Molecular Underpinnings of Brain Metastases
Abstract
:1. Introduction
2. Brain Metastases Epidemiology
3. Genetic Predisposition for Brain Metastases
3.1. Genetic Features of Breast Cancer Brain Metastases
3.2. Genetic Features of Lung Cancer Brain Metastases
3.3. Genetic Features of Melanoma Brain Metastases
3.4. Genetic Signatures in Other Brain Metastases
4. Molecular Mechanisms of Metastatic Progression to the Central Nervous System
4.1. The Pre-Metastatic Niche
4.2. Lymphatic Spread of Tumor Cells
4.3. Hematogenous Spread of Tumor Cells
4.4. Vascular Cooption
4.5. Blood–Brain Barrier Penetration
4.6. Astrocytes in Progression of Brain Metastases
5. Challenges Targeting Brain Metastases and Future Therapeutic Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALK | Anaplastic lymphoma kinase |
BBB | Blood–brain barrier |
BCSFB | Blood cerebrospinal fluid barrier |
BM | Brain metastases |
BRAF | V-raf murine sarcoma viral oncogene homolog B1 |
CDKN2A | Cyclin-dependent kinase inhibitor 2A |
CNS | Central nervous system |
CTCs | Circulating tumor cells |
EGFR | Epidermal growth factor receptor |
ER | Estrogen receptor |
FABP7 | Fatty acid binding protein 7 |
FASN | Fatty acid synthase |
GBP1 | Guanylate-binding protein 1 |
GPNMB | Glycoprotein nonmetastatic melanoma B |
GPX1 | Glutathione peroxidase 1 |
HDAC11 | Histone deacetylase |
HER2 | Human epidermal growth factor 2 |
ICAM | Intercellular adhesion molecule |
ICIs | Immune checkpoint inhibitors |
KRAS | Kirsten rat sarcoma viral oncogene |
LCN2 | Lipocalin-2 |
lncRNA | Long non-coding RNA |
MDSC | Myeloid-derived suppressor cells |
MMP | Matrix metalloproteinase |
NRAS | Neuroblastoma RAS viral (v-ras) oncogene homolog |
NSCLC | Non-small-cell lung cancer |
PMN | Pre-metastatic niche |
PR | Progesterone receptor |
RET | Rearranged during transfection |
ROS1 | C-ros oncogene 1 |
SCLC | Small-cell lung cancer |
TAMs | Tumor-associated macrophages |
TNF-α | Tumor necrosis factor-α |
VEGF | Vascular endothelial growth factor |
YAP | Yes-associated protein |
References
- Ostrom, Q.T.; Wright, C.H.; Barnholtz-Sloan, J.S. Brain Metastases: Epidemiology. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–42. [Google Scholar]
- Sacks, P.; Rahman, M. Epidemiology of Brain Metastases. Neurosurg. Clin. N. Am. 2020, 31, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E.; et al. Incidence and Prognosis of Patients with Brain Metastases at Diagnosis of Systemic Malignancy: A Population-Based Study. Neuro Oncol. 2017, 19, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.G.; Dolecek, T.A.; McCarthy, B.J.; Villano, J.L. Toward Determining the Lifetime Occurrence of Metastatic Brain Tumors Estimated from 2007 United States Cancer Incidence Data. Neuro Oncol. 2012, 14, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Fox, B.D.; Cheung, V.J.; Patel, A.J.; Suki, D.; Rao, G. Epidemiology of Metastatic Brain Tumors. Neurosurg. Clin. N. Am. 2011, 22, 1–6. [Google Scholar] [CrossRef]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain Metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef]
- Kromer, C.; Xu, J.; Ostrom, Q.T.; Gittleman, H.; Kruchko, C.; Sawaya, R.; Barnholtz-Sloan, J.S. Estimating the Annual Frequency of Synchronous Brain Metastasis in the United States 2010–2013: A Population-Based Study. J. Neurooncol. 2017, 134, 55–64. [Google Scholar] [CrossRef]
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence Proportions of Brain Metastases in Patients Diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Daryanani, D.; Plukker, J.T.; de Jong, M.A.; Haaxma-Reiche, H.; Nap, R.; Kuiper, H.; Hoekstra, H.J. Increased Incidence of Brain Metastases in Cutaneous Head and Neck Melanoma. Melanoma Res. 2005, 15, 119–124. [Google Scholar] [CrossRef]
- Parker, M.; Jiang, K.; Rincon-Torroella, J.; Materi, J.; Azad, T.D.; Kamson, D.O.; Kleinberg, L.R.; Bettegowda, C. Epidemiological Trends, Prognostic Factors, and Survival Outcomes of Synchronous Brain Metastases from 2015 to 2019: A Population-Based Study. Neurooncol. Adv. 2023, 5, vdad015. [Google Scholar] [CrossRef]
- Mills, M.N.; Potluri, T.K.; Kawahara, Y.; Fahey, M.; Figura, N.B.; Soyano, A.E.; Washington, I.R.; Diaz, R.; Oliver, D.E.; Yu, H.-H.M.; et al. The Presentation of Brain Metastases in Melanoma, Non-Small Cell Lung Cancer, and Breast Cancer and Potential Implications for Screening Brain MRIs. Breast Cancer Res. Treat. 2022, 191, 209–217. [Google Scholar] [CrossRef]
- Avila, J.; Leone, J.; Vallejo, C.T.; Lin, N.U.; Leone, J.P. Survival Analysis of Patients with Brain Metastases at Initial Breast Cancer Diagnosis over the Last Decade. Breast Cancer Res. Treat. 2024, 205, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Rangachari, D.; Yamaguchi, N.; VanderLaan, P.A.; Folch, E.; Mahadevan, A.; Floyd, S.R.; Uhlmann, E.J.; Wong, E.T.; Dahlberg, S.E.; Huberman, M.S.; et al. Brain Metastases in Patients with EGFR -Mutated or ALK -Rearranged Non-Small-Cell Lung Cancers. Lung Cancer 2015, 88, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Glitza, I.C.; Heimberger, A.B.; Sulman, E.P.; Davies, M.A. Prognostic Factors for Survival in Melanoma Patients with Brain Metastases. In Brain Metastases from Primary Tumors; Elsevier: Amsterdam, The Netherlands, 2016; Volume 3, pp. 267–297. [Google Scholar]
- Jakob, J.A.; Bassett, R.L.; Ng, C.S.; Curry, J.L.; Joseph, R.W.; Alvarado, G.C.; Rohlfs, M.L.; Richard, J.; Gershenwald, J.E.; Kim, K.B.; et al. NRAS Mutation Status Is an Independent Prognostic Factor in Metastatic Melanoma. Cancer 2012, 118, 4014–4023. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.E.; Scott, C.; Murray, K.; Curran, W. Validation of the RTOG Recursive Partitioning Analysis (RPA) Classification for Brain Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 1001–1006. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Berkey, B.; Gaspar, L.E.; Mehta, M.; Curran, W. A New Prognostic Index and Comparison to Three Other Indices for Patients with Brain Metastases: An Analysis of 1960 Patients in the RTOG Database. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 510–514. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Mesko, S.; Li, J.; Cagney, D.; Aizer, A.; Lin, N.U.; Nesbit, E.; Kruser, T.J.; Chan, J.; Braunstein, S.; et al. Beyond an Updated Graded Prognostic Assessment (Breast GPA): A Prognostic Index and Trends in Treatment and Survival in Breast Cancer Brain Metastases From 1985 to Today. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 334–343. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Carter, S.L.; Santagata, S.; Cahill, D.P.; Taylor-Weiner, A.; Jones, R.T.; Van Allen, E.M.; Lawrence, M.S.; Horowitz, P.M.; Cibulskis, K.; et al. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov. 2015, 5, 1164–1177. [Google Scholar] [CrossRef]
- Chroni, A.; Miura, S.; Hamilton, L.; Vu, T.; Gaffney, S.G.; Aly, V.; Karim, S.; Sanderford, M.; Townsend, J.P.; Kumar, S. Clone Phylogenetics Reveals Metastatic Tumor Migrations, Maps, and Models. Cancers 2022, 14, 4326. [Google Scholar] [CrossRef]
- Brown, D.; Smeets, D.; Székely, B.; Larsimont, D.; Szász, A.M.; Adnet, P.-Y.; Rothé, F.; Rouas, G.; Nagy, Z.I.; Faragó, Z.; et al. Phylogenetic Analysis of Metastatic Progression in Breast Cancer Using Somatic Mutations and Copy Number Aberrations. Nat. Commun. 2017, 8, 14944. [Google Scholar] [CrossRef]
- Jin, X.; Demere, Z.; Nair, K.; Ali, A.; Ferraro, G.B.; Natoli, T.; Deik, A.; Petronio, L.; Tang, A.A.; Zhu, C.; et al. A Metastasis Map of Human Cancer Cell Lines. Nature 2020, 588, 331–336. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thürlimann, B.; Senn, H.-J. Strategies for Subtypes—Dealing with the Diversity of Breast Cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 2011, 22, 1736–1747. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.S.; Conant, E.F.; Soo, M.S. Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. J. Breast Imaging 2021, 3, 12–24. [Google Scholar] [CrossRef]
- Poletes, C.; Amanirad, B.; Santiago, A.T.; Yan, M.; Conrad, T.; Jerzak, K.J.; Shultz, D.B. The Incidence of Brain Metastases in Breast Cancer According to Molecular Subtype and Stage: A 10-Year Single Institution Analysis. J. Neurooncol. 2024, 169, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Liu, J.; Vong, J.S.; Niu, Y.; Germin, B.; Tang, P.; Chan, A.W.H.; Lui, P.C.W.; Law, B.K.B.; Tan, P.-H.; et al. A Subset of Breast Cancer Predisposes to Brain Metastasis. Med. Mol. Morphol. 2011, 44, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Ignatov, A.; Eggemann, H.; Burger, E.; Ignatov, T. Patterns of Breast Cancer Relapse in Accordance to Biological Subtype. J. Cancer Res. Clin. Oncol. 2018, 144, 1347–1355. [Google Scholar] [CrossRef]
- Choy, C.; Raytis, J.L.; Smith, D.D.; Duenas, M.; Neman, J.; Jandial, R.; Lew, M.W. Inhibition of Β2-Adrenergic Receptor Reduces Triple-Negative Breast Cancer Brain Metastases: The Potential Benefit of Perioperative β-Blockade. Oncol. Rep. 2016, 35, 3135–3142. [Google Scholar] [CrossRef]
- Yonemori, K.; Tsuta, K.; Ono, M.; Shimizu, C.; Hirakawa, A.; Hasegawa, T.; Hatanaka, Y.; Narita, Y.; Shibui, S.; Fujiwara, Y. Disruption of the Blood Brain Barrier by Brain Metastases of Triple-negative and Basal-type Breast Cancer but Not HER2/Neu-positive Breast Cancer. Cancer 2010, 116, 302–308. [Google Scholar] [CrossRef]
- Momeny, M.; Saunus, J.M.; Marturana, F.; McCart Reed, A.E.; Black, D.; Sala, G.; Iacobelli, S.; Holland, J.D.; Yu, D.; Da Silva, L.; et al. Heregulin-HER3-HER2 Signaling Promotes Matrix Metalloproteinase-Dependent Blood-Brain-Barrier Transendothelial Migration of Human Breast Cancer Cell Lines. Oncotarget 2015, 6, 3932–3946. [Google Scholar] [CrossRef]
- Conrad, C.; Götte, M.; Schlomann, U.; Roessler, M.; Pagenstecher, A.; Anderson, P.; Preston, J.; Pruessmeyer, J.; Ludwig, A.; Li, R.; et al. ADAM8 Expression in Breast Cancer Derived Brain Metastases: Functional Implications on MMP-9 Expression and Transendothelial Migration in Breast Cancer Cells. Int. J. Cancer 2018, 142, 779–791. [Google Scholar] [CrossRef]
- Joyce, J.A.; Hanahan, D. Multiple Roles for Cysteine Cathepsins in Cancer. Cell Cycle 2004, 3, 1516–1519. [Google Scholar] [CrossRef]
