIB1: A Small Protein with Big Ambitions. FASEB J. 2016, 30, 2640–2650. [Google Scholar] [CrossRef] [PubMed]
- Black, J.L.; Harrell, J.C.; Leisner, T.M.; Fellmeth, M.J.; George, S.D.; Reinhold, D.; Baker, N.M.; Jones, C.D.; Der, C.J.; Perou, C.M.; et al. CIB1 Depletion Impairs Cell Survival and Tumor Growth in Triple-Negative Breast Cancer. Breast Cancer Res. Treat. 2015, 152, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Khadka, P.; Lee, J.H.; Baek, S.H.; Oh, S.Y.; Chung, I.K. DNA-PKcs-Interacting Protein KIP Binding to TRF2 Is Required for the Maintenance of Functional Telomeres. Biochem. J. 2014, 463, 19–30. [Google Scholar] [CrossRef]
- Lee, G.E.; Yu, E.Y.; Cho, C.H.; Lee, J.; Muller, M.T.; Chung, I.K. DNA-Protein Kinase Catalytic Subunit-Interacting Protein KIP Binds Telomerase by Interacting with Human Telomerase Reverse Transcriptase. J. Biol. Chem. 2004, 279, 34750–34755. [Google Scholar] [CrossRef]
- Henderson, M.J.; Russell, A.J.; Hird, S.; Muñoz, M.; Clancy, J.L.; Lehrbach, G.M.; Calanni, S.T.; Jans, D.A.; Sutherland, R.L.; Watts, C.K.W. EDD, the Human Hyperplastic Discs Protein, Has a Role in Progesterone Receptor Coactivation and Potential Involvement in DNA Damage Response. J. Biol. Chem. 2002, 277, 26468–26478. [Google Scholar] [CrossRef]
- Yoon, K.W.; Cho, J.-H.; Lee, J.K.; Kang, Y.-H.; Chae, J.S.; Kim, Y.M.; Kim, J.; Kim, E.K.; Kim, S.E.; Baik, J.-H.; et al. CIB1 Functions as a Ca2+-Sensitive Modulator of Stress-Induced Signaling by Targeting ASK1. Proc. Natl. Acad. Sci. USA 2009, 106, 17389–17394. [Google Scholar] [CrossRef]
- Tahara, E.; Tahara, H.; Kanno, M.; Naka, K.; Takeda, Y.; Matsuzaki, T.; Yamazaki, R.; Ishihara, H.; Yasui, W.; Barrett, J.C.; et al. G1P3, an Interferon Inducible Gene 6-16, Is Expressed in Gastric Cancers and Inhibits Mitochondrial-Mediated Apoptosis in Gastric Cancer Cell Line TMK-1 Cell. Cancer Immunol. Immunother. 2005, 54, 729–740. [Google Scholar] [CrossRef]
- Naik, M.U.; Naik, U.P. Contra-Regulation of Calcium- and Integrin-Binding Protein 1-Induced Cell Migration on Fibronectin by PAK1 and MAP Kinase Signaling. J. Cell. Biochem. 2011, 112, 3289–3299. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.A.; Yuan, W.; Chalothorn, D.; Faber, J.E.; Parise, L.V. Tumor Growth and Angiogenesis Is Impaired in CIB1 Knockout Mice. J. Angiogenesis Res. 2010, 2, 17. [Google Scholar] [CrossRef]
- Zhu, W.; Jarman, K.E.; Lokman, N.A.; Neubauer, H.A.; Davies, L.T.; Gliddon, B.L.; Taing, H.; Moretti, P.A.B.; Oehler, M.K.; Pitman, M.R.; et al. CIB2 Negatively Regulates Oncogenic Signaling in Ovarian Cancer via Sphingosine Kinase 1. Cancer Res. 2017, 77, 4823–4834. [Google Scholar] [CrossRef]
- Godinho-Santos, A.; Hance, A.J.; Gonçalves, J.; Mammano, F. CIB1 and CIB2 Are HIV-1 Helper Factors Involved in Viral Entry. Sci. Rep. 2016, 6, 30927. [Google Scholar] [CrossRef] [PubMed]
