Effectiveness of Extracellular Vesicle Application in Skin Aging Treatment and Regeneration: Do We Have Enough Evidence from Clinical Trials?
Abstract
:1. Introduction
2. Results
2.1. Anti-Aging Therapies
2.2. Acne Scar Regeneration
2.3. Alopecia Treatment
2.4. Wound Healing
2.5. Current Research Trends
3. Discussion
- Regulatory and Manufacturing Challenges
Limitations and Challenges
4. Methodology
5. Conclusions
Funding
Conflicts of Interest
References
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [PubMed]
- Zmijewski, M.A.; Slominski, A.T. Neuroendocrinology of the Skin: An Overview and Selective Analysis. Dermato-Endocrinology 2011, 3, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, M.; Zhao, X.; Wang, Y.; Chen, X.; Su, J. Role of Stress in Skin Diseases: A Neuroendocrine-Immune Interaction View. Brain Behav. Immun. 2024, 116, 286–302. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Skobowiat, C.; Zbytek, B.; Slominski, R.M.; Steketee, J.D. Sensing the Environment: Regulation of Local and Global Homeostasis by the Skin Neuroendocrine System; Springer: Berlin/Heidelberg, Germany, 2012; Volume 212, p. XV, 115. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Mo, Y.; Li, W.; Li, H.; Yan, G.; Qin, X.; Piao, L. Molecular and Cellular Pruritus Mechanisms in the Host Skin. Exp. Mol. Pathol. 2024, 136, 104889. [Google Scholar] [CrossRef]
- Paus, R.; Theoharides, T.C.; Arck, P.C. Neuroimmunoendocrine Circuitry of the “Brain-Skin Connection”. Trends Immunol. 2006, 27, 32–39. [Google Scholar] [CrossRef]
- Arck, P.C.; Slominski, A.; Theoharides, T.C.; Peters, E.M.J.; Paus, R. Neuroimmunology of Stress: Skin Takes Center Stage. J. Investig. Dermatol. 2006, 126, 1697–1704. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, H.; Man, M.-Q.; Hu, L. Aging in the Dermis: Fibroblast Senescence and Its Significance. Aging Cell 2024, 23, e14054. [Google Scholar] [CrossRef]
- Bocheva, G.; Slominski, R.M.; Slominski, A.T. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int. J. Mol. Sci. 2023, 24, 10502. [Google Scholar] [CrossRef]
- Martic, I.; Jansen-Dürr, P.; Cavinato, M. Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells 2022, 11, 2220. [Google Scholar] [CrossRef]
- Slominski, A.; Wortsman, J.; Luger, T.; Paus, R.; Solomon, S. Corticotropin Releasing Hormone and Proopiomelanocortin Involvement in the Cutaneous Response to Stress. Physiol. Rev. 2000, 80, 979–1020. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.R.; Ansary, T.M.; Komine, M.; Ohtsuki, M. Diversified Stimuli-Induced Inflammatory Pathways Cause Skin Pigmentation. Int. J. Mol. Sci. 2021, 22, 3970. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A New Immune–Metabolic Viewpoint for Age-Related Diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef]
- Steinhoff, M.; Ahmad, F.; Pandey, A.; Datsi, A.; AlHammadi, A.; Al-Khawaga, S.; Al-Malki, A.; Meng, J.; Alam, M.; Buddenkotte, J. Neuroimmune Communication Regulating Pruritus in Atopic Dermatitis. J. Allergy Clin. Immunol. 2022, 149, 1875–1898. [Google Scholar] [CrossRef]