- Linders, D.G.J.; Bijlstra, O.D.; Fallert, L.C.; Hilling, D.E.; Walker, E.; Straight, B.; March, T.L.; Valentijn, A.R.P.M.; Pool, M.; Burggraaf, J.; et al. Cysteine Cathepsins in Breast Cancer: Promising Targets for Fluorescence-Guided Surgery. Mol. Imaging Biol. 2023, 25, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Sevenich, L.; Bowman, R.L.; Mason, S.D.; Quail, D.F.; Rapaport, F.; Elie, B.T.; Brogi, E.; Brastianos, P.K.; Hahn, W.C.; Holsinger, L.J.; et al. Analysis of Tumour- and Stroma-Supplied Proteolytic Networks Reveals a Brain-Metastasis-Promoting Role for Cathepsin S. Nat. Cell Biol. 2014, 16, 876–888. [Google Scholar] [CrossRef] [PubMed]
- Varešlija, D.; Priedigkeit, N.; Fagan, A.; Purcell, S.; Cosgrove, N.; O’Halloran, P.J.; Ward, E.; Cocchiglia, S.; Hartmaier, R.; Castro, C.A.; et al. Transcriptome Characterization of Matched Primary Breast and Brain Metastatic Tumors to Detect Novel Actionable Targets. J. Natl. Cancer Inst. 2019, 111, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, S.; Yao, J.; Lowery, F.J.; Zhang, Q.; Huang, W.-C.; Li, P.; Li, M.; Wang, X.; Zhang, C.; et al. Microenvironment-Induced PTEN Loss by Exosomal MicroRNA Primes Brain Metastasis Outgrowth. Nature 2015, 527, 100–104. [Google Scholar] [CrossRef]
- Sihto, H.; Lundin, J.; Lundin, M.; Lehtimäki, T.; Ristimäki, A.; Holli, K.; Sailas, L.; Kataja, V.; Turpeenniemi-Hujanen, T.; Isola, J.; et al. Breast Cancer Biological Subtypes and Protein Expression Predict for the Preferential Distant Metastasis Sites: A Nationwide Cohort Study. Breast Cancer Res. 2011, 13, R87. [Google Scholar] [CrossRef]
- Ferraro, G.B.; Ali, A.; Luengo, A.; Kodack, D.P.; Deik, A.; Abbott, K.L.; Bezwada, D.; Blanc, L.; Prideaux, B.; Jin, X.; et al. Fatty Acid Synthesis Is Required for Breast Cancer Brain Metastasis. Nat. Cancer 2021, 2, 414–428. [Google Scholar] [CrossRef]
- Chen, E.I.; Hewel, J.; Krueger, J.S.; Tiraby, C.; Weber, M.R.; Kralli, A.; Becker, K.; Yates, J.R.; Felding-Habermann, B. Adaptation of Energy Metabolism in Breast Cancer Brain Metastases. Cancer Res. 2007, 67, 1472–1486. [Google Scholar] [CrossRef]
- Cordero, A.; Kanojia, D.; Miska, J.; Panek, W.K.; Xiao, A.; Han, Y.; Bonamici, N.; Zhou, W.; Xiao, T.; Wu, M.; et al. FABP7 Is a Key Metabolic Regulator in HER2+ Breast Cancer Brain Metastasis. Oncogene 2019, 38, 6445–6460. [Google Scholar] [CrossRef]
- George Warren, W.; Osborn, M.; Yates, A.; O’Sullivan, S.E. The Emerging Role of Fatty Acid Binding Protein 7 (FABP7) in Cancers. Drug Discov. Today 2024, 29, 103980. [Google Scholar] [CrossRef]
- Santana-Codina, N.; Marcé-Grau, A.; Muixí, L.; Nieva, C.; Marro, M.; Sebastián, D.; Muñoz, J.P.; Zorzano, A.; Sierra, A. GRP94 Is Involved in the Lipid Phenotype of Brain Metastatic Cells. Int. J. Mol. Sci. 2019, 20, 3883. [Google Scholar] [CrossRef]
- Bos, P.D.; Zhang, X.H.-F.; Nadal, C.; Shu, W.; Gomis, R.R.; Nguyen, D.X.; Minn, A.J.; van de Vijver, M.J.; Gerald, W.L.; Foekens, J.A.; et al. Genes That Mediate Breast Cancer Metastasis to the Brain. Nature 2009, 459, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E.E.; Lopez-Soto, A.; Jacob, L.S.; Patwa, R.; Shah, H.; Xu, K.; et al. Carcinoma–Astrocyte Gap Junctions Promote Brain Metastasis by CGAMP Transfer. Nature 2016, 533, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Michael, I.P.; Zhang, P.; Saghafinia, S.; Knott, G.; Jiao, W.; McCabe, B.D.; Galván, J.A.; Robinson, H.P.C.; Zlobec, I.; et al. Synaptic Proximity Enables NMDAR Signalling to Promote Brain Metastasis. Nature 2019, 573, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Klotz, R.; Thomas, A.; Teng, T.; Han, S.M.; Iriondo, O.; Li, L.; Restrepo-Vassalli, S.; Wang, A.; Izadian, N.; MacKay, M.; et al. Circulating Tumor Cells Exhibit Metastatic Tropism and Reveal Brain Metastasis Drivers. Cancer Discov. 2020, 10, 86–103. [Google Scholar] [CrossRef]
- Zhang, L.; Ridgway, L.D.; Wetzel, M.D.; Ngo, J.; Yin, W.; Kumar, D.; Goodman, J.C.; Groves, M.D.; Marchetti, D. The Identification and Characterization of Breast Cancer CTCs Competent for Brain Metastasis. Sci. Transl. Med. 2013, 5, 180ra48. [Google Scholar] [CrossRef]
- Valiente, M.; Obenauf, A.C.; Jin, X.; Chen, Q.; Zhang, X.H.-F.; Lee, D.J.; Chaft, J.E.; Kris, M.G.; Huse, J.T.; Brogi, E.; et al. Serpins Promote Cancer Cell Survival and Vascular Co-Option in Brain Metastasis. Cell 2014, 156, 1002–1016. [Google Scholar] [CrossRef]
- Mustafa, D.A.M.; Pedrosa, R.M.S.M.; Smid, M.; van der Weiden, M.; de Weerd, V.; Nigg, A.L.; Berrevoets, C.; Zeneyedpour, L.; Priego, N.; Valiente, M.; et al. T Lymphocytes Facilitate Brain Metastasis of Breast Cancer by Inducing Guanylate-Binding Protein 1 Expression. Acta Neuropathol. 2018, 135, 581–599. [Google Scholar] [CrossRef]
- Karimpour, M.; Ravanbakhsh, R.; Maydanchi, M.; Rajabi, A.; Azizi, F.; Saber, A. Cancer Driver Gene and Non-Coding RNA Alterations as Biomarkers of Brain Metastasis in Lung Cancer: A Review of the Literature. Biomed. Pharmacother. 2021, 143, 112190. [Google Scholar] [CrossRef]
- Saber, A.; Hiltermann, T.J.N.; Kok, K.; Terpstra, M.M.; de Lange, K.; Timens, W.; Groen, H.J.M.; van den Berg, A. Mutation Patterns in Small Cell and Non-Small Cell Lung Cancer Patients Suggest a Different Level of Heterogeneity between Primary and Metastatic Tumors. Carcinogenesis 2016, 38, 144–151. [Google Scholar] [CrossRef]
- Andrews, L.J.; Thornton, Z.A.; Saleh, R.; Dawson, S.; Short, S.C.; Daly, R.; Higgins, J.P.T.; Davies, P.; Kurian, K.M. Genomic Landscape and Actionable Mutations of Brain Metastases Derived from Non–Small Cell Lung Cancer: A Systematic Review. Neuro-Oncol. Adv. 2023, 5, vdad145. [Google Scholar] [CrossRef]
- Kam, T.Y.; Wong, C.H.L.; Fong, J.K.S.; Lee, V.H.F.; Chiu, M.K.L.; Cheung, K.M.; Nyaw, S.F.; Lim, M.Y.; Kwan, C.K.; Mok, S.T.F.; et al. 169P Genomic Landscape of NSCLC Brain Metastases and Its Potential Association with TP53 and Tumor Mutation Burden: A Territory-Wide Program in Hong Kong. ESMO Open 2024, 9, 102744. [Google Scholar] [CrossRef]
- Van Egeren, D.; Kohli, K.; Warner, J.L.; Bedard, P.L.; Riely, G.; Lepisto, E.; Schrag, D.; LeNoue-Newton, M.; Catalano, P.; Kehl, K.L.; et al. Genomic Analysis of Early-Stage Lung Cancer Reveals a Role for TP53 Mutations in Distant Metastasis. Sci. Rep. 2022, 12, 19055. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Ji, X.; Ge, M.; Zhan, Q.; Huang, R.; Liang, X.; Zhou, X. Characterization of Genetic Alterations in Brain Metastases from Non-small Cell Lung Cancer. FEBS Open Bio 2018, 8, 1544–1552. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ou, Q.; Li, D.; Qin, T.; Bao, H.; Hou, X.; Wang, K.; Wang, F.; Deng, Q.; Liang, J.; et al. Genes Associated with Increased Brain Metastasis Risk in Non–Small Cell Lung Cancer: Comprehensive Genomic Profiling of 61 Resected Brain Metastases versus Primary Non–Small Cell Lung Cancer (Guangdong Association Study of Thoracic Oncology 1036). Cancer 2019, 125, 3535–3544. [Google Scholar] [CrossRef]
- Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. P53 Signaling in Cancer Progression and Therapy. Cancer Cell Int. 2021, 21, 703. [Google Scholar] [CrossRef]
- Roskoski, R. ErbB/HER Protein-Tyrosine Kinases: Structures and Small Molecule Inhibitors. Pharmacol. Res. 2014, 87, 42–59. [Google Scholar] [CrossRef]
- Sasaki, T.; Hiroki, K.; Yamashita, Y. The Role of Epidermal Growth Factor Receptor in Cancer Metastasis and Microenvironment. Biomed. Res. Int. 2013, 2013, 8. [Google Scholar] [CrossRef]
- Tan, L.; Wu, Y.; Ma, X.; Yan, Y.; Shao, S.; Liu, J.; Ma, H.; Liu, R.; Chai, L.; Ren, J. A Comprehensive Meta-Analysis of Association between EGFR Mutation Status and Brain Metastases in NSCLC. Pathol. Oncol. Res. 2019, 25, 791–799. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Zhang, G.; Zhang, M.; Zhang, X.; Li, H.; Zheng, X.; Ma, Z. Driver Genes as Predictive Indicators of Brain Metastasis in Patients with Advanced NSCLC: EGFR, ALK, and RET Gene Mutations. Cancer Med. 2020, 9, 487–495. [Google Scholar] [CrossRef]
- Du, X.; Shao, Y.; Qin, H.; Tai, Y.; Gao, H. ALK-rearrangement in Non-small-cell Lung Cancer (NSCLC). Thorac. Cancer 2018, 9, 423–430. [Google Scholar] [CrossRef]
- Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; et al. Identification of the Transforming EML4–ALK Fusion Gene in Non-Small-Cell Lung Cancer. Nature 2007, 448, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, B.; Palmer, R.H. The Role of the ALK Receptor in Cancer Biology. Ann. Oncol. 2016, 27, iii4–iii15. [Google Scholar] [CrossRef] [PubMed]
- Preusser, M.; Berghoff, A.S.; Ilhan-Mutlu, A.; Magerle, M.; Dinhof, C.; Widhalm, G.; Dieckmann, K.; Marosi, C.; Wöhrer, A.; Hackl, M.; et al. ALK Gene Translocations and Amplifications in Brain Metastases of Non-Small Cell Lung Cancer. Lung Cancer 2013, 80, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Lim, H.-J.; Park, J.S.; Cho, Y.-J.; Yoon, H.-I.; Chung, J.-H.; Lee, J.H.; Lee, C.-T. Comparison of Clinical Characteristics between Patients with ALK-Positive and EGFR-Positive Lung Adenocarcinoma. Respir. Med. 2014, 108, 388–394. [Google Scholar] [CrossRef]
- Qiao, M.; Zhao, C.; Liu, Q.; Wang, Y.; Shi, J.; Ng, T.L.; Zhou, F.; Li, X.; Jiang, T.; Yang, S.; et al. Impact of ALK Variants on Brain Metastasis and Treatment Response in Advanced NSCLC Patients with Oncogenic ALK Fusion. Transl. Lung Cancer Res. 2020, 9, 1452–1463. [Google Scholar] [CrossRef]
- Ferrara, R.; Auger, N.; Auclin, E.; Besse, B. Clinical and Translational Implications of RET Rearrangements in Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 27–45. [Google Scholar] [CrossRef]
- Digumarthy, S.R.; Mendoza, D.P.; Lin, J.J.; Rooney, M.; Do, A.; Chin, E.; Yeap, B.Y.; Shaw, A.T.; Gainor, J.F. Imaging Features and Patterns of Metastasis in Non-Small Cell Lung Cancer with RET Rearrangements. Cancers 2020, 12, 693. [Google Scholar] [CrossRef]
- Drilon, A.; Lin, J.J.; Filleron, T.; Ni, A.; Milia, J.; Bergagnini, I.; Hatzoglou, V.; Velcheti, V.; Offin, M.; Li, B.; et al. Frequency of Brain Metastases and Multikinase Inhibitor Outcomes in Patients with RET–Rearranged Lung Cancers. J. Thorac. Oncol. 2018, 13, 1595–1601. [Google Scholar] [CrossRef]