- de Jong, S.J.; Imahorn, E.; Itin, P.; Uitto, J.; Orth, G.; Jouanguy, E.; Casanova, J.-L.; Burger, B. Epidermodysplasia Verruciformis: Inborn Errors of Immunity to Human Beta-Papillomaviruses. Front. Microbiol. 2018, 9, 1222. [Google Scholar] [CrossRef] [PubMed]
- Ramoz, N.; Rueda, L.-A.; Bouadjar, B.; Montoya, L.-S.; Orth, G.; Favre, M. Mutations in Two Adjacent Novel Genes Are Associated with Epidermodysplasia Verruciformis. Nat. Genet. 2002, 32, 579–581. [Google Scholar] [CrossRef]
- De Jong, S.J.; Créquer, A.; Matos, I.; Hum, D.; Gunasekharan, V.; Lorenzo, L.; Jabot-Hanin, F.; Imahorn, E.; Arias, A.A.; Vahidnezhad, H.; et al. The Human CIB1–EVER1–EVER2 Complex Governs Keratinocyte-Intrinsic Immunity to β-Papillomaviruses. J. Exp. Med. 2018, 215, 2289–2310. [Google Scholar] [CrossRef]
- Wu, C.-J.; Li, X.; Sommers, C.L.; Kurima, K.; Huh, S.; Bugos, G.; Dong, L.; Li, W.; Griffith, A.J.; Samelson, L.E. Expression of a TMC6-TMC8-CIB1 Heterotrimeric Complex in Lymphocytes Is Regulated by Each of the Components. J. Biol. Chem. 2020, 295, 16086–16099. [Google Scholar] [CrossRef]
- Bandyopadhyay, C.; Valiya-Veettil, M.; Dutta, D.; Chakraborty, S.; Chandran, B. CIB1 Synergizes with EphrinA2 to Regulate Kaposi’s Sarcoma-Associated Herpesvirus Macropinocytic Entry in Human Microvascular Dermal Endothelial Cells. PLoS Pathog. 2014, 10, e1003941. [Google Scholar] [CrossRef]
- Flock, A.; Cheung, H.C. Actin Filaments in Sensory Hairs of Inner Ear Receptor Cells. J. Cell Biol. 1977, 75, 339–343. [Google Scholar] [CrossRef]
- Hudspeth, A.J.; Corey, D.P. Sensitivity, Polarity, and Conductance Change in the Response of Vertebrate Hair Cells to Controlled Mechanical Stimuli. Proc. Natl. Acad. Sci. USA 1977, 74, 2407–2411. [Google Scholar] [CrossRef] [PubMed]
- Al-Sheikh, U.; Kang, L. Molecular Crux of Hair Cell Mechanotransduction Machinery. Neuron 2020, 107, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Caprara, G.A.; Peng, A.W. Mechanotransduction in Mammalian Sensory Hair Cells. Mol. Cell. Neurosci. 2022, 120, 103706. [Google Scholar] [CrossRef]
- Cunningham, C.L.; Müller, U. Molecular Structure of the Hair Cell Mechanoelectrical Transduction Complex. Cold Spring Harb. Perspect. Med. 2019, 9, a033167. [Google Scholar] [CrossRef]
- Pan, B.; Akyuz, N.; Liu, X.-P.; Asai, Y.; Nist-Lund, C.; Kurima, K.; Derfler, B.H.; György, B.; Limapichat, W.; Walujkar, S.; et al. TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron 2018, 99, 736–753.e6. [Google Scholar] [CrossRef]
- Kurima, K.; Peters, L.M.; Yang, Y.; Riazuddin, S.; Ahmed, Z.M.; Naz, S.; Arnaud, D.; Drury, S.; Mo, J.; Makishima, T.; et al. Dominant and Recessive Deafness Caused by Mutations of a Novel Gene, TMC1, Required for Cochlear Hair-Cell Function. Nat. Genet. 2002, 30, 277–284. [Google Scholar] [CrossRef]
