Managing a Burning Face: Clinical Manifestations and Therapeutic Approaches for Neurogenic Rosacea
Abstract
:1. Introduction
2. Methods
3. Neurovascular Alterations, Neurogenic Inflammation, and Autonomic Dysregulation in NR
4. Clinical Manifestations of NR and Its Distinguishing Features with Respect to Other Rosacea Subtypes
5. Management Strategies of NR
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CGRP | Calcitonin gene-related peptide |
CRPS | Complex regional pain syndrome |
CS | Case series |
CRH | Corticotropin-releasing hormone |
DGA | Dermatologist’s global assessment |
ESS | Erythema severity scale |
ETR | Erythematotelangiectatic rosacea |
FSS | Flushing severity scale |
GABA | Gamma-aminobutyric acid receptor |
NF-κB | Nuclear factor kappa B |
NR | Neurogenic rosacea |
OCD | Obsessive–compulsive disorder |
PACAP | Pituitary adenylate cyclase-activating peptide |
PAR-2 | Protease-activated receptor 2 |
PGE2 | Prostaglandin E2 |
POMC | Proopiomelanocortin |
PP | Papulopustular rosacea |
PTSD | Post-traumatic stress disorder |
RCT | Randomized controlled trials |
ROSCO | World Rosacea Consensus 2019 |
RS | Retrospective series |
TLR | Toll-like receptors |
TRP | Transient receptor potential |
TRPA | Transient receptor potential ankyrin subfamily |
TRPV | Transient receptor potential vanilloid subfamily |
VAS | Visual analog scale |
References
- Thiboutot, D.; Anderson, R.; Cook-Bolden, F.; Draelos, Z.; Gallo, R.L.; Granstein, R.D.; Kang, S.; Macsai, M.; Gold, L.S.; Tan, J. Standard management options for rosacea: The 2019 update by the National Rosacea Society Expert Committee. J. Am. Acad. Dermatol. 2020, 82, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Gether, L.; Overgaard, L.K.; Egeberg, A.; Thyssen, J.P. Incidence and prevalence of rosacea: A systematic review and meta-analysis. Br. J. Dermatol. 2018, 179, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Wilkin, J.; Dahl, M.; Detmar, M.; Drake, L.; Liang, M.H.; Odom, R.; Powell, F. Standard grading system for rosacea: Report of the National Rosacea Society Expert Committee on the classification and staging of rosacea. J. Am. Acad. Dermatol. 2004, 50, 907–912. [Google Scholar] [CrossRef]
- Del Rosso, J.Q. Advances in understanding and managing rosacea: Part 1: Connecting the dots between pathophysiological mechanisms and common clinical features of rosacea with emphasis on vascular changes and facial erythema. J. Clin. Aesthet. Dermatol. 2012, 5, 16–25. [Google Scholar] [PubMed]
- Kim, H.O.; Kang, S.Y.; Kim, K.E.; Cho, S.Y.; Kim, K.H.; Kim, I. Neurogenic rosacea in Korea. J. Dermatol. 2020, 48, 49–55. [Google Scholar] [CrossRef]
- Schaller, M.; Almeida, L.M.C.; Bewley, A.; Cribier, B.; Del Rosso, J.; Dlova, N.C.; Gallo, R.L.; Granstein, R.D.; Kautz, G.; Mannis, M.J.; et al. Recommendations for rosacea diagnosis, classification and management: Update from the global ROSacea COnsensus 2019 panel. Br. J. Dermatol. 2020, 182, 1269–1276. [Google Scholar] [CrossRef]
- Tan, J.; Almeida, L.; Bewley, A.; Cribier, B.; Dlova, N.; Gallo, R.; Kautz, G.; Mannis, M.; Oon, H.; Rajagopalan, M.; et al. Updating the diagnosis, classification and assessment of rosacea: Recommendations from the global ROS acea CO nsensus (ROSCO) panel. Br. J. Dermatol. 2017, 176, 431–438. [Google Scholar] [CrossRef]
- Gallo, R.L.; Granstein, R.D.; Kang, S.; Mannis, M.; Steinhoff, M.; Tan, J.; Thiboutot, D. Standard classification and pathophysiology of rosacea: The 2017 update by the National Rosacea Society Expert Committee. J. Am. Acad. Dermatol. 2018, 78, 148–155. [Google Scholar] [CrossRef]