- Gainor, J.F.; Lee, D.H.; Curigliano, G.; Doebele, R.C.; Kim, D.-W.; Baik, C.S.; Tan, D.S.-W.; Lopes, G.; Gadgeel, S.M.; Cassier, P.A.; et al. Clinical Activity and Tolerability of BLU-667, a Highly Potent and Selective RET Inhibitor, in Patients (Pts) with Advanced RET-Fusion+ Non-Small Cell Lung Cancer (NSCLC). J. Clin. Oncol. 2019, 37, 9008. [Google Scholar] [CrossRef]
- Murciano-Goroff, Y.R.; Falcon, C.J.; Lin, S.T.; Chacko, C.; Grimaldi, G.; Liu, D.; Wilhelm, C.; Iasonos, A.; Drilon, A. Central Nervous System Disease in Patients with RET Fusion-Positive NSCLC Treated with Selpercatinib. J. Thorac. Oncol. 2023, 18, 620–627. [Google Scholar] [CrossRef]
- Ou, S.-H.I.; Tan, J.; Yen, Y.; Soo, R.A. ROS1 as a ‘Druggable’ Receptor Tyrosine Kinase: Lessons Learned from Inhibiting the ALK Pathway. Expert. Rev. Anticancer Ther. 2012, 12, 447–456. [Google Scholar] [CrossRef]
- Nakamura, T.; Yoshida, T.; Takeyasu, Y.; Masuda, K.; Sinno, Y.; Matsumoto, Y.; Okuma, Y.; Goto, Y.; Horinouchi, H.; Yamamoto, N.; et al. Distinct Metastatic Spread and Progression Patterns in Patients Treated with Crizotinib for ROS1- and ALK-Rearranged Non-Small Cell Lung Cancer: A Single-Center Retrospective Study. Transl. Lung Cancer Res. 2023, 12, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.-H.I.; Zhu, V.W. CNS Metastasis in ROS1+ NSCLC: An Urgent Call to Action, to Understand, and to Overcome. Lung Cancer 2019, 130, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tang, Z.; Li, J.; Jiang, J.; Liu, Y. Progress of Non-Small-Cell Lung Cancer with ROS1 Rearrangement. Front. Mol. Biosci. 2023, 10, 1238093. [Google Scholar] [CrossRef] [PubMed]
- Patil, T.; Smith, D.E.; Bunn, P.A.; Aisner, D.L.; Le, A.T.; Hancock, M.; Purcell, W.T.; Bowles, D.W.; Camidge, D.R.; Doebele, R.C. The Incidence of Brain Metastases in Stage IV ROS1-Rearranged Non–Small Cell Lung Cancer and Rate of Central Nervous System Progression on Crizotinib. J. Thorac. Oncol. 2018, 13, 1717–1726. [Google Scholar] [CrossRef]
- Yang, J.-J.; Zhou, J.; Liu, S.-Y.M.; Li, M.; Zhang, Z.; Cheng, Y.; Fan, Y.; Pan, H.; Wang, B.; Chen, G.; et al. Foritinib in Advanced ROS1-Rearranged Non-Small-Cell Lung Cancer in China: A Multicentre, Open-Label, Single-Arm, Phase 2 Study. Lancet Respir. Med. 2024, 12, 671–680. [Google Scholar] [CrossRef]
- Lin, J.J.; Drilon, A.E.; Cho, B.C.; Felip, E.; De Langen, A.; Yang, N.; Kim, S.-W.; Lu, S.; Kao, S.C.-H.; Velcheti, V.; et al. Intracranial and Systemic Efficacy of Repotrectinib in Advanced ROS1 Fusion-Positive (ROS1 +) Non-Small Cell Lung Cancer (NSCLC) and Central Nervous System Metastases (CNS Mets) in the Phase 1/2 TRIDENT-1. J. Clin. Oncol. 2023, 41, 9017. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; et al. Function of the C-Met Receptor Tyrosine Kinase in Carcinogenesis and Associated Therapeutic Opportunities. Mol. Cancer 2018, 17, 45. [Google Scholar] [CrossRef]
- Baldacci, S.; Kherrouche, Z.; Cockenpot, V.; Stoven, L.; Copin, M.C.; Werkmeister, E.; Marchand, N.; Kyheng, M.; Tulasne, D.; Cortot, A.B. MET Amplification Increases the Metastatic Spread of EGFR-Mutated NSCLC. Lung Cancer 2018, 125, 57–67. [Google Scholar] [CrossRef]
- Preusser, M.; Streubel, B.; Berghoff, A.S.; Hainfellner, J.A.; von Deimling, A.; Widhalm, G.; Dieckmann, K.; Wöhrer, A.; Hackl, M.; Zielinski, C.; et al. Amplification and Overexpression of CMET Is a Common Event in Brain Metastases of Non-small Cell Lung Cancer. Histopathology 2014, 65, 684–692. [Google Scholar] [CrossRef]
- Isaksson, J.; Berglund, A.; Louie, K.; Willén, L.; Hamidian, A.; Edsjö, A.; Enlund, F.; Planck, M.; Vikström, A.; Johansson, M.; et al. KRAS G12C Mutant Non–Small Cell Lung Cancer Linked to Female Sex and High Risk of CNS Metastasis: Population-Based Demographics and Survival Data From the National Swedish Lung Cancer Registry. Clin. Lung Cancer 2023, 24, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.S.; Rechsteiner, M.; Moch, H.; Curioni-Fontecedro, A.; Weller, M.; Weiss, T.; Regli, L.; Le Rhun, E.; Mairinger, F.; Opitz, I.; et al. Genetic Profiles of Oligometastatic Non-Small-Cell Lung Cancer and Corresponding Brain Metastases. Eur. J. Cardio Thorac. Surg. 2024, 65, ezae217. [Google Scholar] [CrossRef] [PubMed]
- Califano, R.; Landi, L.; Cappuzzo, F. Prognostic and Predictive Value of K-RAS Mutations in Non-Small Cell Lung Cancer. Drugs 2012, 72, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Fang, W.; Lin, Z.; Peng, P.; Wang, J.; Zhan, J.; Hong, S.; Huang, J.; Liu, L.; Sheng, J.; et al. KRAS Mutation-Induced Upregulation of PD-L1 Mediates Immune Escape in Human Lung Adenocarcinoma. Cancer Immunol. Immunother. 2017, 66, 1175–1187. [Google Scholar] [CrossRef]
- He, J.; Hu, Y.; Hu, M.; Li, B. Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment and Treatment for Non-Small Cell Lung Cancer. Sci. Rep. 2015, 5, 13110. [Google Scholar] [CrossRef]
- Vassella, E.; Kashani, E.; Zens, P.; Kündig, A.; Fung, C.; Scherz, A.; Herrmann, E.; Ermis, E.; Schmid, R.A.; Berezowska, S. Mutational Profiles of Primary Pulmonary Adenocarcinoma and Paired Brain Metastases Disclose the Importance of KRAS Mutations. Eur. J. Cancer 2021, 159, 227–236. [Google Scholar] [CrossRef]
- Tsakonas, G.; Grozman, V.; Ekman, S. Primary CNS Metastatic BRAF-Mutated Lung Adenocarcinoma with Complete Intracranial Response to BRAF/MEK Inhibition. Clin. Lung Cancer 2020, 21, e544–e546. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, J.-H.; Kim, O.; Ahn, E.-J.; Oh, S.-J.; Akanda, M.R.; Oh, I.-J.; Jung, S.; Kim, K.-K.; Lee, J.-H.; et al. Caveolin-1 Enhances Brain Metastasis of Non-Small Cell Lung Cancer, Potentially in Association with the Epithelial-Mesenchymal Transition Marker SNAIL. Cancer Cell Int. 2019, 19, 171. [Google Scholar] [CrossRef]
- Jin, Y.; Yuan, Y.; Yi, M.; Han, H.; Liu, B.; Li, Q. Phosphorylated-Akt Overexpression Is Associated with a Higher Risk of Brain Metastasis in Patients with Non-Small Cell Lung Cancer. Biochem. Biophys. Rep. 2019, 18, 100625. [Google Scholar] [CrossRef]
- Nicoś, M.; Krawczyk, P.; Jarosz, B.; Sawicki, M.; Trojanowski, T.; Milanowski, J. Prevalence of NRAS, PTEN and AKT1 Gene Mutations in the Central Nervous System Metastases of Non-Small Cell Lung Cancer. Brain Tumor Pathol. 2017, 34, 36–41. [Google Scholar] [CrossRef]
- Nguyen, D.X.; Chiang, A.C.; Zhang, X.H.-F.; Kim, J.Y.; Kris, M.G.; Ladanyi, M.; Gerald, W.L.; Massagué, J. WNT/TCF Signaling through LEF1 and HOXB9 Mediates Lung Adenocarcinoma Metastasis. Cell 2009, 138, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.E.; Cheung, W.K.C.; Adua, S.J.; Arnal-Estapé, A.; Zhao, M.; Liu, Z.; Brewer, K.; Herbst, R.S.; Nguyen, D.X. Extracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases. Cancer Res. 2017, 77, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Aljohani, H.M.; Aittaleb, M.; Furgason, J.M.; Amaya, P.; Deeb, A.; Chalmers, J.J.; Bahassi, E.M. Genetic Mutations Associated with Lung Cancer Metastasis to the Brain. Mutagenesis 2018, 33, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, H.; Xu, X.; Bao, X.; Xue, L.; Ai, X.; Xu, J.; Xu, M.; Shi, Y.; Zhen, T.; et al. Identification of RAC1 in Promoting Brain Metastasis of Lung Adenocarcinoma Using Single-Cell Transcriptome Sequencing. Cell Death Dis. 2023, 14, 330. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Tan, J.; Zhang, Z.; Liu, Y.; Hu, X.; Lu, B.; Gao, Y.; Tong, L.; Liu, Z.; et al. Longitudinal Detection of Subcategorized CD44v6+ CTCs and Circulating Tumor Endothelial Cells (CTECs) Enables Novel Clinical Stratification and Improves Prognostic Prediction of Small Cell Lung Cancer: A Prospective, Multi-Center Study. Cancer Lett. 2023, 571, 216337. [Google Scholar] [CrossRef]
- Śmiech, M.; Leszczyński, P.; Kono, H.; Wardell, C.; Taniguchi, H. Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks. Genes 2020, 11, 1342. [Google Scholar] [CrossRef]
- Cheng, L.; Lopez-Beltran, A.; Massari, F.; MacLennan, G.T.; Montironi, R. Molecular Testing for BRAF Mutations to Inform Melanoma Treatment Decisions: A Move toward Precision Medicine. Mod. Pathol. 2018, 31, 24–38. [Google Scholar] [CrossRef]
- Sandhu, M.R.S.; Chiang, V.L.; Tran, T.; Yu, J.B.; Weiss, S.A.; Goldberg, S.B.; Aboian, M.S.; Kluger, H.M.; Mahajan, A. Incidence and Characteristics of Metastatic Intracranial Lesions in Stage III and IV Melanoma: A Single Institute Retrospective Analysis. J. Neurooncol. 2021, 154, 197–203. [Google Scholar] [CrossRef]
- El-Osta, H.; Falchook, G.; Tsimberidou, A.; Hong, D.; Naing, A.; Kim, K.; Wen, S.; Janku, F.; Kurzrock, R. BRAF Mutations in Advanced Cancers: Clinical Characteristics and Outcomes. PLoS ONE 2011, 6, e25806. [Google Scholar] [CrossRef]
- Colombino, M.; Capone, M.; Lissia, A.; Cossu, A.; Rubino, C.; De Giorgi, V.; Massi, D.; Fonsatti, E.; Staibano, S.; Nappi, O.; et al. BRAF/NRAS Mutation Frequencies Among Primary Tumors and Metastases in Patients with Melanoma. J. Clin. Oncol. 2012, 30, 2522–2529. [Google Scholar] [CrossRef]
- Bucheit, A.D.; Chen, G.; Siroy, A.; Tetzlaff, M.; Broaddus, R.; Milton, D.; Fox, P.; Bassett, R.; Hwu, P.; Gershenwald, J.E.; et al. Complete Loss of PTEN Protein Expression Correlates with Shorter Time to Brain Metastasis and Survival in Stage IIIB/C Melanoma Patients with BRAF V600 Mutations. Clin. Cancer Res. 2014, 20, 5527–5536. [Google Scholar] [CrossRef] [PubMed]
- Dankort, D.; Curley, D.P.; Cartlidge, R.A.; Nelson, B.; Karnezis, A.N.; Damsky, W.E., Jr.; You, M.J.; DePinho, R.A.; McMahon, M.; Bosenberg, M. BrafV600E Cooperates with Pten Loss to Induce Metastatic Melanoma. Nat. Genet. 2009, 41, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Robinson, J.P.; Arave, R.A.; Burnett, W.J.; Kircher, D.A.; Chen, G.; Davies, M.A.; Grossmann, A.H.; VanBrocklin, M.W.; McMahon, M.; et al. AKT1 Activation Promotes Development of Melanoma Metastases. Cell Rep. 2015, 13, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Burotto, M.; Chiou, V.L.; Lee, J.; Kohn, E.C. The MAPK Pathway across Different Malignancies: A New Perspective. Cancer 2014, 120, 3446–3456. [Google Scholar] [CrossRef]