- Holick, M.F. The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Rittié, L. Cellular Mechanisms of Skin Repair in Humans and Other Mammals. J. Cell Commun. Signal 2016, 10, 103–120. [Google Scholar] [CrossRef]
- Brand, R.M.; Wipf, P.; Durham, A.; Epperly, M.W.; Greenberger, J.S.; Falo, L.D. Targeting Mitochondrial Oxidative Stress to Mitigate UV-Induced Skin Damage. Front. Pharmacol. 2018, 9, 920. [Google Scholar] [CrossRef]
- Shin, J.-W.; Kwon, S.-H.; Choi, J.-Y.; Na, J.-I.; Huh, C.-H.; Choi, H.-R.; Park, K.-C. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int. J. Mol. Sci. 2019, 20, 2126. [Google Scholar] [CrossRef]
- Skowron, K.; Bauza-Kaszewska, J.; Kraszewska, Z.; Wiktorczyk-Kapischke, N.; Grudlewska-Buda, K.; Kwiecińska-Piróg, J.; Wałecka-Zacharska, E.; Radtke, L.; Gospodarek-Komkowska, E. Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms 2021, 9, 543. [Google Scholar] [CrossRef]
- Fitsiou, E.; Pulido, T.; Campisi, J.; Alimirah, F.; Demaria, M. Cellular Senescence and the Senescence-Associated Secretory Phenotype as Drivers of Skin Photoaging. J. Investig. Dermatol. 2021, 141, 1119–1126. [Google Scholar] [CrossRef]
- Domaszewska-Szostek, A.; Puzianowska-Kuźnicka, M.; Kuryłowicz, A. Flavonoids in Skin Senescence Prevention and Treatment. Int. J. Mol. Sci. 2021, 22, 6814. [Google Scholar] [CrossRef] [PubMed]
- Buzas, E.I. The Roles of Extracellular Vesicles in the Immune System. Nat. Rev. Immunol. 2023, 23, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Li, M.; Liu, Q.; Yu, A.; Cheng, K.; Ma, J.; Murphy, S.; McNutt, P.M.; Zhang, Y. Insights into Optimizing Exosome Therapies for Acute Skin Wound Healing and Other Tissue Repair. Front. Med. 2024, 18, 258–284. [Google Scholar] [CrossRef]
- Tkach, M.; Théry, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016, 164, 1226–1232. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Zhou, M.; Weber, S.R.; Zhao, Y.; Chen, H.; Sundstrom, J.M. Methods for Exosome Isolation and Characterization. In Exosomes: A Clinical Compendium; Elsevier: Amsterdam, The Netherlands, 2020; pp. 23–37. ISBN 978-0-12-816053-4. [Google Scholar]
- Stahl, P.D.; Raposo, G. Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis. Physiology 2019, 34, 169–177. [Google Scholar] [CrossRef]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The Exosome Journey: From Biogenesis to Uptake and Intracellular Signaling. Cell Commun. Signal 2021, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, C.; Datta, P.; Singh, Y.P.; Lo, A.; Horchler, S.; Elcheva, I.A.; Ozbolat, I.T.; Ravnic, D.J.; Koduru, S.V. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Therapeutic Use and in Bioengineering Applications. Cells 2022, 11, 3366. [Google Scholar] [CrossRef]
- Colombo, M.; Raposo, G.; Théry, C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yoo, S.M.; Park, H.H.; Lim, H.J.; Kim, Y.L.; Lee, S.; Seo, K.W.; Kang, K.S. Exosomes Derived from Human Umbilical Cord Blood Mesenchymal Stem Cells Stimulates Rejuvenation of Human Skin. Biochem. Biophys. Res. Commun. 2017, 493, 1102–1108. [Google Scholar] [CrossRef]