- Kawashima, Y.; Kurima, K.; Pan, B.; Griffith, A.J.; Holt, J.R. Transmembrane Channel-like (TMC) Genes Are Required for Auditory and Vestibular Mechanosensation. Pflüg. Arch.-Eur. J. Physiol. 2015, 467, 85–94. [Google Scholar] [CrossRef]
- Jiang, Q.; Zou, W.; Li, S.; Qiu, X.; Zhu, L.; Kang, L.; Müller, U. Sequence Variations and Accessory Proteins Adapt TMC Functions to Distinct Sensory Modalities. Neuron 2024, 112, 2922–2937.e8. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Pan, X.; Lu, M.; Dong, J.; Yan, Z. Human TMC1 and TMC2 Are Mechanically Gated Ion Channels. Neuron 2024, 113, 411–425.e4. [Google Scholar] [CrossRef]
- Cunningham, C.L.; Qiu, X.; Wu, Z.; Zhao, B.; Peng, G.; Kim, Y.-H.; Lauer, A.; Müller, U. TMIE Defines Pore and Gating Properties of the Mechanotransduction Channel of Mammalian Cochlear Hair Cells. Neuron 2020, 107, 126–143.e8. [Google Scholar] [CrossRef]
- Qiu, X.; Liang, X.; Llongueras, J.P.; Cunningham, C.; Müller, U. The Tetraspan LHFPL5 Is Critical to Establish Maximal Force Sensitivity of the Mechanotransduction Channel of Cochlear Hair Cells. Cell Rep. 2023, 42, 112245. [Google Scholar] [CrossRef]
- Zhao, B.; Wu, Z.; Grillet, N.; Yan, L.; Xiong, W.; Harkins-Perry, S.; Müller, U. TMIE Is an Essential Component of the Mechanotransduction Machinery of Cochlear Hair Cells. Neuron 2014, 84, 954–967. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Grillet, N.; Elledge, H.M.; Wagner, T.F.J.; Zhao, B.; Johnson, K.R.; Kazmierczak, P.; Müller, U. TMHS Is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells. Cell 2012, 151, 1283–1295. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Lee, S.A.; Rahman, M.; Vanapalli, S.A.; Lu, H.; Schafer, W.R. Ankyrin Is An Intracellular Tether for TMC Mechanotransduction Channels. Neuron 2020, 107, 112–125.e10. [Google Scholar] [CrossRef]
- Wang, P.; Miller, K.K.; He, E.; Dhawan, S.S.; Cunningham, C.L.; Grillet, N. LOXHD1 Is Indispensable for Maintaining TMC1 Auditory Mechanosensitive Channels at the Site of Force Transmission. Nat. Commun. 2024, 15, 7865. [Google Scholar] [CrossRef] [PubMed]
- Reiners, J.; Nagel-Wolfrum, K.; Jürgens, K.; Märker, T.; Wolfrum, U. Molecular Basis of Human Usher Syndrome: Deciphering the Meshes of the Usher Protein Network Provides Insights into the Pathomechanisms of the Usher Disease. Exp. Eye Res. 2006, 83, 97–119. [Google Scholar] [CrossRef] [PubMed]
- Toms, M.; Pagarkar, W.; Moosajee, M. Usher Syndrome: Clinical Features, Molecular Genetics and Advancing Therapeutics. Ther. Adv. Ophthalmol. 2020, 12, 2515841420952194. [Google Scholar] [CrossRef]
- Fuster-García, C.; García-Bohórquez, B.; Rodríguez-Muñoz, A.; Aller, E.; Jaijo, T.; Millán, J.M.; García-García, G. Usher Syndrome: Genetics of a Human Ciliopathy. Int. J. Mol. Sci. 2021, 22, 6723. [Google Scholar] [CrossRef]