- Davies, M.A.; Stemke-Hale, K.; Lin, E.; Tellez, C.; Deng, W.; Gopal, Y.N.; Woodman, S.E.; Calderone, T.C.; Ju, Z.; Lazar, A.J.; et al. Integrated Molecular and Clinical Analysis of AKT Activation in Metastatic Melanoma. Clin. Cancer Res. 2009, 15, 7538–7546. [Google Scholar] [CrossRef]
- Wang, Y.; Lian, B.; Si, L.; Mao, L.; Chi, Z.; Sheng, X.; Kong, Y.; Wang, X.; Bai, X.; Yan, X.; et al. Cumulative Incidence and Risk Factors of Brain Metastasis for Acral and Mucosal Melanoma Patients with Stages I–III. Eur. J. Cancer 2022, 175, 196–203. [Google Scholar] [CrossRef]
- Adler, N.R.; Wolfe, R.; Kelly, J.W.; Haydon, A.; McArthur, G.A.; McLean, C.A.; Mar, V.J. Tumour Mutation Status and Sites of Metastasis in Patients with Cutaneous Melanoma. Br. J. Cancer 2017, 117, 1026–1035. [Google Scholar] [CrossRef]
- Fedorenko, I.V.; Gibney, G.T.; Smalley, K.S.M. NRAS Mutant Melanoma: Biological Behavior and Future Strategies for Therapeutic Management. Oncogene 2013, 32, 3009–3018. [Google Scholar] [CrossRef]
- Milagre, C.; Dhomen, N.; Geyer, F.C.; Hayward, R.; Lambros, M.; Reis-Filho, J.S.; Marais, R. A Mouse Model of Melanoma Driven by Oncogenic KRAS. Cancer Res. 2010, 70, 5549–5557. [Google Scholar] [CrossRef]
- Rabbie, R.; Ferguson, P.; Wong, K.; Couturier, D.-L.; Moran, U.; Turner, C.; Emanuel, P.; Haas, K.; Saunus, J.M.; Davidson, M.R.; et al. The Mutational Landscape of Melanoma Brain Metastases Presenting as the First Visceral Site of Recurrence. Br. J. Cancer 2021, 124, 156–160. [Google Scholar] [CrossRef]
- Goel, V.K.; Lazar, A.J.F.; Warneke, C.L.; Redston, M.S.; Haluska, F.G. Examination of Mutations in BRAF, NRAS, and PTEN in Primary Cutaneous Melanoma. J. Investig. Dermatol. 2006, 126, 154–160. [Google Scholar] [CrossRef]
- In, G.K.; Ribeiro, J.R.; Yin, J.; Xiu, J.; Bustos, M.A.; Ito, F.; Chow, F.; Zada, G.; Hwang, L.; Salama, A.K.S.; et al. Multi-Omic Profiling Reveals Discrepant Immunogenic Properties and a Unique Tumor Microenvironment among Melanoma Brain Metastases. NPJ Precis. Oncol. 2023, 7, 120. [Google Scholar] [CrossRef]
- Langabeer, S.E.; Haslam, K.; Groarke, E.; Conneally, E. An Acquired NRAS Mutation Contributes to Neutrophilic Progression in a Patient with Primary Myelofibrosis. Br. J. Haematol. 2018, 183, 308–310. [Google Scholar] [CrossRef] [PubMed]
- Samlowski, W. The Effect of Non-Overlapping Somatic Mutations in BRAF, NRAS, NF1, or CKIT on the Incidence and Outcome of Brain Metastases during Immune Checkpoint Inhibitor Therapy of Metastatic Melanoma. Cancers 2024, 16, 594. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.Y.; Miller, D.M.; Tsao, H. Somatic Driver Mutations in Melanoma. Cancer 2017, 123, 2104–2117. [Google Scholar] [CrossRef] [PubMed]
- Lessard, L.; Liu, M.; Marzese, D.M.; Wang, H.; Chong, K.; Kawas, N.; Donovan, N.C.; Kiyohara, E.; Hsu, S.; Nelson, N.; et al. The CASC15 Long Intergenic Noncoding RNA Locus Is Involved in Melanoma Progression and Phenotype Switching. J. Investig. Dermatol. 2015, 135, 2464–2474. [Google Scholar] [CrossRef]
- Cui, L.; Li, Y.; Lv, X.; Li, J.; Wang, X.; Lei, Z.; Li, X. Expression of MicroRNA-301a and Its Functional Roles in Malignant Melanoma. Cell. Physiol. Biochem. 2016, 40, 230–244. [Google Scholar] [CrossRef]
- Afsar, S.; Syed, R.U.; Khojali, W.M.A.; Masood, N.; Osman, M.E.; Jyothi, J.S.; Hadi, M.A.; Khalifa, A.A.S.; Aboshouk, N.A.M.; Alsaikhan, H.A.; et al. Non-Coding RNAs in BRAF-Mutant Melanoma: Targets, Indicators, and Therapeutic Potential. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 398, 297–317. [Google Scholar] [CrossRef]
- Sheppard, K.E.; McArthur, G.A. The Cell-Cycle Regulator CDK4: An Emerging Therapeutic Target in Melanoma. Clin. Cancer Res. 2013, 19, 5320–5328. [Google Scholar] [CrossRef]
- Walker, G.J.; Flores, J.F.; Glendening, J.M.; Lin, A.; Markl, I.D.C.; Fountain, J.W. Virtually 100% of Melanoma Cell Lines Harbor Alterations at the DNA Level WithinCDKN2A, CDKN2B, or One of Their Downstream Targets. Genes. Chromosomes Cancer 1998, 22, 157–163. [Google Scholar] [CrossRef]
- Arnoff, T.E.; El-Deiry, W.S. MDM2/MDM4 Amplification and CDKN2A Deletion in Metastatic Melanoma and Glioblastoma Multiforme May Have Implications for Targeted Therapeutics and Immunotherapy. Am. J. Cancer Res. 2022, 12, 2102–2117. [Google Scholar] [PubMed]
- Qi, S.-M.; Cheng, G.; Cheng, X.-D.; Xu, Z.; Xu, B.; Zhang, W.-D.; Qin, J.-J. Targeting USP7-Mediated Deubiquitination of MDM2/MDMX-P53 Pathway for Cancer Therapy: Are We There Yet? Front. Cell Dev. Biol. 2020, 8, 233. [Google Scholar] [CrossRef] [PubMed]
- Uyanik, B.; Goloudina, A.R.; Akbarali, A.; Grigorash, B.B.; Petukhov, A.V.; Singhal, S.; Eruslanov, E.; Chaloyard, J.; Lagorgette, L.; Hadi, T.; et al. Inhibition of the DNA Damage Response Phosphatase PPM1D Reprograms Neutrophils to Enhance Anti-Tumor Immune Responses. Nat. Commun. 2021, 12, 3622. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Fierro-Fine, A.; Goddard, L.; Russell, M.; Chen, J.; Liu, C.Z.; Fung, K.-M.; Hassell, L.A. Increased Expression of Melanoma Stem Cell Marker CD271 in Metastatic Melanoma to the Brain. Int. J. Clin. Exp. Pathol. 2014, 7, 8947–8951. [Google Scholar]
- Redmer, T. Deciphering Mechanisms of Brain Metastasis in Melanoma-the Gist of the Matter. Mol. Cancer 2018, 17, 106. [Google Scholar] [CrossRef]
- Marchetti, D.; Denkins, Y.; Reiland, J.; Greiter-Wilke, A.; Galjour, J.; Murry, B.; Blust, J.; Roy, M. Brain-Metastatic Melanoma: A Neurotrophic Perspective. Pathol. Oncol. Res. 2003, 9, 147–158. [Google Scholar] [CrossRef]
- Redmer, T.; Welte, Y.; Behrens, D.; Fichtner, I.; Przybilla, D.; Wruck, W.; Yaspo, M.-L.; Lehrach, H.; Schäfer, R.; Regenbrecht, C.R.A. The Nerve Growth Factor Receptor CD271 Is Crucial to Maintain Tumorigenicity and Stem-Like Properties of Melanoma Cells. PLoS ONE 2014, 9, e92596. [Google Scholar] [CrossRef]
- Bailey, C.M.; Morrison, J.A.; Kulesa, P.M. Melanoma Revives an Embryonic Migration Program to Promote Plasticity and Invasion. Pigment. Cell Melanoma Res. 2012, 25, 573–583. [Google Scholar] [CrossRef]
- Tizpa, E.; Young, H.J.; Bonjoc, K.-J.C.; Chang, C.-W.; Liu, Y.; Foulks, J.M.; Chaudhry, A. Role of AXL in Metastatic Melanoma and Impact of TP-0903 as a Novel Therapeutic Option for Melanoma Brain Metastasis. J. Clin. Oncol. 2020, 38, e22021. [Google Scholar] [CrossRef]
- Willemsen, M.; Bulgarelli, J.; Chauhan, S.K.; Lereim, R.R.; Angeli, D.; Grisendi, G.; Krebbers, G.; Davidson, I.; Kyte, J.A.; Guidoboni, M.; et al. Changes in AXL and/or MITF Melanoma Subpopulations in Patients Receiving Immunotherapy. Immuno Oncol. Technol. 2024, 24, 101009. [Google Scholar] [CrossRef]
- Yaeger, R.; Cowell, E.; Chou, J.F.; Gewirtz, A.N.; Borsu, L.; Vakiani, E.; Solit, D.B.; Rosen, N.; Capanu, M.; Ladanyi, M.; et al. RAS Mutations Affect Pattern of Metastatic Spread and Increase Propensity for Brain Metastasis in Colorectal Cancer. Cancer 2015, 121, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zeng, W.; Huang, C.; Wang, J.; Yang, D.; Ma, D. Predictive and Prognostic Implications of Mutation Profiling and Microsatellite Instability Status in Patients with Metastatic Colorectal Carcinoma. Gastroenterol. Res. Pract. 2018, 2018, 14. [Google Scholar] [CrossRef]
- Lee, Y.; Park, K. P14.12 Molecular Characteristics of Metastatic Brain Tumor. Neuro Oncol. 2017, 19, iii104–iii105. [Google Scholar] [CrossRef]
- Michl, M.; Taverna, F.; Woischke, C.; Li, P.; Klauschen, F.; Kirchner, T.; Heinemann, V.; von Bergwelt-Baildon, M.; Stahler, A.; Herold, T.M.; et al. Identification of a Gene Expression Signature Associated with Brain Metastasis in Colorectal Cancer. Clin. Transl. Oncol. 2024, 26, 1886–1895. [Google Scholar] [CrossRef] [PubMed]
- Stremitzer, S.; Berghoff, A.S.; Volz, N.B.; Zhang, W.; Yang, D.; Stintzing, S.; Ning, Y.; Sunakawa, Y.; Yamauchi, S.; Sebio, A.; et al. Genetic Variants Associated with Colorectal Brain Metastases Susceptibility and Survival. Pharmacogenomics J. 2017, 17, 29–35. [Google Scholar] [CrossRef]
- Shindorf, M.L.; Jafferji, M.S.; Goff, S.L. Incidence of Asymptomatic Brain Metastases in Metastatic Colorectal Cancer. Clin. Colorectal Cancer 2020, 19, 263–269. [Google Scholar] [CrossRef]
- Müller, S.; Köhler, F.; Hendricks, A.; Kastner, C.; Börner, K.; Diers, J.; Lock, J.F.; Petritsch, B.; Germer, C.-T.; Wiegering, A. Brain Metastases from Colorectal Cancer: A Systematic Review of the Literature and Meta-Analysis to Establish a Guideline for Daily Treatment. Cancers 2021, 13, 900. [Google Scholar] [CrossRef]
- Ma, J.; del Balzo, L.; Khaleel, S.S.; Flynn, J.; Zhang, Z.; Voss, M.H.; Freeman, B.; Hakimi, A.A.; Lee, C.-H.; Eichholz, J.; et al. Molecular Profile and Clinical Outcomes of Renal Cell Carcinoma Brain Metastases Treated with Stereotactic Radiosurgery. J. Clin. Oncol. 2022, 40, 4526. [Google Scholar] [CrossRef]
- Kinoshita, F.; Kohashi, K.; Sugimoto, M.; Takamatsu, D.; Kiyozawa, D.; Eto, M.; Oda, Y. The SWI/SNF Chromatin-Remodeling Complex Status in Renal Cell Carcinomas with Sarcomatoid or Rhabdoid Features. Virchows Arch. 2020, 477, 651–660. [Google Scholar] [CrossRef]
- Ma, J.; del Balzo, L.; Walch, H.; Khaleel, S.; Knezevic, A.; Flynn, J.; Zhang, Z.; Eichholz, J.; Doshi, S.D.; Voss, M.H.; et al. Clinical Outcomes and Targeted Genomic Analysis of Renal Cell Carcinoma Brain Metastases Treated with Stereotactic Radiosurgery. Eur. Urol. Oncol. 2024, in press. [CrossRef]
- Wyler, L.; Napoli, C.U.; Ingold, B.; Sulser, T.; Heikenwälder, M.; Schraml, P.; Moch, H. Brain Metastasis in Renal Cancer Patients: Metastatic Pattern, Tumour-Associated Macrophages and Chemokine/Chemoreceptor Expression. Br. J. Cancer 2014, 110, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Harter, P.N.; Bernatz, S.; Scholz, A.; Zeiner, P.S.; Zinke, J.; Kiyose, M.; Blasel, S.; Beschorner, R.; Senft, C.; Bender, B.; et al. Distribution and Prognostic Relevance of Tumor-Infiltrating Lymphocytes (TILs) and PD-1/PD-L1 Immune Checkpoints in Human Brain Metastases. Oncotarget 2015, 6, 40836–40849. [Google Scholar] [CrossRef]
- Paget, S. The Distribution of Secondary Growths in Cancer of the Breast. Lancet 1889, 133, 571–573. [Google Scholar] [CrossRef]
- Fidler, I.J. Seed and Soil Revisited: Contribution of the Organ Microenvironment to Cancer Metastasis. Surg. Oncol. Clin. N. Am. 2001, 10, 257–269. [Google Scholar] [CrossRef]