- Yokoi, A.; Ochiya, T. Exosomes and Extracellular Vesicles: Rethinking the Essential Values in Cancer Biology. Semin. Cancer Biol. 2021, 74, 79–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, Biologic Function and Clinical Potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Wang, M.; Sun, Y.; Yang, D.; Xu, W.; Qian, H. Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Front. Cell Dev. Biol. 2021, 9, 736022. [Google Scholar] [CrossRef]
- Ersan, M.; Ozer, E.; Akin, O.; Tasli, P.N.; Sahin, F. Effectiveness of Exosome Treatment in Androgenetic Alopecia: Outcomes of a Prospective Study. Aesth Plast. Surg. 2024, 48, 4262–4271. [Google Scholar] [CrossRef]
- Sen, S.; Xavier, J.; Kumar, N.; Ahmad, M.Z.; Ranjan, O.P. Exosomes as Natural Nanocarrier-Based Drug Delivery System: Recent Insights and Future Perspectives. 3 Biotech 2023, 13, 101. [Google Scholar] [CrossRef]
- Mobarak, H.; Javid, F.; Narmi, M.T.; Mardi, N.; Sadeghsoltani, F.; Khanicheragh, P.; Narimani, S.; Mahdipour, M.; Sokullu, E.; Valioglu, F.; et al. Prokaryotic Microvesicles Ortholog of Eukaryotic Extracellular Vesicles in Biomedical Fields. Cell Commun. Signal 2024, 22, 80. [Google Scholar] [CrossRef] [PubMed]
- Sreeraj, H.; AnuKiruthika, R.; Tamilselvi, K.S.; Subha, D. Exosomes for Skin Treatment: Therapeutic and Cosmetic Applications. Nano TransMed 2024, 3, 100048. [Google Scholar] [CrossRef]
- Jibing, C.; Weiping, L.; Yuwei, Y.; Bingzheng, F.; Zhiran, X. Exosomal microRNA-Based Therapies for Skin Diseases. Regen. Ther. 2024, 25, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Wu, Y.; Zhang, X.; Wang, J.; Wang, X.; Gu, Q.; Xu, C.; Fan, Y.; Li, X.; Xie, P.; et al. Lens Epithelial Cell-derived Exosome Inhibits Angiogenesis in Ocular Pathological Neovascularization through Its Delivery of miR-146a-5p. FASEB J. 2023, 37, e23192. [Google Scholar] [CrossRef]
- Wyles, S.P.; Proffer, S.L.; Farris, P.; Randall, L.; Hillestad, M.L.; Lupo, M.P.; Behfar, A. Effect of Topical Human Platelet Extract (HPE) for Facial Skin Rejuvenation: A Histological Study of Collagen and Elastin. J. Drugs Dermatol. JDD 2024, 23, 735–740. [Google Scholar] [CrossRef]
- Johnson, J.; Law, S.Q.K.; Shojaee, M.; Hall, A.S.; Bhuiyan, S.; Lim, M.B.L.; Silva, A.; Kong, K.J.W.; Schoppet, M.; Blyth, C.; et al. First-in-human Clinical Trial of Allogeneic, Platelet-derived Extracellular Vesicles as a Potential Therapeutic for Delayed Wound Healing. J. Extracell. Vesicle 2023, 12, 12332. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Yang, S.; Lee, J.; Park, B.; Park, K.; Jung, J.; Bae, Y.; Park, G. Combination Treatment with Human Adipose Tissue Stem Cell-Derived Exosomes and Fractional CO2 Laser for Acne Scars: A 12-Week Prospective, Double-Blind, Randomized, Split-Face Study. Acta Derm. Venereol. 2020, 100, adv00310. [Google Scholar] [CrossRef]
- Wyles, S.; Jankov, L.E.; Copeland, K.; Bucky, L.P.; Paradise, C.; Behfar, A. A Comparative Study of Two Topical Treatments for Photoaging of the Hands. Plast. Reconstr. Surg. 2024, 154, 978–984. [Google Scholar] [CrossRef]