- Booth, K.T.; Kahrizi, K.; Babanejad, M.; Daghagh, H.; Bademci, G.; Arzhangi, S.; Zareabdollahi, D.; Duman, D.; El-Amraoui, A.; Tekin, M.; et al. Variants in CIB2 Cause DFNB48 and Not USH1J. Clin. Genet. 2018, 93, 812–821. [Google Scholar] [CrossRef]
- Jouret, G.; Poirsier, C.; Spodenkiewicz, M.; Jaquin, C.; Gouy, E.; Arndt, C.; Labrousse, M.; Gaillard, D.; Doco-Fenzy, M.; Lebre, A.-S. Genetics of Usher Syndrome: New Insights from a Meta-Analysis. Otol. Neurotol. 2019, 40, 121–129. [Google Scholar] [CrossRef]
- Belyantseva, I.A.; Boger, E.T.; Naz, S.; Frolenkov, G.I.; Sellers, J.R.; Ahmed, Z.M.; Griffith, A.J.; Friedman, T.B. Myosin-XVa Is Required for Tip Localization of Whirlin and Differential Elongation of Hair-Cell Stereocilia. Nat. Cell Biol. 2005, 7, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Tilney, L.G.; Derosier, D.J.; Mulroy, M.J. The Organization of Actin Filaments in the Stereocilia of Cochlear Hair Cells. J. Cell Biol. 1980, 86, 244–259. [Google Scholar] [CrossRef]
- Caberlotto, E.; Michel, V.; Foucher, I.; Bahloul, A.; Goodyear, R.J.; Pepermans, E.; Michalski, N.; Perfettini, I.; Alegria-Prévot, O.; Chardenoux, S.; et al. Usher Type 1G Protein sans Is a Critical Component of the Tip-Link Complex, a Structure Controlling Actin Polymerization in Stereocilia. Proc. Natl. Acad. Sci. USA 2011, 108, 5825–5830. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, Y.; Géléoc, G.S.G.; Kurima, K.; Labay, V.; Lelli, A.; Asai, Y.; Makishima, T.; Wu, D.K.; Della Santina, C.C.; Holt, J.R.; et al. Mechanotransduction in Mouse Inner Ear Hair Cells Requires Transmembrane Channel-like Genes. J. Clin. Investig. 2011, 121, 4796–4809. [Google Scholar] [CrossRef]
- Vélez-Ortega, A.C.; Freeman, M.J.; Indzhykulian, A.A.; Grossheim, J.M.; Frolenkov, G.I. Mechanotransduction Current Is Essential for Stability of the Transducing Stereocilia in Mammalian Auditory Hair Cells. eLife 2017, 6, e24661. [Google Scholar] [CrossRef] [PubMed]
- Seco, C.Z.; Giese, A.P.; Shafique, S.; Schraders, M.; Oonk, A.M.M.; Grossheim, M.; Oostrik, J.; Strom, T.; Hegde, R.; van Wijk, E.; et al. Novel and Recurrent CIB2 Variants, Associated with Nonsyndromic Deafness, Do Not Affect Calcium Buffering and Localization in Hair Cells. Eur. J. Hum. Genet. 2016, 24, 542–549. [Google Scholar] [CrossRef]
- Yan, K.; Zong, W.; Du, H.; Zhai, X.; Ren, R.; Liu, S.; Xiong, W.; Wang, Y.; Xu, Z. BAIAP2L2 Is Required for the Maintenance of Mechanotransducing Stereocilia of Cochlear Hair Cells. J. Cell. Physiol. 2022, 237, 774–788. [Google Scholar] [CrossRef]
- Giese, A.P.J.; Parker, A.; Rehman, S.; Brown, S.D.M.; Riazuddin, S.; Vander Kooi, C.W.; Bowl, M.R.; Ahmed, Z.M. CIB2 Function Is Distinct from Whirlin in the Development of Cochlear Stereocilia Staircase Pattern. bioRxiv 2024. [Google Scholar] [CrossRef]