- Kienast, Y.; von Baumgarten, L.; Fuhrmann, M.; Klinkert, W.E.F.; Goldbrunner, R.; Herms, J.; Winkler, F. Real-Time Imaging Reveals the Single Steps of Brain Metastasis Formation. Nat. Med. 2010, 16, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Liu, B.; Situ, X.; Luo, Y.; Fu, T.; Wang, Y.; Xie, Z.; Ren, L.; Zhu, Y.; He, W.; et al. New Insights into the Correlations between Circulating Tumor Cells and Target Organ Metastasis. Signal Transduct. Target. Ther. 2023, 8, 465. [Google Scholar] [CrossRef]
- Peinado, H.; Lavotshkin, S.; Lyden, D. The Secreted Factors Responsible for Pre-Metastatic Niche Formation: Old Sayings and New Thoughts. Semin. Cancer Biol. 2011, 21, 139–146. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X. Characteristics and Significance of the Pre-Metastatic Niche. Cancer Cell 2016, 30, 668–681. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Kaplan, R.N.; Riba, R.D.; Zacharoulis, S.; Bramley, A.H.; Vincent, L.; Costa, C.; MacDonald, D.D.; Jin, D.K.; Shido, K.; Kerns, S.A.; et al. VEGFR1-Positive Haematopoietic Bone Marrow Progenitors Initiate the Pre-Metastatic Niche. Nature 2005, 438, 820–827. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, M.; Zhao, Q.; Li, S.; Peng, Y.; Zhang, P.; Han, M. Vascular Endothelial Growth Factor Plays a Critical Role in the Formation of the Pre-Metastatic Niche via Prostaglandin E2. Oncol. Rep. 2014, 32, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Dysthe, M.; Parihar, R. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1224, 117–140. [Google Scholar] [PubMed]
- Adler, O.; Zait, Y.; Cohen, N.; Blazquez, R.; Doron, H.; Monteran, L.; Scharff, Y.; Shami, T.; Mundhe, D.; Glehr, G.; et al. Reciprocal Interactions between Innate Immune Cells and Astrocytes Facilitate Neuroinflammation and Brain Metastasis via Lipocalin-2. Nat. Cancer 2023, 4, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Duan, S.; Cui, J.; Yan, X.; Li, H.; Wang, Y.; Chen, F.; Zhang, L.; Liu, J.; Xie, X. Induction of Matrix Metalloproteinase-3 (MMP-3) Expression in the Microglia by Lipopolysaccharide (LPS) via Upregulation of Glycoprotein Nonmetastatic Melanoma B (GPNMB) Expression. J. Mol. Neurosci. 2014, 54, 234–242. [Google Scholar] [CrossRef]
- Tomihari, M.; Chung, J.-S.; Akiyoshi, H.; Cruz, P.D.; Ariizumi, K. DC-HIL/Glycoprotein Nmb Promotes Growth of Melanoma in Mice by Inhibiting the Activation of Tumor-Reactive T Cells. Cancer Res. 2010, 70, 5778–5787. [Google Scholar] [CrossRef]
- Neal, M.L.; Boyle, A.M.; Budge, K.M.; Safadi, F.F.; Richardson, J.R. The Glycoprotein GPNMB Attenuates Astrocyte Inflammatory Responses through the CD44 Receptor. J. Neuroinflamm. 2018, 15, 73. [Google Scholar] [CrossRef]
- Hoshino, A.; Costa-Silva, B.; Shen, T.-L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef]
- Minciacchi, V.R.; Freeman, M.R.; Di Vizio, D. Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Semin. Cell Dev. Biol. 2015, 40, 41–51. [Google Scholar] [CrossRef]
- Morad, G.; Carman, C.V.; Hagedorn, E.J.; Perlin, J.R.; Zon, L.I.; Mustafaoglu, N.; Park, T.-E.; Ingber, D.E.; Daisy, C.C.; Moses, M.A. Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis. ACS Nano 2019, 13, 13853–13865. [Google Scholar] [CrossRef]
- Jung, T.; Castellana, D.; Klingbeil, P.; Hernández, I.C.; Vitacolonna, M.; Orlicky, D.J.; Roffler, S.R.; Brodt, P.; Zöller, M. CD44v6 Dependence of Premetastatic Niche Preparation by Exosomes. Neoplasia 2009, 11, 1093–1105. [Google Scholar] [CrossRef]
- Pasquier, J.; Al Thawadi, H.; Ghiabi, P.; Abu-Kaoud, N.; Maleki, M.; Guerrouahen, B.S.; Vidal, F.; Courderc, B.; Ferron, G.; Martinez, A.; et al. Microparticles Mediated Cross-Talk between Tumoral and Endothelial Cells Promote the Constitution of a pro-Metastatic Vascular Niche through Arf6 up Regulation. Cancer Microenviron. 2014, 7, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Yan, W.; Cao, M.; Daza, R.A.M.; Fong, M.Y.; Yang, K.; Wu, J.; Liu, X.; Palomares, M.; Wu, X.; et al. Breast Cancer Cell-Secreted MiR-199b-5p Hijacks Neurometabolic Coupling to Promote Brain Metastasis. Nat. Commun. 2024, 15, 4549. [Google Scholar] [CrossRef] [PubMed]
- Fong, M.Y.; Zhou, W.; Liu, L.; Alontaga, A.Y.; Chandra, M.; Ashby, J.; Chow, A.; O’Connor, S.T.F.; Li, S.; Chin, A.R.; et al. Breast-Cancer-Secreted MiR-122 Reprograms Glucose Metabolism in Premetastatic Niche to Promote Metastasis. Nat. Cell Biol. 2015, 17, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.; Hoshino, A.; Kenific, C.M.; Matei, I.R.; Steiner, L.; Freitas, D.; Kim, H.S.; Oxley, P.R.; Scandariato, I.; Casanova-Salas, I.; et al. Tumour Exosomal CEMIP Protein Promotes Cancer Cell Colonization in Brain Metastasis. Nat. Cell Biol. 2019, 21, 1403–1412. [Google Scholar] [CrossRef]
- Yuzhalin, A.E.; Yu, D. Brain Metastasis Organotropism. Cold Spring Harb. Perspect. Med. 2020, 10, a037242. [Google Scholar] [CrossRef]
- Widodo, S.S.; Dinevska, M.; Cuzcano, L.; Papanicolaou, M.; Cox, T.R.; Stylli, S.S.; Mantamadiotis, T. Spatial Analysis of the Metastatic Brain Tumor Immune and Extracellular Matrix Microenvironment. Adv. Cancer Biol. Metastasis 2023, 7, 100096. [Google Scholar] [CrossRef]
- Deasy, S.K.; Erez, N. A Glitch in the Matrix: Organ-Specific Matrisomes in Metastatic Niches. Trends Cell Biol. 2022, 32, 110–123. [Google Scholar] [CrossRef]
- Virga, J.; Szemcsák, C.D.; Reményi-Puskár, J.; Tóth, J.; Hortobágyi, T.; Csősz, É.; Zahuczky, G.; Szivos, L.; Bognár, L.; Klekner, A. Differences in Extracellular Matrix Composition and Its Role in Invasion in Primary and Secondary Intracerebral Malignancies. Anticancer Res. 2017, 37, 4119–4126. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Cheng, Y.-J.; Lin, Y.-P.; Lin, H.-C.; Su, C.-C.; Juliano, R.; Yang, B.-C. Extracellular Matrix of Glioblastoma Inhibits Polarization and Transmigration of T Cells: The Role of Tenascin-C in Immune Suppression. J. Immunol. 2010, 185, 1450–1459. [Google Scholar] [CrossRef]
- Wang, S.; Liang, K.; Hu, Q.; Li, P.; Song, J.; Yang, Y.; Yao, J.; Mangala, L.S.; Li, C.; Yang, W.; et al. JAK2-Binding Long Noncoding RNA Promotes Breast Cancer Brain Metastasis. J. Clin. Investig. 2017, 127, 4498–4515. [Google Scholar] [CrossRef]
- Foo, S.L.; Sachaphibulkij, K.; Lee, C.L.Y.; Yap, G.L.R.; Cui, J.; Arumugam, T.; Lim, L.H.K. Breast Cancer Metastasis to Brain Results in Recruitment and Activation of Microglia through Annexin-A1/Formyl Peptide Receptor Signaling. Breast Cancer Res. 2022, 24, 25. [Google Scholar] [CrossRef] [PubMed]
- Blazquez, R.; Wlochowitz, D.; Wolff, A.; Seitz, S.; Wachter, A.; Perera-Bel, J.; Bleckmann, A.; Beißbarth, T.; Salinas, G.; Riemenschneider, M.J.; et al. PI3K: A Master Regulator of Brain Metastasis-promoting Macrophages/Microglia. Glia 2018, 66, 2438–2455. [Google Scholar] [CrossRef] [PubMed]
- Izraely, S.; Ben-Menachem, S.; Malka, S.; Sagi-Assif, O.; Bustos, M.A.; Adir, O.; Meshel, T.; Chelladurai, M.; Ryu, S.; Ramos, R.I.; et al. The Vicious Cycle of Melanoma-Microglia Crosstalk: Inter-Melanoma Variations in the Brain-Metastasis-Promoting IL-6/JAK/STAT3 Signaling Pathway. Cells 2023, 12, 1513. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Qian, Y.; Xu, G.; Luo, Q.; Zhang, Z. Long-Term Characterization of Activated Microglia/Macrophages Facilitating the Development of Experimental Brain Metastasis through Intravital Microscopic Imaging. J. Neuroinflamm. 2019, 16, 4. [Google Scholar] [CrossRef]
- Bowman, R.L.; Klemm, F.; Akkari, L.; Pyonteck, S.M.; Sevenich, L.; Quail, D.F.; Dhara, S.; Simpson, K.; Gardner, E.E.; Iacobuzio-Donahue, C.A.; et al. Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Rep. 2016, 17, 2445–2459. [Google Scholar] [CrossRef]
- Schreurs, L.D.; vom Stein, A.F.; Jünger, S.T.; Timmer, M.; Noh, K.-W.; Buettner, R.; Kashkar, H.; Neuschmelting, V.; Goldbrunner, R.; Nguyen, P.-H. The Immune Landscape in Brain Metastasis. Neuro Oncol. 2024, 27, 50–62. [Google Scholar] [CrossRef]
- Karimi, E.; Yu, M.W.; Maritan, S.M.; Perus, L.J.M.; Rezanejad, M.; Sorin, M.; Dankner, M.; Fallah, P.; Doré, S.; Zuo, D.; et al. Single-Cell Spatial Immune Landscapes of Primary and Metastatic Brain Tumours. Nature 2023, 614, 555–563. [Google Scholar] [CrossRef]
- Thapa, B.; Lee, K. Metabolic Influence on Macrophage Polarization and Pathogenesis. BMB Rep. 2019, 52, 360–372. [Google Scholar] [CrossRef]
- Klemm, F.; Maas, R.R.; Bowman, R.L.; Kornete, M.; Soukup, K.; Nassiri, S.; Brouland, J.-P.; Iacobuzio-Donahue, C.A.; Brennan, C.; Tabar, V.; et al. Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell 2020, 181, 1643–1660.e17. [Google Scholar] [CrossRef]
- Schulz, M.; Michels, B.; Niesel, K.; Stein, S.; Farin, H.; Rödel, F.; Sevenich, L. Cellular and Molecular Changes of Brain Metastases-Associated Myeloid Cells during Disease Progression and Therapeutic Response. iScience 2020, 23, 101178. [Google Scholar] [CrossRef]
- Guldner, I.H.; Wang, Q.; Yang, L.; Golomb, S.M.; Zhao, Z.; Lopez, J.A.; Brunory, A.; Howe, E.N.; Zhang, Y.; Palakurthi, B.; et al. CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell 2020, 183, 1234–1248.e25. [Google Scholar] [CrossRef] [PubMed]
- Friebel, E.; Kapolou, K.; Unger, S.; Núñez, N.G.; Utz, S.; Rushing, E.J.; Regli, L.; Weller, M.; Greter, M.; Tugues, S.; et al. Single-Cell Mapping of Human Brain Cancer Reveals Tumor-Specific Instruction of Tissue-Invading Leukocytes. Cell 2020, 181, 1626–1642.e20. [Google Scholar] [CrossRef] [PubMed]
- Christensson, G.; Bocci, M.; Kazi, J.U.; Durand, G.; Lanzing, G.; Pietras, K.; Gonzalez Velozo, H.; Hagerling, C. Spatial Multiomics Reveals Intratumoral Immune Heterogeneity with Distinct Cytokine Networks in Lung Cancer Brain Metastases. Cancer Res. Commun. 2024, 4, 2888–2902. [Google Scholar] [CrossRef]
- Rubio-Perez, C.; Planas-Rigol, E.; Trincado, J.L.; Bonfill-Teixidor, E.; Arias, A.; Marchese, D.; Moutinho, C.; Serna, G.; Pedrosa, L.; Iurlaro, R.; et al. Immune Cell Profiling of the Cerebrospinal Fluid Enables the Characterization of the Brain Metastasis Microenvironment. Nat. Commun. 2021, 12, 1503. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.-J.; Fraser, C.; Jones, D.; Ubellacker, J.M.; Padera, T.P. Lymphatic System Regulation of Anti-Cancer Immunity and Metastasis. Front. Immunol. 2024, 15, 1449291. [Google Scholar] [CrossRef]