- Del Rosso, J.Q.; Thiboutot, D.; Gallo, R.; Webster, G.; Tanghetti, E.; Eichenfield, L.; Stein-Gold, L.; Berson, D.; Zaenglein, A. Consensus recommendations from the American Acne & Rosacea Society on the management of rosacea, part 1: A status report on the disease state, general measures, and adjunctive skin care. Cutis 2013, 92, 234–240. [Google Scholar]
- van Zuuren, E.J.; Arents, B.W.M.; van der Linden, M.M.D.; Vermeulen, S.; Fedorowicz, Z.; Tan, J. Rosacea: New Concepts in Classification and Treatment. Am. J. Clin. Dermatol. 2021, 22, 457–465. [Google Scholar] [CrossRef]
- Rainer, B.M.; Kang, S.; Chien, A.L. Rosacea: Epidemiology, pathogenesis, and treatment. Dermato-Endocrinology 2017, 9, e1361574. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S. Microbiota in Rosacea. Am. J. Clin. Dermatol. 2020, 21, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Medgyesi, B.; Dajnoki, Z.; Béke, G.; Gáspár, K.; Szabó, I.L.; Janka, E.A.; Póliska, S.; Hendrik, Z.; Méhes, G.; Törőcsik, D.; et al. Rosacea Is Characterized by a Profoundly Diminished Skin Barrier. J. Investig. Dermatol. 2020, 140, 1938–1950.e5. [Google Scholar] [CrossRef] [PubMed]
- Morgado-Carrasco, D.; Granger, C.; Trullas, C.; Piquero-Casals, J. Impact of ultraviolet radiation and exposome on rosacea: Key role of photoprotection in optimizing treatment. J. Cosmet. Dermatol. 2021, 20, 3415–3421. [Google Scholar] [CrossRef]
- He, A.; Grandhi, R.; Kwatra, S.G. Rosacea and Rate of Temperature Change: Examining Real-Time Data from 2004 to 2016. Ann. Dermatol. 2018, 30, 739–741. [Google Scholar] [CrossRef]
- Gupta, M.A.; Gupta, A.K. Association of neurogenic rosacea and chronic post-traumatic stress disorder (PTSD): Possible role of autonomic nervous system dysregulation and high sympathetic tone in PTSD. J. Am. Acad. Dermatol. 2016, 74, AB44. [Google Scholar]
- Wu, W.-H.; Geng, H.; Cho, E.; Eliassen, A.H.; Drucker, A.M.; Li, T.Y.; Qureshi, A.A.; Li, W.-Q. Reproductive and hormonal factors and risk of incident rosacea among US White women. J. Am. Acad. Dermatol. 2021, 87, 138–140. [Google Scholar] [CrossRef]
- Yamasaki, K.; Gallo, R.L. Rosacea as a Disease of Cathelicidins and Skin Innate Immunity. J. Investig. Dermatol. Symp. Proc. 2011, 15, 12–15. [Google Scholar] [CrossRef]
- Schwab, V.D.; Sulk, M.; Seeliger, S.; Nowak, P.; Aubert, J.; Mess, C.; Rivier, M.; Carlavan, I.; Rossio, P.; Metze, D.; et al. Neurovascular and Neuroimmune Aspects in the Pathophysiology of Rosacea. J. Investig. Dermatol. Symp. Proc. 2011, 15, 53–62. [Google Scholar] [CrossRef]
- Sulk, M.; Seeliger, S.; Aubert, J.; Schwab, V.D.; Cevikbas, F.; Rivier, M.; Nowak, P.; Voegel, J.J.; Buddenkotte, J.; Steinhoff, M. Distribution and Expression of Non-Neuronal Transient Receptor Potential (TRPV) Ion Channels in Rosacea. J. Investig. Dermatol. 2012, 132, 1253–1262. [Google Scholar] [CrossRef]
- Drummond, P.D.; Su, D. Endothelial and axon reflex vasodilatation to acetylcholine in rosacea-affected skin. Arch. Dermatol. Res. 2011, 304, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Scharschmidt, T.C.; Yost, J.M.; Truong, S.V.; Steinhoff, M.; Wang, K.C.; Berger, T.G. Neurogenic Rosacea: A Distinct Clinical Subtype Requiring a Modified Approach to Treatment. Arch. Dermatol. 2010, 147, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Aubdool, A.A.; Brain, S.D. Neurovascular Aspects of Skin Neurogenic Inflammation. J. Investig. Dermatol. Symp. Proc. 2012, 15, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Botchkarev, V.A.; Yaar, M.; Peters, E.M.J.; Raychaudhuri, S.P.; Botchkareva, N.V.; Marconi, A.; Raychaudhuri, S.K.; Paus, R.; Pincelli, C. Neurotrophins in Skin Biology and Pathology. J. Investig. Dermatol. 2006, 126, 1719–1727. [Google Scholar] [CrossRef]