- Aristizábal-Ramírez, I.; Dragich, A.K.; Giese, A.P.J.; Sofia Zuluaga-Osorio, K.; Watkins, J.; Davies, G.K.; Hadi, S.E.; Riazuddin, S.; Vander Kooi, C.W.; Ahmed, Z.M.; et al. Calcium and Integrin-Binding Protein 2 (CIB2) Controls Force Sensitivity of the Mechanotransducer Channels in Cochlear Outer Hair Cells. bioRxiv 2023. [Google Scholar] [CrossRef]
- Lee, J.H.; Perez-Flores, M.C.; Park, S.; Kim, H.J.; Chen, Y.; Kang, M.; Kersigo, J.; Choi, J.; Thai, P.N.; Woltz, R.L.; et al. The Piezo Channel Is a Mechano-Sensitive Complex Component in the Mammalian Inner Ear Hair Cell. Nat. Commun. 2024, 15, 526. [Google Scholar] [CrossRef]
- Jeong, H.; Clark, S.; Goehring, A.; Dehghani-Ghahnaviyeh, S.; Rasouli, A.; Tajkhorshid, E.; Gouaux, E. Structures of the TMC-1 Complex Illuminate Mechanosensory Transduction. Nature 2022, 610, 796–803. [Google Scholar] [CrossRef]
- Wang, H.; Yan, Y.; Liu, Q.; Huang, Y.; Shen, Y.; Chen, L.; Chen, Y.; Yang, Q.; Hao, Q.; Wang, K.; et al. Structural Basis for Modulation of Kv4 K+ Channels by Auxiliary KChIP Subunits. Nat. Neurosci. 2007, 10, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Grillet, N.; Zhao, B.; Cunningham, C.; Harkins-Perry, S.; Coste, B.; Ranade, S.; Zebarjadi, N.; Beurg, M.; Fettiplace, R.; et al. Mechanosensory Hair Cells Express Two Molecularly Distinct Mechanotransduction Channels. Nat. Neurosci. 2017, 20, 24–33. [Google Scholar] [CrossRef]
- Yi, Z.; Yin, G.; Wei, C.; Quan, Y.; Sun, Y. Mechanosensitive Piezo Channels and Their Potential Roles in Peripheral Auditory Perception. Brain-X 2024, 2, e70006. [Google Scholar] [CrossRef]
- Zou, J.; Chen, Q.; Almishaal, A.; Mathur, P.D.; Zheng, T.; Tian, C.; Zheng, Q.Y.; Yang, J. The Roles of USH1 Proteins and PDZ Domain-Containing USH Proteins in USH2 Complex Integrity in Cochlear Hair Cells. Hum. Mol. Genet. 2017, 26, 624–636. [Google Scholar] [CrossRef]
- Desai, S.S.; Zeh, C.; Lysakowski, A. Comparative Morphology of Rodent Vestibular Periphery. I. Saccular and Utricular Maculae. J. Neurophysiol. 2005, 93, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Eatock, R.A.; Songer, J.E. Vestibular Hair Cells and Afferents: Two Channels for Head Motion Signals. Annu. Rev. Neurosci. 2011, 34, 501–534. [Google Scholar] [CrossRef]
- Baird, R.A.; Desmadryl, G.; Fernández, C.; Goldberg, J.M. The Vestibular Nerve of the Chinchilla. II. Relation between Afferent Response Properties and Peripheral Innervation Patterns in the Semicircular Canals. J. Neurophysiol. 1988, 60, 182–203. [Google Scholar] [CrossRef]
- Straka, H.; Zwergal, A.; Cullen, K.E. Vestibular Animal Models: Contributions to Understanding Physiology and Disease. J. Neurol. 2016, 263 (Suppl. 1), S10–S23. [Google Scholar] [CrossRef]