- Mohammed, S.I.; Torres-Luquis, O.; Walls, E.; Lloyd, F. Lymph-circulating Tumor Cells Show Distinct Properties to Blood-circulating Tumor Cells and Are Efficient Metastatic Precursors. Mol. Oncol. 2019, 13, 1400–1418. [Google Scholar] [CrossRef]
- Fujimoto, N.; Dieterich, L.C. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells 2021, 10, 2585. [Google Scholar] [CrossRef]
- Pereira, E.R.; Kedrin, D.; Seano, G.; Gautier, O.; Meijer, E.F.J.; Jones, D.; Chin, S.-M.; Kitahara, S.; Bouta, E.M.; Chang, J.; et al. Lymph Node Metastases Can Invade Local Blood Vessels, Exit the Node, and Colonize Distant Organs in Mice. Science 2018, 359, 1403–1407. [Google Scholar] [CrossRef]
- Brown, M.; Assen, F.P.; Leithner, A.; Abe, J.; Schachner, H.; Asfour, G.; Bago-Horvath, Z.; Stein, J.V.; Uhrin, P.; Sixt, M.; et al. Lymph Node Blood Vessels Provide Exit Routes for Metastatic Tumor Cell Dissemination in Mice. Science 2018, 359, 1408–1411. [Google Scholar] [CrossRef]
- García-Silva, S.; Benito-Martín, A.; Nogués, L.; Hernández-Barranco, A.; Mazariegos, M.S.; Santos, V.; Hergueta-Redondo, M.; Ximénez-Embún, P.; Kataru, R.P.; Lopez, A.A.; et al. Melanoma-Derived Small Extracellular Vesicles Induce Lymphangiogenesis and Metastasis through an NGFR-Dependent Mechanism. Nat. Cancer 2021, 2, 1387–1405. [Google Scholar] [CrossRef]
- Riedel, A.; Helal, M.; Pedro, L.; Swietlik, J.J.; Shorthouse, D.; Schmitz, W.; Haas, L.; Young, T.; da Costa, A.S.H.; Davidson, S.; et al. Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma. Cancer Immunol. Res. 2022, 10, 482–497. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, T.; Isaka, N.; Hagendoorn, J.; di Tomaso, E.; Chen, Y.-L.; Pytowski, B.; Fukumura, D.; Padera, T.P.; Jain, R.K. Imaging Steps of Lymphatic Metastasis Reveals That Vascular Endothelial Growth Factor-C Increases Metastasis by Increasing Delivery of Cancer Cells to Lymph Nodes: Therapeutic Implications. Cancer Res. 2006, 66, 8065–8075. [Google Scholar] [CrossRef]
- Kim, M.; Koh, Y.J.; Kim, K.E.; Koh, B.I.; Nam, D.-H.; Alitalo, K.; Kim, I.; Koh, G.Y. CXCR4 Signaling Regulates Metastasis of Chemoresistant Melanoma Cells by a Lymphatic Metastatic Niche. Cancer Res. 2010, 70, 10411–10421. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sarrou, E.; Podgrabinska, S.; Cassella, M.; Mungamuri, S.K.; Feirt, N.; Gordon, R.; Nagi, C.S.; Wang, Y.; Entenberg, D.; et al. Tumor Cell Entry into the Lymph Node Is Controlled by CCL1 Chemokine Expressed by Lymph Node Lymphatic Sinuses. J. Exp. Med. 2013, 210, 1509–1528. [Google Scholar] [CrossRef] [PubMed]
- Issa, A.; Le, T.X.; Shoushtari, A.N.; Shields, J.D.; Swartz, M.A. Vascular Endothelial Growth Factor-C and C-C Chemokine Receptor 7 in Tumor Cell–Lymphatic Cross-Talk Promote Invasive Phenotype. Cancer Res. 2009, 69, 349–357. [Google Scholar] [CrossRef]
- Lund, A.W.; Duraes, F.V.; Hirosue, S.; Raghavan, V.R.; Nembrini, C.; Thomas, S.N.; Issa, A.; Hugues, S.; Swartz, M.A. VEGF-C Promotes Immune Tolerance in B16 Melanomas and Cross-Presentation of Tumor Antigen by Lymph Node Lymphatics. Cell Rep. 2012, 1, 191–199. [Google Scholar] [CrossRef]
- Reticker-Flynn, N.E.; Zhang, W.; Belk, J.A.; Basto, P.A.; Escalante, N.K.; Pilarowski, G.O.W.; Bejnood, A.; Martins, M.M.; Kenkel, J.A.; Linde, I.L.; et al. Lymph Node Colonization Induces Tumor-Immune Tolerance to Promote Distant Metastasis. Cell 2022, 185, 1924–1942.e23. [Google Scholar] [CrossRef]
- Tokumoto, M.; Tanaka, H.; Tauchi, Y.; Tamura, T.; Toyokawa, T.; Kimura, K.; Muguruma, K.; Yashiro, M.; Maeda, K.; Hirakawa, K.; et al. Immunoregulatory Function of Lymphatic Endothelial Cells in Tumor-Draining Lymph Nodes of Human Gastric Cancer. Anticancer. Res. 2017, 37, 2875–2883. [Google Scholar] [CrossRef]
- Lei, P.-J.; Pereira, E.R.; Andersson, P.; Amoozgar, Z.; Van Wijnbergen, J.W.; O’Melia, M.J.; Zhou, H.; Chatterjee, S.; Ho, W.W.; Posada, J.M.; et al. Cancer Cell Plasticity and MHC-II–Mediated Immune Tolerance Promote Breast Cancer Metastasis to Lymph Nodes. J. Exp. Med. 2023, 220, e20221847. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, N.; Xu, B.; Chu, Y.; Li, X.; Su, S.; Chen, D.; Li, W.; Shi, Y.; Gao, X.; et al. Fatty Acid-Induced CD36 Expression via O-GlcNAcylation Drives Gastric Cancer Metastasis. Theranostics 2019, 9, 5359–5373. [Google Scholar] [CrossRef]
- Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.-O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; et al. Targeting Metastasis-Initiating Cells through the Fatty Acid Receptor CD36. Nature 2017, 541, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Jeong, S.; Jang, C.; Bae, H.; Kim, Y.H.; Park, I.; Kim, S.K.; Koh, G.Y. Tumor Metastasis to Lymph Nodes Requires YAP-Dependent Metabolic Adaptation. Science 2019, 363, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tian, M.; Yu, L.; Qian, J.; Yang, J.; Wang, X.; Lu, C.; Xiao, C.; Liu, Y. The Role of Ferroptosis Resistance in Lymph-Associated Tumour Metastasis. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189200. [Google Scholar] [CrossRef] [PubMed]
- Ubellacker, J.M.; Tasdogan, A.; Ramesh, V.; Shen, B.; Mitchell, E.C.; Martin-Sandoval, M.S.; Gu, Z.; McCormick, M.L.; Durham, A.B.; Spitz, D.R.; et al. Lymph Protects Metastasizing Melanoma Cells from Ferroptosis. Nature 2020, 585, 113–118. [Google Scholar] [CrossRef]
- Reiter, J.G.; Hung, W.-T.; Lee, I.-H.; Nagpal, S.; Giunta, P.; Degner, S.; Liu, G.; Wassenaar, E.C.E.; Jeck, W.R.; Taylor, M.S.; et al. Lymph Node Metastases Develop through a Wider Evolutionary Bottleneck than Distant Metastases. Nat. Genet. 2020, 52, 692–700. [Google Scholar] [CrossRef]
- Hong, M.K.H.; Macintyre, G.; Wedge, D.C.; Van Loo, P.; Patel, K.; Lunke, S.; Alexandrov, L.B.; Sloggett, C.; Cmero, M.; Marass, F.; et al. Tracking the Origins and Drivers of Subclonal Metastatic Expansion in Prostate Cancer. Nat. Commun. 2015, 6, 6605. [Google Scholar] [CrossRef]
- Werner-Klein, M.; Scheitler, S.; Hoffmann, M.; Hodak, I.; Dietz, K.; Lehnert, P.; Naimer, V.; Polzer, B.; Treitschke, S.; Werno, C.; et al. Genetic Alterations Driving Metastatic Colony Formation Are Acquired Outside of the Primary Tumour in Melanoma. Nat. Commun. 2018, 9, 595. [Google Scholar] [CrossRef]
- Leslie, P.L.; Chao, Y.L.; Tsai, Y.-H.; Ghosh, S.K.; Porrello, A.; Van Swearingen, A.E.D.; Harrison, E.B.; Cooley, B.C.; Parker, J.S.; Carey, L.A.; et al. Histone Deacetylase 11 Inhibition Promotes Breast Cancer Metastasis from Lymph Nodes. Nat. Commun. 2019, 10, 4192. [Google Scholar] [CrossRef]
- Wagenblast, E.; Soto, M.; Gutiérrez-Ángel, S.; Hartl, C.A.; Gable, A.L.; Maceli, A.R.; Erard, N.; Williams, A.M.; Kim, S.Y.; Dickopf, S.; et al. A Model of Breast Cancer Heterogeneity Reveals Vascular Mimicry as a Driver of Metastasis. Nature 2015, 520, 358–362. [Google Scholar] [CrossRef]
- Psaila, B.; Lyden, D. The Metastatic Niche: Adapting the Foreign Soil. Nat. Rev. Cancer 2009, 9, 285–293. [Google Scholar] [CrossRef]
- Liu, X.; Taftaf, R.; Kawaguchi, M.; Chang, Y.-F.; Chen, W.; Entenberg, D.; Zhang, Y.; Gerratana, L.; Huang, S.; Patel, D.B.; et al. Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models. Cancer Discov. 2019, 9, 96–113. [Google Scholar] [CrossRef] [PubMed]
- Beerling, E.; Seinstra, D.; de Wit, E.; Kester, L.; van der Velden, D.; Maynard, C.; Schäfer, R.; van Diest, P.; Voest, E.; van Oudenaarden, A.; et al. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity. Cell Rep. 2016, 14, 2281–2288. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Yang, G.-M.; Dayem, A.A.; Saha, S.K.; Kim, K.; Yoo, Y.; Hong, K.; Kim, J.-H.; Yee, C.; Lee, K.-M.; et al. Hydrodynamic Shear Stress Promotes Epithelial-Mesenchymal Transition by Downregulating ERK and GSK3β Activities. Breast Cancer Res. 2019, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Amintas, S.; Bedel, A.; Moreau-Gaudry, F.; Boutin, J.; Buscail, L.; Merlio, J.-P.; Vendrely, V.; Dabernat, S.; Buscail, E. Circulating Tumor Cell Clusters: United We Stand Divided We Fall. Int. J. Mol. Sci. 2020, 21, 2653. [Google Scholar] [CrossRef]
- Wirtz, D.; Konstantopoulos, K.; Searson, P.C. The Physics of Cancer: The Role of Physical Interactions and Mechanical Forces in Metastasis. Nat. Rev. Cancer 2011, 11, 512–522. [Google Scholar] [CrossRef]
- Au, S.H.; Storey, B.D.; Moore, J.C.; Tang, Q.; Chen, Y.-L.; Javaid, S.; Sarioglu, A.F.; Sullivan, R.; Madden, M.W.; O’Keefe, R.; et al. Clusters of Circulating Tumor Cells Traverse Capillary-Sized Vessels. Proc. Natl. Acad. Sci. USA 2016, 113, 4947–4952. [Google Scholar] [CrossRef]
- Rajput, S.; Kumar Sharma, P.; Malviya, R. Fluid Mechanics in Circulating Tumour Cells: Role in Metastasis and Treatment Strategies. Med. Drug Discov. 2023, 18, 100158. [Google Scholar] [CrossRef]
- Szczerba, B.M.; Castro-Giner, F.; Vetter, M.; Krol, I.; Gkountela, S.; Landin, J.; Scheidmann, M.C.; Donato, C.; Scherrer, R.; Singer, J.; et al. Neutrophils Escort Circulating Tumour Cells to Enable Cell Cycle Progression. Nature 2019, 566, 553–557. [Google Scholar] [CrossRef]
- Patel, S.; Fu, S.; Mastio, J.; Dominguez, G.A.; Purohit, A.; Kossenkov, A.; Lin, C.; Alicea-Torres, K.; Sehgal, M.; Nefedova, Y.; et al. Unique Pattern of Neutrophil Migration and Function during Tumor Progression. Nat. Immunol. 2018, 19, 1236–1247. [Google Scholar] [CrossRef]
- Chen, M.B.; Hajal, C.; Benjamin, D.C.; Yu, C.; Azizgolshani, H.; Hynes, R.O.; Kamm, R.D. Inflamed Neutrophils Sequestered at Entrapped Tumor Cells via Chemotactic Confinement Promote Tumor Cell Extravasation. Proc. Natl. Acad. Sci. USA 2018, 115, 7022–7027. [Google Scholar] [CrossRef]
- Cools-Lartigue, J.; Spicer, J.; McDonald, B.; Gowing, S.; Chow, S.; Giannias, B.; Bourdeau, F.; Kubes, P.; Ferri, L. Neutrophil Extracellular Traps Sequester Circulating Tumor Cells and Promote Metastasis. J. Clin. Investig. 2013, 123, 3446–3458. [Google Scholar] [CrossRef] [PubMed]