- Svolacchia, F.; Svolacchia, L.; Falabella, P.; Scieuzo, C.; Salvia, R.; Giglio, F.; Catalano, A.; Saturnino, C.; Di Lascio, P.; Guarro, G.; et al. Exosomes and Signaling Nanovesicles from the Nanofiltration of Preconditioned Adipose Tissue with Skin-B® in Tissue Regeneration and Antiaging: A Clinical Study and Case Report. Medicina 2024, 60, 670. [Google Scholar] [CrossRef]
- Ho, C.Y.; Dreesen, O. Faces of Cellular Senescence in Skin Aging. Mech. Ageing Dev. 2021, 198, 111525. [Google Scholar] [CrossRef] [PubMed]
- Parrado, C.; Mercado-Saenz, S.; Perez-Davo, A.; Gilaberte, Y.; Gonzalez, S.; Juarranz, A. Environmental Stressors on Skin Aging. Mechanistic Insights. Front. Pharmacol. 2019, 10, 759. [Google Scholar] [CrossRef]
- Chin, T.; Lee, X.E.; Ng, P.Y.; Lee, Y.; Dreesen, O. The Role of Cellular Senescence in Skin Aging and Age-Related Skin Pathologies. Front. Physiol. 2023, 14, 1297637. [Google Scholar] [CrossRef]
- Ji, S.; Xiong, M.; Chen, H.; Liu, Y.; Zhou, L.; Hong, Y.; Wang, M.; Wang, C.; Fu, X.; Sun, X. Cellular Rejuvenation: Molecular Mechanisms and Potential Therapeutic Interventions for Diseases. Signal Transduct. Target. Ther. 2023, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, H.; Hu, Q.; Wang, L.; Liu, J.; Zheng, Z.; Zhang, W.; Ren, J.; Zhu, F.; Liu, G.-H. Epigenetic Regulation of Aging: Implications for Interventions of Aging and Diseases. Signal Transduct. Target. Ther. 2022, 7, 374. [Google Scholar] [CrossRef]
- Saul, D.; Kosinsky, R.L. Epigenetics of Aging and Aging-Associated Diseases. Int. J. Mol. Sci. 2021, 22, 401. [Google Scholar] [CrossRef]
- Orioli, D.; Dellambra, E. Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases. Cells 2018, 7, 268. [Google Scholar] [CrossRef]
- Krutmann, J.; Schikowski, T.; Morita, A.; Berneburg, M. Environmentally-Induced (Extrinsic) Skin Aging: Exposomal Factors and Underlying Mechanisms. J. Investig. Dermatol. 2021, 141, 1096–1103. [Google Scholar] [CrossRef]
- Vierkötter, A.; Krutmann, J. Environmental Influences on Skin Aging and Ethnic-Specific Manifestations. Dermato-Endocrinology 2012, 4, 227–231. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of Aging: An Expanding Universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The Skin Aging Exposome. J. Dermatol. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef]
- Zhang, S.; Duan, E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transpl. 2018, 27, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Shah, D.; Rai, D.; Parra, D.C.; Pathikonda, S.; Kurilova, S.; Cili, A. Therapeutic Values of Exosomes in Cosmetics, Skin Care, Tissue Regeneration, and Dermatological Diseases. Cosmetics 2023, 10, 65. [Google Scholar] [CrossRef]
- Cho, B.S.; Lee, J.; Won, Y.; Duncan, D.I.; Jin, R.C.; Lee, J.; Kwon, H.H.; Park, G.-H.; Yang, S.H.; Park, B.C.; et al. Skin Brightening Efficacy of Exosomes Derived from Human Adipose Tissue-Derived Stem/Stromal Cells: A Prospective, Split-Face, Randomized Placebo-Controlled Study. Cosmetics 2020, 7, 90. [Google Scholar] [CrossRef]