- Wang, T.; Ling, A.H.; Billings, S.E.; Hosseini, D.K.; Vaisbuch, Y.; Kim, G.S.; Atkinson, P.J.; Sayyid, Z.N.; Aaron, K.A.; Wagh, D.; et al. Single-Cell Transcriptomic Atlas Reveals Increased Regeneration in Diseased Human Inner Ear Balance Organs. Nat. Commun. 2024, 15, 4833. [Google Scholar] [CrossRef]
- Wang, T.; Yang, T.; Kedaigle, A.; Pregernig, G.; McCarthy, R.; Holmes, B.; Wu, X.; Becker, L.; Pan, N.; So, K.; et al. Precise Genetic Control of ATOH1 Enhances Maturation of Regenerated Hair Cells in the Mature Mouse Utricle. Nat. Commun. 2024, 15, 9166. [Google Scholar] [CrossRef]
- Wu, D.K.; Kelley, M.W. Molecular Mechanisms of Inner Ear Development. Cold Spring Harb. Perspect. Biol. 2012, 4, a008409. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, H.; Abelló, G.; Giraldez, F. Signaling and Transcription Factors during Inner Ear Development: The Generation of Hair Cells and Otic Neurons. Front. Cell Dev. Biol. 2017, 5, 21. [Google Scholar] [CrossRef]
- Montcouquiol, M.; Kelley, M.W. Development and Patterning of the Cochlea: From Convergent Extension to Planar Polarity. Cold Spring Harb. Perspect. Med. 2020, 10, a033266. [Google Scholar] [CrossRef]
- Ono, K.; Keller, J.; López Ramírez, O.; González Garrido, A.; Zobeiri, O.A.; Chang, H.H.V.; Vijayakumar, S.; Ayiotis, A.; Duester, G.; Della Santina, C.C.; et al. Retinoic Acid Degradation Shapes Zonal Development of Vestibular Organs and Sensitivity to Transient Linear Accelerations. Nat. Commun. 2020, 11, 63. [Google Scholar] [CrossRef]
- Ono, K.; Sandell, L.L.; Trainor, P.A.; Wu, D.K. Retinoic Acid Synthesis and Autoregulation Mediate Zonal Patterning of Vestibular Organs and Inner Ear Morphogenesis. Development 2020, 147, dev192070. [Google Scholar] [CrossRef]
- Sun, P.; Smith, E.; Nicolson, T. Transmembrane Channel-like (Tmc) Subunits Contribute to Frequency Sensitivity in the Zebrafish Utricle. J. Neurosci. 2024, 44, e1298232023. [Google Scholar] [CrossRef]
- An, Y.; Lim, J.; Glavatskikh, M.; Wang, X.; Norris-Drouin, J.; Hardy, P.B.; Leisner, T.M.; Pearce, K.H.; Kireev, D. In Silico Fragment-Based Discovery of CIB1-Directed Anti-Tumor Agents by FRASE-Bot. Nat. Commun. 2024, 15, 5564. [Google Scholar] [CrossRef]
- Wayne, E.C.; Long, C.; Haney, M.J.; Batrakova, E.V.; Leisner, T.M.; Parise, L.V.; Kabanov, A.V. Targeted Delivery of siRNA Lipoplexes to Cancer Cells Using Macrophage Transient Horizontal Gene Transfer. Adv. Sci. 2019, 6, 1900582. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-H.; Zheng, Y.-M.; Liang, B.-G.; Xu, W.-X.; Cao, J.; Wang, P.; Dong, Z.-Y.; Zhou, C.-H.; Sun, H.-C.; Ren, N.; et al. Deubiquitination of CIB1 by USP14 Promotes Lenvatinib Resistance via the PAK1-ERK1/2 Axis in Hepatocellular Carcinoma. Int. J. Biol. Sci. 2024, 20, 3269–3284. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.-M.; Wang, K.-K.; Wang, L.-H.; Qiu, J.-G.; Wang, W.; Liu, W.-J.; Wang, L.; Jiang, B.-H. CIB2 Mediates Acquired Gefitinib Resistance by Inducing ZEB1 Expression and Epithelial-Mesenchymal Transition. Aging 2024, 16, 12277–12292. [Google Scholar] [CrossRef]