- Najmeh, S.; Cools-Lartigue, J.; Rayes, R.F.; Gowing, S.; Vourtzoumis, P.; Bourdeau, F.; Giannias, B.; Berube, J.; Rousseau, S.; Ferri, L.E.; et al. Neutrophil Extracellular Traps Sequester Circulating Tumor Cells via Β1-Integrin Mediated Interactions. Int. J. Cancer 2017, 140, 2321–2330. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.J.; Liang, S.; Sharma, A.; Dong, C.; Robertson, G.P. Transiently Entrapped Circulating Tumor Cells Interact with Neutrophils to Facilitate Lung Metastasis Development. Cancer Res. 2010, 70, 6071–6082. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hemati, H.; Park, Y.; Taftaf, R.; Zhang, Y.; Liu, J.; Cristofanilli, M.; Liu, X. ICAM-1-SuPAR-CD11b Axis Is a Novel Therapeutic Target for Metastatic Triple-Negative Breast Cancer. Cancers 2023, 15, 2734. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, C.; Shen, P.; Wang, J.F.; Zhu, G.; Jia, Y.; Wu, Y.; Wang, S.; Sun, J.; Yang, F.; et al. Hypoxia Stimulates CTC-Platelet Cluster Formation to Promote Breast Cancer Metastasis. iScience 2024, 27, 109547. [Google Scholar] [CrossRef]
- Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, A.; Simon-Saez, I.; Perales, S.; Garrido-Navas, C.; Russo, A.; de Miguel-Perez, D.; Puche-Sanz, I.; Alaminos, C.; Ceron, J.; Lorente, J.A.; et al. Exchange of Cellular Components between Platelets and Tumor Cells: Impact on Tumor Cells Behavior. Theranostics 2022, 12, 2150–2161. [Google Scholar] [CrossRef]
- Labelle, M.; Begum, S.; Hynes, R.O. Direct Signaling between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis. Cancer Cell 2011, 20, 576–590. [Google Scholar] [CrossRef]
- Liu, X.; Song, J.; Zhang, H.; Liu, X.; Zuo, F.; Zhao, Y.; Zhao, Y.; Yin, X.; Guo, X.; Wu, X.; et al. Immune Checkpoint HLA-E:CD94-NKG2A Mediates Evasion of Circulating Tumor Cells from NK Cell Surveillance. Cancer Cell 2023, 41, 272–287.e9. [Google Scholar] [CrossRef]
- Sun, Y.; Li, T.; Ding, L.; Wang, J.; Chen, C.; Liu, T.; Liu, Y.; Li, Q.; Wang, C.; Huo, R.; et al. Platelet-Mediated Circulating Tumor Cell Evasion from Natural Killer Cell Killing through Immune Checkpoint CD155-TIGIT. Hepatology 2024, 81, 791–807. [Google Scholar] [CrossRef]
- Eslami-S, Z.; Cortés-Hernández, L.E.; Glogovitis, I.; Antunes-Ferreira, M.; D’Ambrosi, S.; Kurma, K.; Garima, F.; Cayrefourcq, L.; Best, M.G.; Koppers-Lalic, D.; et al. In Vitro Cross-Talk between Metastasis-Competent Circulating Tumor Cells and Platelets in Colon Cancer: A Malicious Association during the Harsh Journey in the Blood. Front. Cell Dev. Biol. 2023, 11, 1209846. [Google Scholar] [CrossRef] [PubMed]
- Haemmerle, M.; Taylor, M.L.; Gutschner, T.; Pradeep, S.; Cho, M.S.; Sheng, J.; Lyons, Y.M.; Nagaraja, A.S.; Dood, R.L.; Wen, Y.; et al. Platelets Reduce Anoikis and Promote Metastasis by Activating YAP1 Signaling. Nat. Commun. 2017, 8, 310. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liao, Q.; Zhao, Y. Myeloid-Derived Suppressor Cells (MDSC) Facilitate Distant Metastasis of Malignancies by Shielding Circulating Tumor Cells (CTC) from Immune Surveillance. Med. Hypotheses 2016, 87, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Sprouse, M.L.; Welte, T.; Boral, D.; Liu, H.N.; Yin, W.; Vishnoi, M.; Goswami-Sewell, D.; Li, L.; Pei, G.; Jia, P.; et al. PMN-MDSCs Enhance CTC Metastatic Properties through Reciprocal Interactions via ROS/Notch/Nodal Signaling. Int. J. Mol. Sci. 2019, 20, 1916. [Google Scholar] [CrossRef]
- Li, K.; Shi, H.; Zhang, B.; Ou, X.; Ma, Q.; Chen, Y.; Shu, P.; Li, D.; Wang, Y. Myeloid-Derived Suppressor Cells as Immunosuppressive Regulators and Therapeutic Targets in Cancer. Signal Transduct. Target. Ther. 2021, 6, 362. [Google Scholar] [CrossRef]
- Altevogt, P.; Sammar, M.; Hüser, L.; Kristiansen, G. Novel Insights into the Function of CD24: A Driving Force in Cancer. Int. J. Cancer 2021, 148, 546–559. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, N.; Yu, X.; Zhang, X.; Li, S.; Lei, Z.; Hu, R.; Li, H.; Mao, Y.; Wang, X.; et al. Tumacrophage: Macrophages Transformed into Tumor Stem-like Cells by Virulent Genetic Material from Tumor Cells. Oncotarget 2017, 8, 82326–82343. [Google Scholar] [CrossRef]
- Fu, A.; Yao, B.; Dong, T.; Chen, Y.; Yao, J.; Liu, Y.; Li, H.; Bai, H.; Liu, X.; Zhang, Y.; et al. Tumor-Resident Intracellular Microbiota Promotes Metastatic Colonization in Breast Cancer. Cell 2022, 185, 1356–1372.e26. [Google Scholar] [CrossRef]
- Ward, P.S.; Thompson, C.B. Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Cancer Cell 2012, 21, 297–308. [Google Scholar] [CrossRef]
- Denes, V.; Lakk, M.; Makarovskiy, A.; Jakso, P.; Szappanos, S.; Graf, L.; Mandel, L.; Karadi, I.; Geck, P. Metastasis Blood Test by Flow Cytometry: In Vivo Cancer Spheroids and the Role of Hypoxia. Int. J. Cancer 2015, 136, 1528–1536. [Google Scholar] [CrossRef]
- Quartieri, M.; Puspitasari, A.; Vitacchio, T.; Durante, M.; Tinganelli, W. The Role of Hypoxia and Radiation in Developing a CTCs-like Phenotype in Murine Osteosarcoma Cells. Front. Cell Dev. Biol. 2023, 11, 1222809. [Google Scholar] [CrossRef] [PubMed]
- Godet, I.; Shin, Y.J.; Ju, J.A.; Ye, I.C.; Wang, G.; Gilkes, D.M. Fate-Mapping Post-Hypoxic Tumor Cells Reveals a ROS-Resistant Phenotype That Promotes Metastasis. Nat. Commun. 2019, 10, 4862. [Google Scholar] [CrossRef] [PubMed]
- Paoli, P.; Giannoni, E.; Chiarugi, P. Anoikis Molecular Pathways and Its Role in Cancer Progression. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 3481–3498. [Google Scholar] [CrossRef] [PubMed]
- Duda, D.G.; Duyverman, A.M.M.J.; Kohno, M.; Snuderl, M.; Steller, E.J.A.; Fukumura, D.; Jain, R.K. Malignant Cells Facilitate Lung Metastasis by Bringing Their Own Soil. Proc. Natl. Acad. Sci. USA 2010, 107, 21677–21682. [Google Scholar] [CrossRef]
- Giannoni, E.; Bianchini, F.; Masieri, L.; Serni, S.; Torre, E.; Calorini, L.; Chiarugi, P. Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates Epithelial-Mesenchymal Transition and Cancer Stemness. Cancer Res. 2010, 70, 6945–6956. [Google Scholar] [CrossRef]
- Carbonell, W.S.; Ansorge, O.; Sibson, N.; Muschel, R. The Vascular Basement Membrane as “Soil” in Brain Metastasis. PLoS ONE 2009, 4, e5857. [Google Scholar] [CrossRef]
- Correa, D.; Somoza, R.A.; Lin, P.; Schiemann, W.P.; Caplan, A.I. Mesenchymal Stem Cells Regulate Melanoma Cancer Cells Extravasation to Bone and Liver at Their Perivascular Niche. Int. J. Cancer 2016, 138, 417–427. [Google Scholar] [CrossRef]
- Bentolila, L.A.; Prakash, R.; Mihic-Probst, D.; Wadehra, M.; Kleinman, H.K.; Carmichael, T.S.; Péault, B.; Barnhill, R.L.; Lugassy, C. Imaging of Angiotropism/Vascular Co-Option in a Murine Model of Brain Melanoma: Implications for Melanoma Progression along Extravascular Pathways. Sci. Rep. 2016, 6, 23834. [Google Scholar] [CrossRef]
- Er, E.E.; Valiente, M.; Ganesh, K.; Zou, Y.; Agrawal, S.; Hu, J.; Griscom, B.; Rosenblum, M.; Boire, A.; Brogi, E.; et al. Pericyte-like Spreading by Disseminated Cancer Cells Activates YAP and MRTF for Metastatic Colonization. Nat. Cell Biol. 2018, 20, 966–978. [Google Scholar] [CrossRef]
- Roesler, J.; Spitzer, D.; Jia, X.; Aasen, S.N.; Sommer, K.; Roller, B.; Olshausen, N.; Hebach, N.R.; Albinger, N.; Ullrich, E.; et al. Disturbance in Cerebral Blood Microcirculation and Hypoxic-Ischemic Microenvironment Are Associated with the Development of Brain Metastasis. Neuro Oncol. 2024, 26, 2084–2099. [Google Scholar] [CrossRef]
- Wilhelm, I.; Molnár, J.; Fazakas, C.; Haskó, J.; Krizbai, I. Role of the Blood-Brain Barrier in the Formation of Brain Metastases. Int. J. Mol. Sci. 2013, 14, 1383–1411. [Google Scholar] [CrossRef] [PubMed]
- Denkins, Y.; Reiland, J.; Roy, M.; Sinnappah-Kang, N.D.; Galjour, J.; Murry, B.P.; Blust, J.; Aucoin, R.; Marchetti, D. Brain Metastases in Melanoma: Roles of Neurotrophins. Neuro Oncol. 2004, 6, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, S.; Morales, J.E.; Kwiatkowski, S.C.; Lang, F.F.; Rao, G.; McCarty, J.H. Metastatic Brain Tumors Disrupt the Blood-Brain Barrier and Alter Lipid Metabolism by Inhibiting Expression of the Endothelial Cell Fatty Acid Transporter Mfsd2a. Sci. Rep. 2018, 8, 8267. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Deng, S.; Li, L.; Liu, T.; Zhang, T.; Li, J.; Yu, Y.; Xu, Y. TGF-Β1-Mediated Exosomal Lnc-MMP2-2 Increases Blood–Brain Barrier Permeability via the MiRNA-1207-5p/EPB41L5 Axis to Promote Non-Small Cell Lung Cancer Brain Metastasis. Cell Death Dis. 2021, 12, 721. [Google Scholar] [CrossRef]
- Wu, D.; Deng, S.; Liu, T.; Han, R.; Zhang, T.; Xu, Y. TGF-β-mediated Exosomal Lnc-MMP2-2 Regulates Migration and Invasion of Lung Cancer Cells to the Vasculature by Promoting MMP2 Expression. Cancer Med. 2018, 7, 5118–5129. [Google Scholar] [CrossRef]
- Tominaga, N.; Kosaka, N.; Ono, M.; Katsuda, T.; Yoshioka, Y.; Tamura, K.; Lötvall, J.; Nakagama, H.; Ochiya, T. Brain Metastatic Cancer Cells Release MicroRNA-181c-Containing Extracellular Vesicles Capable of Destructing Blood–Brain Barrier. Nat. Commun. 2015, 6, 6716. [Google Scholar] [CrossRef]
- Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.F.; Chin, A.R.; et al. Cancer-Secreted MiR-105 Destroys Vascular Endothelial Barriers to Promote Metastasis. Cancer Cell 2014, 25, 501–515. [Google Scholar] [CrossRef]
- Wu, K.; Fukuda, K.; Xing, F.; Zhang, Y.; Sharma, S.; Liu, Y.; Chan, M.D.; Zhou, X.; Qasem, S.A.; Pochampally, R.; et al. Roles of the Cyclooxygenase 2 Matrix Metalloproteinase 1 Pathway in Brain Metastasis of Breast Cancer. J. Biol. Chem. 2015, 290, 9842–9854. [Google Scholar] [CrossRef]
- Basile, J.R.; Barac, A.; Zhu, T.; Guan, K.-L.; Gutkind, J.S. Class IV Semaphorins Promote Angiogenesis by Stimulating Rho-Initiated Pathways through Plexin-B. Cancer Res. 2004, 64, 5212–5224. [Google Scholar] [CrossRef]
- Sierra, J.R.; Corso, S.; Caione, L.; Cepero, V.; Conrotto, P.; Cignetti, A.; Piacibello, W.; Kumanogoh, A.; Kikutani, H.; Comoglio, P.M.; et al. Tumor Angiogenesis and Progression Are Enhanced by Sema4D Produced by Tumor-Associated Macrophages. J. Exp. Med. 2008, 205, 1673–1685. [Google Scholar] [CrossRef]
- Franzolin, G.; Brundu, S.; Cojocaru, C.F.; Curatolo, A.; Ponzo, M.; Mastrantonio, R.; Mihara, E.; Kumanogoh, A.; Suga, H.; Takagi, J.; et al. PlexinB1 Inactivation Reprograms Immune Cells in the Tumor Microenvironment, Inhibiting Breast Cancer Growth and Metastatic Dissemination. Cancer Immunol. Res. 2024, 12, 1286–1301. [Google Scholar] [CrossRef] [PubMed]