- Roosterman, D.; Goerge, T.; Schneider, S.W.; Bunnett, N.W.; Steinhoff, M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol. Rev. 2006, 86, 1309–1379. [Google Scholar] [CrossRef]
- Slominski, A.T.; Zmijewski, M.A.; Skobowiat, C.; Zbytek, B.; Slominski, R.M.; Steketee, J.D. Sensing the Environment: Regulation of Local and Global Homeostasis by the Skin’s Neuroendocrine System. Adv. Anat. Embryol. Cell Biol. 2012, 212, 1–115. [Google Scholar]
- Slominski, A.T.; Slominski, R.M.; Raman, C.; Chen, J.Y.; Athar, M.; Elmets, C. Neuroendocrine Signaling in the Skin with a Special Focus on the Epidermal Neuropeptides. Am. J. Physiol. Cell Physiol. 2022, 323, C1757–C1776. [Google Scholar] [CrossRef]
- Luger, T.A. Neuromediators—A Crucial Component of the Skin Immune System. J. Dermatol. Sci. 2002, 30, 87–93. [Google Scholar] [CrossRef]
- Choi, J.E.; di Nardo, A. Skin Neurogenic Inflammation. Semin. Immunopathol. 2018, 40, 249–259. [Google Scholar] [CrossRef]
- Elieh Ali Komi, D.; WoÃàhrl, S.; Bielory, L. Mast Cell Biology at Molecular Level: A Comprehensive Review. Clinic. Rev. Allergy Immunol. 2020, 58, 342–365. [Google Scholar] [CrossRef]
- Wozniak, E.; Owczarczyk-Saczonek, A.; Lange, M.; Czarny, J.; Wygonowska, E.; Placek, W.; Nedoszytko, B. The Role of Mast Cells in the Induction and Maintenance of Inflammation in Selected Skin Diseases. Int. J. Mol. Sci. 2023, 24, 7021. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.S.; Maurer, M.; Metcalfe, D.D.; Pejler, G.; Sagi-Eisenberg, R.; Nilsson, G. The Ingenious Mast Cell: Contemporary Insights into Mast Cell Behavior and Function. Allergy 2022, 77, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Vidal Yucha, S.E.; Tamamoto, K.A.; Kaplan, D.L. The Importance of the Neuro-immuno-cutaneous System on Human Skin Equivalent Design. Cell Prolif. 2019, 52, e12677. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Luo, L.; Zheng, J. The Trinity of Skin: Skin Homeostasis as a Neuro–Endocrine–Immune Organ. Life 2022, 12, 725. [Google Scholar] [CrossRef]
- Paus, R.; Theoharides, T.C.; Arck, P.C. Neuroimmunoendocrine Circuitry of the ‘Brain-Skin Connection’. Trends Immunol. 2006, 27, 32–39. [Google Scholar] [CrossRef]
- Ruppenstein, A.; Limberg, M.M.; Loser, K.; Kremer, A.E.; Homey, B.; Raap, U. Involvement of Neuro-Immune Interactions in Pruritus with Special Focus on Receptor Expressions. Front. Med. 2021, 8, 627985. [Google Scholar] [CrossRef]
- Marek-Jozefowicz, L.; Nedoszytko, B.; Grochocka, M.; Żmijewski, M.A.; Czajkowski, R.; Cubała, W.J.; Slominski, A.T. Molecular Mechanisms of Neurogenic Inflammation of the Skin. Int. J. Mol. Sci. 2023, 24, 5001. [Google Scholar] [CrossRef]
- Scholzen, T.; Armstrong, C.A.; Bunnett, N.W.; Luger, T.A.; Olerud, J.E.; Ansel, J.C. Neuropeptides in the skin: Interactions between the neuroendocrine and the skin immune systems. Exp. Dermatol. 1998, 7, 81–96. [Google Scholar] [CrossRef]
- Steinhoff, M.; Buddenkotte, J.; Aubert, J.; Sulk, M.; Novak, P.; Schwab, V.D.; Mess, C.; Cevikbas, F.; Rivier, M.; Carlavan, I.; et al. Clinical, Cellular, and Molecular Aspects in the Pathophysiology of Rosacea. J. Investig. Dermatol. Symp. Proc. 2011, 15, 2–11. [Google Scholar] [CrossRef]
- Everaerts, W.; Gees, M.; Alpizar, Y.A.; Farre, R.; Leten, C.; Apetrei, A.; Dewachter, I.; van Leuven, F.; Vennekens, R.; De Ridder, D.; et al. The Capsaicin Receptor TRPV1 Is a Crucial Mediator of the Noxious Effects of Mustard Oil. Curr. Biol. 2011, 21, 316–321. [Google Scholar] [CrossRef]
- Steinhoff, M.S.; von Mentzer, B.; Geppetti, P.; Pothoulakis, C.; Bunnett, N.W. Tachykinins and Their Receptors: Contributions to Physiological Control and the Mechanisms of Disease. Physiol. Rev. 2014, 94, 265–301. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Granstein, R.D. Roles of Calcitonin Gene-Related Peptide in the Skin, and Other Physiological and Pathophysiological Functions. Brain Behav. Immun. Health 2021, 18, 100361. [Google Scholar] [CrossRef] [PubMed]