- Proffer, S.L.; Paradise, C.R.; DeGrazia, E.; Halaas, Y.; Durairaj, K.K.; Somenek, M.; Sivly, A.; Boon, A.J.; Behfar, A.; Wyles, S.P. Efficacy and Tolerability of Topical Platelet Exosomes for Skin Rejuvenation: Six-Week Results. Aesthetic Surg. J. 2022, 42, 1185–1193. [Google Scholar] [CrossRef]
- Dayan, S.; Gandhi, N.; Wilson, J.; Kola, E.; Jankov, L.E.; Copeland, K.; Paradise, C.; Behfar, A. Safety and Efficacy of Human Platelet Extract in Skin Recovery after Fractional CO2 Laser Resurfacing of the Face: A Randomized, Controlled, Evaluator-blinded Pilot Study. J. Cosmet. Dermatol. 2023, 22, 2464–2470. [Google Scholar] [CrossRef]
- Park, G.; Kwon, H.H.; Seok, J.; Yang, S.H.; Lee, J.; Park, B.C.; Shin, E.; Park, K.Y. Efficacy of Combined Treatment with Human Adipose Tissue Stem Cell-derived Exosome-containing Solution and Microneedling for Facial Skin Aging: A 12-week Prospective, Randomized, Split-face Study. J. Cosmet. Dermatol. 2023, 22, 3418–3426. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Zhang, Y.; Su, Z.; Wu, S.; Li, Y.; Yi, J.; Lai, W.; Chen, J.; Zheng, Y. hMSC Exosomes as a Novel Treatment for Female Sensitive Skin: An in Vivo Study. Front. Bioeng. Biotechnol. 2022, 10, 1053679. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Ma, C.; Chen, H.-D.; Wu, Y.; Xu, X.-G. The Roles of Exosomes in Regulating Hair Follicle Growth. Clin. Cosmet. Investig. Dermatol. 2024, 17, 1603–1612. [Google Scholar] [CrossRef]
- Ajit, A.; Nair, M.D.; Venugopal, B. Exploring the Potential of Mesenchymal Stem Cell–Derived Exosomes for the Treatment of Alopecia. Regen. Eng. Transl. Med. 2021, 7, 119–128. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, B.; Yang, Y.; Jiang, Q.; Li, T.; Gong, J.; Tang, H.; Zhang, Q. Stem Cell-Derived Exosomes: Emerging Therapeutic Opportunities for Wound Healing. Stem Cell Res. Ther. 2023, 14, 107. [Google Scholar] [CrossRef]
- MSC EVs in Dystrophic Epidermolysis Bullosa. Available online: https://clinicaltrials.gov/study/NCT04173650 (accessed on 19 February 2025).
- Exosome Effect on Prevention of Hairloss. Available online: https://clinicaltrials.gov/study/NCT05658094?intr=extracellular%20vesicle&rank=1 (accessed on 19 February 2025).
- Cho, J.H.; Hong, Y.D.; Kim, D.; Park, S.J.; Kim, J.S.; Kim, H.-M.; Yoon, E.J.; Cho, J.-S. Confirmation of Plant-Derived Exosomes as Bioactive Substances for Skin Application through Comparative Analysis of Keratinocyte Transcriptome. Appl. Biol. Chem. 2022, 65, 8. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, S.; Grippin, A.J.; Teng, L.; Lee, A.S.; Kim, B.Y.S.; Jiang, W. Engineering Therapeutical Extracellular Vesicles for Clinical Translation. Trends Biotechnol. 2025, 43, 61–82. [Google Scholar] [CrossRef] [PubMed]
- Ghodasara, A.; Raza, A.; Wolfram, J.; Salomon, C.; Popat, A. Clinical Translation of Extracellular Vesicles. Adv. Healthc. Mater. 2023, 12, 2301010. [Google Scholar] [CrossRef]
- International Society for Extracellular Vesicles (ISEV). Minimal Information for Studies of Extracellular Vesicles (MISEV) 2023 Guidelines. Available online: https://www.isev.org/misev (accessed on 1 March 2025).