- Herrera, R.A.; Deshpande, K.; Martirosian, V.; Saatian, B.; Julian, A.; Eisenbarth, R.; Das, D.; Iyer, M.; Neman, J. Cortisol Promotes Breast-to-brain Metastasis through the Blood-cerebrospinal Fluid Barrier. Cancer Rep. 2022, 5, e1351. [Google Scholar] [CrossRef] [PubMed]
- Johanson, C.E.; Stopa, E.G.; McMillan, P.N. The Blood–Cerebrospinal Fluid Barrier: Structure and Functional Significance. In The Blood-Brain and Other Neural Barriers; Springer: Berlin/Heidelberg, Germany, 2011; pp. 101–131. [Google Scholar]
- Saatian, B.; Deshpande, K.; Herrera, R.; Sedighi, S.; Eisenbarth, R.; Iyer, M.; Das, D.; Julian, A.; Martirosian, V.; Lowman, A.; et al. Breast-to-brain Metastasis Is Exacerbated with Chemotherapy through Blood–Cerebrospinal Fluid Barrier and Induces Alzheimer’s-like Pathology. J. Neurosci. Res. 2023, 101, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Khaled, M.L.; Tarhini, A.A.; Forsyth, P.A.; Smalley, I.; Piña, Y. Leptomeningeal Disease (LMD) in Patients with Melanoma Metastases. Cancers 2023, 15, 1884. [Google Scholar] [CrossRef]
- Freret, M.E.; Boire, A. The Anatomic Basis of Leptomeningeal Metastasis. J. Exp. Med. 2024, 221, e20212121. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Melisko, M.; Roy, R.; Sosa, E.V.; Hauranieh, L.; Kablanian, A.; Eisenbud, L.E.; Ryazantsev, A.; Au, A.; Scott, J.H.; et al. Molecular Profiling of Tumor Cells in Cerebrospinal Fluid and Matched Primary Tumors from Metastatic Breast Cancer Patients with Leptomeningeal Carcinomatosis. Cancer Res. 2013, 73, 7134–7143. [Google Scholar] [CrossRef]
- Chi, Y.; Remsik, J.; Kiseliovas, V.; Derderian, C.; Sener, U.; Alghader, M.; Saadeh, F.; Nikishina, K.; Bale, T.; Iacobuzio-Donahue, C.; et al. Cancer Cells Deploy Lipocalin-2 to Collect Limiting Iron in Leptomeningeal Metastasis. Science 2020, 369, 276–282. [Google Scholar] [CrossRef]
- Duan, X.; He, K.; Li, J.; Cheng, M.; Song, H.; Liu, J.; Liu, P. Tumor Associated Macrophages Deliver Iron to Tumor Cells via Lcn2. Int. J. Physiol. Pathophysiol. Pharmacol. 2018, 10, 105–114. [Google Scholar]
- Boire, A.; Zou, Y.; Shieh, J.; Macalinao, D.G.; Pentsova, E.; Massagué, J. Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell 2017, 168, 1101–1113.e13. [Google Scholar] [CrossRef]
- Seike, T.; Fujita, K.; Yamakawa, Y.; Kido, M.A.; Takiguchi, S.; Teramoto, N.; Iguchi, H.; Noda, M. Interaction between Lung Cancer Cells and Astrocytes via Specific Inflammatory Cytokines in the Microenvironment of Brain Metastasis. Clin. Exp. Metastasis 2011, 28, 13–25. [Google Scholar] [CrossRef]
- Schwartz, H.; Blacher, E.; Amer, M.; Livneh, N.; Abramovitz, L.; Klein, A.; Ben-Shushan, D.; Soffer, S.; Blazquez, R.; Barrantes-Freer, A.; et al. Incipient Melanoma Brain Metastases Instigate Astrogliosis and Neuroinflammation. Cancer Res. 2016, 76, 4359–4371. [Google Scholar] [CrossRef] [PubMed]
- Doron, H.; Amer, M.; Ershaid, N.; Blazquez, R.; Shani, O.; Lahav, T.G.; Cohen, N.; Adler, O.; Hakim, Z.; Pozzi, S.; et al. Inflammatory Activation of Astrocytes Facilitates Melanoma Brain Tropism via the CXCL10-CXCR3 Signaling Axis. Cell Rep. 2019, 28, 1785–1798.e6. [Google Scholar] [CrossRef] [PubMed]
- Hajal, C.; Shin, Y.; Li, L.; Serrano, J.C.; Jacks, T.; Kamm, R.D. The CCL2-CCR2 Astrocyte-Cancer Cell Axis in Tumor Extravasation at the Brain. Sci. Adv. 2021, 7, eabg8139. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, Á.; Molnár, K.; Fazakas, C.; Nógrádi, B.; Lüvi, A.; Dudás, T.; Tiszlavicz, L.; Farkas, A.E.; Krizbai, I.A.; Wilhelm, I. Inflammasome Activation in Peritumoral Astrocytes Is a Key Player in Breast Cancer Brain Metastasis Development. Acta Neuropathol. Commun. 2023, 11, 155. [Google Scholar] [CrossRef]
- Motallebnejad, P.; Rajesh, V.V.; Azarin, S.M. Evaluating the Role of IL-1β in Transmigration of Triple Negative Breast Cancer Cells Across the Brain Endothelium. Cell Mol. Bioeng. 2022, 15, 99–114. [Google Scholar] [CrossRef]
- Yuzhalin, A.E.; Lowery, F.J.; Saito, Y.; Yuan, X.; Yao, J.; Duan, Y.; Ding, J.; Acharya, S.; Zhang, C.; Fajardo, A.; et al. Astrocyte-Induced Cdk5 Expedites Breast Cancer Brain Metastasis by Suppressing MHC-I Expression to Evade Immune Recognition. Nat. Cell Biol. 2024, 26, 1773–1789. [Google Scholar] [CrossRef]
- Priego, N.; Zhu, L.; Monteiro, C.; Mulders, M.; Wasilewski, D.; Bindeman, W.; Doglio, L.; Martínez, L.; Martínez-Saez, E.; Ramón y Cajal, S.; et al. STAT3 Labels a Subpopulation of Reactive Astrocytes Required for Brain Metastasis. Nat. Med. 2018, 24, 1024–1035. [Google Scholar] [CrossRef]
- Lorger, M.; Felding-Habermann, B. Capturing Changes in the Brain Microenvironment during Initial Steps of Breast Cancer Brain Metastasis. Am. J. Pathol. 2010, 176, 2958–2971. [Google Scholar] [CrossRef]
- Jandial, R.; Choy, C.; Levy, D.M.; Chen, M.Y.; Ansari, K.I. Astrocyte-Induced Reelin Expression Drives Proliferation of Her2+ Breast Cancer Metastases. Clin. Exp. Metastasis 2017, 34, 185–196. [Google Scholar] [CrossRef]
- Zou, Y.; Watters, A.; Cheng, N.; Perry, C.E.; Xu, K.; Alicea, G.M.; Parris, J.L.D.; Baraban, E.; Ray, P.; Nayak, A.; et al. Polyunsaturated Fatty Acids from Astrocytes Activate PPARγ Signaling in Cancer Cells to Promote Brain Metastasis. Cancer Discov. 2019, 9, 1720–1735. [Google Scholar] [CrossRef]
- Wang, S.; Riedstra, C.P.; Zhang, Y.; Anandh, S.; Dudley, A.C. PTEN-Restoration Abrogates Brain Colonisation and Perivascular Niche Invasion by Melanoma Cells. Br. J. Cancer 2024, 130, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Le Rhun, E.; Guckenberger, M.; Smits, M.; Dummer, R.; Bachelot, T.; Sahm, F.; Galldiks, N.; de Azambuja, E.; Berghoff, A.S.; Metellus, P.; et al. EANO–ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up of Patients with Brain Metastasis from Solid Tumours. Ann. Oncol. 2021, 32, 1332–1347. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xiong, J.; Ma, Y.; Wei, J.; Liu, C.; Zhao, Y. Systemic Treatments for Breast Cancer Brain Metastasis. Front. Oncol. 2023, 12, 1086821. [Google Scholar] [CrossRef]
- Page, S.; Milner-Watts, C.; Perna, M.; Janzic, U.; Vidal, N.; Kaudeer, N.; Ahmed, M.; McDonald, F.; Locke, I.; Minchom, A.; et al. Systemic Treatment of Brain Metastases in Non-Small Cell Lung Cancer. Eur. J. Cancer 2020, 132, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Onofrio, L.; Gaeta, A.; D’Ecclesiis, O.; Cugliari, G.; Gandini, S.; Queirolo, P. Melanoma Brain Metastases: Immunotherapy or Targeted Therapy? A Systematic Review and Meta-Analyses. Appl. Sci. 2024, 14, 2222. [Google Scholar] [CrossRef]
- Turner, N.C.; Reis-Filho, J.S. Genetic Heterogeneity and Cancer Drug Resistance. Lancet Oncol. 2012, 13, e178–e185. [Google Scholar] [CrossRef]
- Ali, S.; Górska, Z.; Duchnowska, R.; Jassem, J. Molecular Profiles of Brain Metastases: A Focus on Heterogeneity. Cancers 2021, 13, 2645. [Google Scholar] [CrossRef]
- Trigg, R.M.; Martinson, L.J.; Parpart-Li, S.; Shaw, J.A. Factors That Influence Quality and Yield of Circulating-Free DNA: A Systematic Review of the Methodology Literature. Heliyon 2018, 4, e00699. [Google Scholar] [CrossRef]
- Boire, A.; Brandsma, D.; Brastianos, P.K.; Le Rhun, E.; Ahluwalia, M.; Junck, L.; Glantz, M.; Groves, M.D.; Lee, E.Q.; Lin, N.; et al. Liquid Biopsy in Central Nervous System Metastases: A RANO Review and Proposals for Clinical Applications. Neuro Oncol. 2019, 21, 571–584. [Google Scholar] [CrossRef]
- Robinson, S.D.; de Boisanger, J.; Pearl, F.M.G.; Critchley, G.; Rosenfelder, N.; Giamas, G. A Brain Metastasis Liquid Biopsy: Where Are We Now? Neuro-Oncol. Adv. 2024, 6, vdae066. [Google Scholar] [CrossRef]
- Morganti, S.; Parsons, H.A.; Lin, N.U.; Grinshpun, A. Liquid Biopsy for Brain Metastases and Leptomeningeal Disease in Patients with Breast Cancer. NPJ Breast Cancer 2023, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- McGregor, J.M.; Bell, S.D.; Doolittle, N.D.; Murillo, T.P.; Neuwelt, E.A. Blood-Brain Barrier Disruption Chemotherapy. In Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 145–153. [Google Scholar]
- Beccaria, K.; Canney, M.; Bouchoux, G.; Desseaux, C.; Grill, J.; Heimberger, A.B.; Carpentier, A. Ultrasound-Induced Blood-Brain Barrier Disruption for the Treatment of Gliomas and Other Primary CNS Tumors. Cancer Lett. 2020, 479, 13–22. [Google Scholar] [CrossRef]
- Mitusova, K.; Peltek, O.O.; Karpov, T.E.; Muslimov, A.R.; Zyuzin, M.V.; Timin, A.S. Overcoming the Blood–Brain Barrier for the Therapy of Malignant Brain Tumor: Current Status and Prospects of Drug Delivery Approaches. J. Nanobiotechnol. 2022, 20, 412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Kuil, L.E.; Buil, L.C.M.; Freriks, S.; Beijnen, J.H.; van Tellingen, O.; de Gooijer, M.C. Acquired and Intrinsic Resistance to Vemurafenib in BRAFV600E-driven Melanoma Brain Metastases. FEBS Open Bio 2024, 14, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Twomey, J.D.; Zhang, B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J. 2021, 23, 39. [Google Scholar] [CrossRef]
- Vesely, M.D.; Zhang, T.; Chen, L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annu. Rev. Immunol. 2022, 40, 45–74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacome, M.A.; Wu, Q.; Chen, J.; Mohamed, Z.S.; Mokhtari, S.; Piña, Y.; Etame, A.B. Molecular Underpinnings of Brain Metastases. Int. J. Mol. Sci. 2025, 26, 2307. https://doi.org/10.3390/ijms26052307
Jacome MA, Wu Q, Chen J, Mohamed ZS, Mokhtari S, Piña Y, Etame AB. Molecular Underpinnings of Brain Metastases. International Journal of Molecular Sciences. 2025; 26(5):2307. https://doi.org/10.3390/ijms26052307
Chicago/Turabian StyleJacome, Maria A., Qiong Wu, Jianan Chen, Zaynab Sidi Mohamed, Sepideh Mokhtari, Yolanda Piña, and Arnold B. Etame. 2025. "Molecular Underpinnings of Brain Metastases" International Journal of Molecular Sciences 26, no. 5: 2307. https://doi.org/10.3390/ijms26052307
APA StyleJacome, M. A., Wu, Q., Chen, J., Mohamed, Z. S., Mokhtari, S., Piña, Y., & Etame, A. B. (2025). Molecular Underpinnings of Brain Metastases. International Journal of Molecular Sciences, 26(5), 2307. https://doi.org/10.3390/ijms26052307