- Li, W.W.; Guo, T.Z.; Liang, D.; Sun, Y.; Kingery, W.S.; Clark, J.D. Substance P Signaling Controls Mast Cell Activation, Degranulation, and Nociceptive Sensitization in a Rat Fracture Model of Complex Regional Pain Syndrome. Anesthesiology 2012, 116, 882–895. [Google Scholar] [CrossRef]
- Story, G.M.; Peier, A.M.; Reeve, A.J.; Eid, S.R.; Mosbacher, J.; Hricik, T.R.; Earley, T.J.; Hergarden, A.C.; Andersson, D.A.; Hwang, S.W.; et al. ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures. Cell 2003, 112, 819–829. [Google Scholar] [CrossRef]
- Moore, C.; Cevikbas, F.; Pasolli, H.A.; Chen, Y.; Kong, W.; Kempkes, C.; Parekh, P.; Lee, S.H.; Kontchou, N.-A.; Yeh, I.; et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc. Natl. Acad. Sci. USA 2013, 110, E3225–E3234. [Google Scholar] [CrossRef]
- Mihara, S.; Shibamoto, T. The role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies. Allergy Asthma Clin. Immunol. 2015, 11, 11. [Google Scholar] [CrossRef]
- Steinhoff, M.; Ständer, S.; Seeliger, S.; Ansel, J.C.; Schmelz, M.; Luger, T. Modern aspects of cutaneous neurogenic in-flammation. Arch. Dermatol. 2003, 139, 1479–1488. [Google Scholar] [CrossRef]
- Li, M.; Tao, M.; Zhang, Y.; Pan, R.; Gu, D.; Xu, Y. Neurogenic rosacea could be a small fiber neuropathy. Front. Pain Res. 2023, 4, 1122134. [Google Scholar] [CrossRef]
- Madva, E.N.; Granstein, R.D. Nerve-derived transmitters including peptides influence cutaneous immunology. Brain Behav. Immun. 2013, 34, 1–10. [Google Scholar] [CrossRef]
- Baylie, R.L.; Brayden, J.E. TRPV channels and vascular function. Acta Physiol. 2010, 203, 99–116. [Google Scholar] [CrossRef]
- Yang, E.J.; Sekhon, S.; Beck, K.M.; Bhutani, T.; Koo, J. Neuromodulation in Inflammatory Skin Disease. Dermatol. Ther. 2018, 8, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Del Rosso, J.Q. Management of facial erythema of rosacea: What is the role of topical α-adrenergic receptor agonist therapy? J. Am. Acad. Dermatol. 2013, 69 (Suppl. S1), S44–S56. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, M.; Schmelz, M.; Schauber, J. Facial erythema of rosacea—Aetiology, different pathophysiologies, and treatment options. Acta Derm. Venereol. 2016, 96, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Eskeland, S.; Halvorsen, J.; Tanum, L. Antidepressants have Anti-inflammatory Effects that may be Relevant to Dermatology: A Systematic Review. Acta Derm. Venereol. 2017, 97, 897–905. [Google Scholar] [CrossRef]
- Parkins, G.J.; Maan, A.; Dawn, G. Neurogenic rosacea: An uncommon and poorly recognized entity? Clin. Exp. Dermatol. 2015, 40, 930–931. [Google Scholar] [CrossRef]
- Hurtado, D.I.C.; Pérez, A.P.C.; López, R.F.R. Neurogenic rosacea successfully treated with neuromodulators and intense pulsed light. An. Bras. Dermatol. 2023, 99, 296–297. [Google Scholar] [CrossRef]
- Maden, S. Rosacea: An Overview of Its Etiological Factors, Pathogenesis, Classification and Therapy Options. Dermato 2023, 3, 241–262. [Google Scholar] [CrossRef]
- Tu, K.-Y.; Jung, C.-J.; Shih, Y.-H.; Chang, A.L.S. Therapeutic strategies focusing on immune dysregulation and neuroinflammation in rosacea. Front. Immunol. 2024, 15, 1403798. [Google Scholar] [CrossRef]
- Affleck, A.; Stewart, M. Burning red face syndrome: A heterogeneous group of facial erythrodysaesthesias. Clin. Exp. Dermatol. 2015, 41, 430–431. [Google Scholar] [CrossRef]