- Zhou, Y.; Zhang, X.-L.; Lu, S.-T.; Zhang, N.-Y.; Zhang, H.-J.; Zhang, J.; Zhang, J. Human Adipose-Derived Mesenchymal Stem Cells-Derived Exosomes Encapsulated in Pluronic F127 Hydrogel Promote Wound Healing and Regeneration. Stem Cell Res. Ther. 2022, 13, 407. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, C.; Xu, P.; Liu, K. Hydrogel-Mediated Extracellular Vesicles for Enhanced Wound Healing: The Latest Progress, and Their Prospects for 3D Bioprinting. J. Nanobiotechnol. 2024, 22, 57. [Google Scholar] [CrossRef]
- Wang, C.; Tsai, T.; Lee, C. Regulation of Exosomes as Biologic Medicines: Regulatory Challenges Faced in Exosome Development and Manufacturing Processes. Clin. Transl. Sci. 2024, 17, e13904. [Google Scholar] [CrossRef] [PubMed]
- Tzng, E.; Bayardo, N.; Yang, P.C. Current Challenges Surrounding Exosome Treatments. Extracell. Vesicle 2023, 2, 100023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int. J. Nanomed. 2020, 15, 6917–6934. [Google Scholar] [CrossRef] [PubMed]
Product of Research | Correct Nomenclature | Morphology | Characterization | Isolation Method | Author | Year | ||
---|---|---|---|---|---|---|---|---|
Size [nm] | Analysis Method | Positive Markers | Negative Markers | |||||
Human foreskin-derived mesenchymal stromal cell derived exosomes | − | 139.7 ± 2.3 | NTA | CD9, CD63, CD81 | NA | ATPS | Ersan et al. [35] | 2023 |
Human umbilical cord mesenchymal stem cell-derived exosomes | + | 40–80 | TEM, NTA | CD63, CD81, TSG101 | NA | Ultrafiltration | Ye et al. [63] | 2022 |
Allogeneic platelet-derived extracellular vesicles | + | 65–400 | Cryo-TEM | CD63, CD9 | Calnexin | LEAP | Johnson et al. [42] | 2023 |
Human adipose tissue stem cell-derived exosomes | +/− | mean 117.4 | NTA, Cryo-TEM | CD9, CD63, CD81 | Calnexin, cytochrome C | ExoSCRT™ | Kwon et al. [43] | 2020 |
Human adipose tissue stem cell-derived exosome-containing solution | +/− | mean 90 | Filtration analysis, flow cytometry, NTA | CD81, CD146 | NA | Ultrafiltration, MACS technology | Svolacchia et al. [45] | 2024 |
Human adipose tissue-derived stem/stromal cells | + | 30–200; mean 138 | NTA, membrane filtration | CD9, CD63, CD81 | Calnexin | Ultrafiltration, TFF | Cho et al. [59] | 2020 |
Purpose of Regenerative Therapy | Study Status | Start Date | Institution | Origin of Exosomes | EV/ Exosome Dosage | Route and Administration | Treatment Window | Follow-Up Period | Number of Patients | Age Range [Years] | Results | Compared to | Authors, Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Skin Brightening | Concluded | NDA | ExoCoBio Exosome Institute | ASCs | 0.2 g of test with 2.0 × 1010 ASC-exosomes/mL applied twice daily | Topical application | 8 weeks | 8 weeks | 21 | 39–55 | Statistically significant decrease in melanin content on the exosome-treated side compared to placebo, with the effect diminishing over time | Placebo | Cho et al., 2020 [59] |
Skin Rejuvenation | Concluded | October 2021 | Mayo Clinic | HPE | NDA, applied twice daily | Topical application | 6 weeks | 6 weeks | 56 | 40–80 | Significant improvements in skin health score, reduction in redness, wrinkles, and melanin production; enhanced luminosity and color evenness | NA | Proffer et al., 2022 [60] |
Hands Photoaging | Concluded | NDA | Mayo Clinic | HPE | NDA, applied twice daily | Topical application, twice daily | 12–26 weeks | 26 weeks | 60 | 40–80 | Improvements in skin texture and reduced wrinkles with both treatments; similar results in reducing brown spots and wrinkles between HPE and vitamin C | Vitamin C treatment | Wyles et al., 2024 [44] |
Skin Rejuvenation | Concluded | 1 October 2021 | Mayo Clinic | HPE | NDA, applied twice daily | Topical application | 12 weeks | 12 weeks | 56 | 40–80 | Improvements in skin aging, pigment reduction, luminosity, and color evenness reported by the majority of participants; no serious adverse effects reported | Skin biopsies of the same subjects at baseline | Wyles et al., 2024 [41] |