- Lv, J.; Wang, H.; Cheng, X.; Chen, Y.; Wang, D.; Zhang, L.; Cao, Q.; Tang, H.; Hu, S.; Gao, K.; et al. AAV1-hOTOF Gene Therapy for Autosomal Recessive Deafness 9: A Single-Arm Trial. Lancet 2024, 403, 2317–2325. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, F.; Qi, J.; Lu, Y.; Wang, X.; Yang, X.; Chen, X.; Zhang, X.; Fan, J.; Zhou, Y.; et al. AAV-Mediated Gene Therapy for Hereditary Deafness: Progress and Perspectives. Adv. Sci. 2024, 11, 2402166. [Google Scholar] [CrossRef]
- Askew, C.; Rochat, C.; Pan, B.; Asai, Y.; Ahmed, H.; Child, E.; Schneider, B.L.; Aebischer, P.; Holt, J.R. Tmc Gene Therapy Restores Auditory Function in Deaf Mice. Sci. Transl. Med. 2015, 7, 295ra108. [Google Scholar] [CrossRef]
- Nist-Lund, C.A.; Pan, B.; Patterson, A.; Asai, Y.; Chen, T.; Zhou, W.; Zhu, H.; Romero, S.; Resnik, J.; Polley, D.B.; et al. Improved TMC1 Gene Therapy Restores Hearing and Balance in Mice with Genetic Inner Ear Disorders. Nat. Commun. 2019, 10, 236. [Google Scholar] [CrossRef]
- Marcovich, I.; Baer, N.K.; Shubina-Oleinik, O.; Eclov, R.; Beard, C.W.; Holt, J.R. Optimized AAV Vectors for TMC1 Gene Therapy in a Humanized Mouse Model of DFNB7/11. Biomolecules 2022, 12, 914. [Google Scholar] [CrossRef]
Interacting Proteins | CIB Family Members | Verification Methods |
---|---|---|
TMC1 | CIB2, CIB3 | FRET [8], co-IP [11] |
TMC2 | CIB2 | FRET [8], co-IP [11] |
PIEZO1 | CIB2 | co-IP [110] |
BAIAP2L2 | CIB2 | co-IP, colocalization [107] |
WHRN | CIB2 | co-IP [5] |
MYOSIN VIIa | CIB2 | co-IP [5] |
LOXHD1 | CIB2 | co-IP [95] |
LHFPL5 | CIB2 | co-IP [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yi, Z.; Shi, M.; Sun, Y. The Diverse Functions of the Calcium- and Integrin-Binding Protein Family. Int. J. Mol. Sci. 2025, 26, 2223. https://doi.org/10.3390/ijms26052223
Wang X, Yi Z, Shi M, Sun Y. The Diverse Functions of the Calcium- and Integrin-Binding Protein Family. International Journal of Molecular Sciences. 2025; 26(5):2223. https://doi.org/10.3390/ijms26052223
Chicago/Turabian StyleWang, Xiaoying, Zhangyi Yi, Mengwen Shi, and Yu Sun. 2025. "The Diverse Functions of the Calcium- and Integrin-Binding Protein Family" International Journal of Molecular Sciences 26, no. 5: 2223. https://doi.org/10.3390/ijms26052223
APA StyleWang, X., Yi, Z., Shi, M., & Sun, Y. (2025). The Diverse Functions of the Calcium- and Integrin-Binding Protein Family. International Journal of Molecular Sciences, 26(5), 2223. https://doi.org/10.3390/ijms26052223