Skin Rejuvenation | Concluded | NDA | DeNova Research | HPE | NDA, applied three times daily | Topical application | 4 weeks | 4 weeks | 18 | 32–77 | Brighter and more youthful-looking skin reported by participants treated with the serum compared to the control group, with less crusting post procedure | Control group treated with post-procedural standard of care | Dayan et al., 2023 [61] |
Tissue Regeneration and Antiaging | Concluded | NDA | University of Rome | ADSCs | NDA | Intradermal injection | Single treatment session | 6 months | 72 | 34–68 | Enhanced tissue regeneration, improved skin texture, and reduction in wrinkles; no adverse effects reported | NA | Svolacchia et al., 2024 [45] |
Facial Skin Aging | Concluded | NDA | Chung-Ang University College of Medicine | ASCs | 5 × 109 ASCE particles | Topical application combined with microneedling | Three treatment sessions at 3-week intervals | 12 weeks | 28 | 43–66 | Significant improvement in skin wrinkles, elasticity, and hydration on the exosome-treated side | Microneedling alone | Park and Kwon, et al., 2023 [62] |
Sensitive Skin Treatment | Concluded | NDA | The Third Affiliated Hospital of Sun Yat-sen University | USC-CMs | 1 mL exosome product, concentration unspecified, applied twice daily | Topical application | 4 weeks | 4 weeks | 22 | 24–55 | Improved skin hydration, reduced redness, and enhanced skin barrier function; no adverse effects reported | NA | Ye et al., 2022 [63] |
Acne Scar Treatment | Concluded | NDA | Oaro Dermatology Institute | ASCs | 9.78 × 1010 particles/mL on treatment day, 1.63 × 1010 particles/mL twice daily for two days post-FCL | Topical application post- FCL | Three treatment sessions at 3-week intervals | 12 weeks | 25 | 19–54 | Greater improvement in acne scars on exosome-treated side; milder erythema and shorter downtime | Control gel | Kwon et al., 2020 [43] |
Androgenetic Alopecia | Concluded | 1 January 2024 | Yeditepe University Hospital | Foreskin-derived MSCs | 1 × 1010 EVs per mL, total of 3 mL suspension | Intradermal scalp injection | Single treatment session | 12 weeks | 30 | 22–65 | Statistically significant increase in hair density; high patient satisfaction; no side effects observed | NA | Ersan et al., 2024 [35] |
Delayed Wound Healing | Concluded | 22 September 2020 | Exopharm Ltd. | pEVs | 100 μg LEAP-isolated pEVs in 340 μL isotonic buffer | Subcutaneous injection | Single treatment session | 30 days | 11 | NDA, mean age: 29 | Quick healing of all wounds, without time differences compared to placebo; injections deemed safe and well tolerated | Placebo | Johnson et al., 2023 [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaszewska-Szostek, A.; Krzyżanowska, M.; Polak, A.; Puzianowska-Kuźnicka, M. Effectiveness of Extracellular Vesicle Application in Skin Aging Treatment and Regeneration: Do We Have Enough Evidence from Clinical Trials? Int. J. Mol. Sci. 2025, 26, 2354. https://doi.org/10.3390/ijms26052354
Domaszewska-Szostek A, Krzyżanowska M, Polak A, Puzianowska-Kuźnicka M. Effectiveness of Extracellular Vesicle Application in Skin Aging Treatment and Regeneration: Do We Have Enough Evidence from Clinical Trials? International Journal of Molecular Sciences. 2025; 26(5):2354. https://doi.org/10.3390/ijms26052354
Chicago/Turabian StyleDomaszewska-Szostek, Anna, Marta Krzyżanowska, Agnieszka Polak, and Monika Puzianowska-Kuźnicka. 2025. "Effectiveness of Extracellular Vesicle Application in Skin Aging Treatment and Regeneration: Do We Have Enough Evidence from Clinical Trials?" International Journal of Molecular Sciences 26, no. 5: 2354. https://doi.org/10.3390/ijms26052354
APA StyleDomaszewska-Szostek, A., Krzyżanowska, M., Polak, A., & Puzianowska-Kuźnicka, M. (2025). Effectiveness of Extracellular Vesicle Application in Skin Aging Treatment and Regeneration: Do We Have Enough Evidence from Clinical Trials? International Journal of Molecular Sciences, 26(5), 2354. https://doi.org/10.3390/ijms26052354