- van der Linden, M.M.; van Rappard, D.C.; Daams, J.G.; Sprangers, M.A.; Spuls, P.I.; de Korte, J. Health-related quality of life in patients with cutaneous rosacea: A systematic review. Acta. Derm. Venereol. 2015, 95, 395–400. [Google Scholar] [CrossRef]
- van Zuuren, E.J.; Fedorowicz, Z.; Tan, J.; van der Linden, M.M.; Arents, B.W.; Carter, B.; Charland, L. Interventions for rosacea based on the phenotype approach: An updated systematic review including GRADE assessments. Br. J. Dermatol. 2019, 181, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Husein-ElAhmed, H.; Steinhoff, M. Efficacy of topical ivermectin and impact on quality of life in patients with pap-ulopustular rosacea: A systematic review and meta-analysis. Dermatol. Ther. 2020, 33, e13203. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tsai, T. The role of β-blockers in dermatological treatment: A review. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Prabha, N.; Chhabra, N.; Arora, R. Beta-blockers in dermatology. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 399–407. [Google Scholar] [CrossRef]
- Logger, J.G.; Olydam, J.I.; Driessen, R.J. Use of beta-blockers for rosacea-associated facial erythema and flushing: A systematic review and update on proposed mode of action. J. Am. Acad. Dermatol. 2020, 83, 1088–1097. [Google Scholar] [CrossRef]
- Pietschke, K.; Schaller, M. Long-term management of distinct facial flushing and persistent erythema of rosacea by treat-ment with carvedilol. J. Dermatolog. Treat. 2018, 29, 310–313. [Google Scholar] [CrossRef]
- Arumanayagam, M.; Chan, S.; Tong, S.; Sanderson, J.E. Antioxidant Properties of Carvedilol and Metoprolol in Heart Failure: A Double-Blind Randomized Controlled Trial. J. Cardiovasc. Pharmacol. 2001, 37, 48–54. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costachescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Lee, J.Y.-Y. Pronounced facial flushing and persistent erythema of rosacea effectively treated by carvedilol, a nonselective β-adrenergic blocker. J. Am. Acad. Dermatol. 2012, 67, 491–493. [Google Scholar] [CrossRef]
- Zuuren, E.; Linden, M.; Arents, B. Rosacea treatment guideline for the Netherlands. Br. J. Dermatol. 2020, 182, 1504–1506. [Google Scholar] [CrossRef]
- Metzler-Wilson, K.; Toma, K.; Sammons, D.L.; Mann, S.; Jurovcik, A.J.; Demidova, O.; Wilson, T.E. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients. J. Neurophysiol. 2015, 114, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Callejas, M.; Grimalt, R.; Mejía, S.; Peri, J. Results of Video-Assisted Thoracoscopic Sympathectomy for Facial Blushing. Actas Dermo-Sifiliogr. 2012, 103, 525–531. [Google Scholar] [CrossRef]
- Huet, F.; Dion, A.; Batardière, A.; Nedelec, A.; Le Caër, F.; Bourgeois, P.; Brenaut, E.; Misery, L. Sensitive skin can be small fibre neuropathy: Results from a case-control quantitative sensory testing study. Br. J. Dermatol. 2018, 179, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Acar, E.M.; Erdoğan, H.K.; Şaş, S.; Acer, E. Evaluation of fibromyalgia syndrome in patients with rosacea. Arch. Rheumatol. 2021, 36, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Heisig, M.; Reich, A. Psychosocial aspects of rosacea with a focus on anxiety and depression. Clin. Cosmet. Investig. Dermatol. 2018, 11, 103–107. [Google Scholar] [CrossRef]
- Chung, B.Y.; Kim, H.B.; Jung, M.J.; Kang, S.Y.; Kwak, I.S.; Park, C.W.; Kim, H.O. Post-Burn Pruritus. Int. J. Mol. Sci. 2020, 21, 3880. [Google Scholar] [CrossRef]
- Ivanic, M.G.; Oulee, A.; Norden, A.; Javadi, S.S.; Gold, M.H.; Wu, J.J. Neurogenic Rosacea Treatment: A Literature Review. J. Drugs Dermatol. 2023, 22, 566–575. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Shenefelt, P. Psychological interventions in the management of common skin conditions. Psychol. Res. Behav. Manag. 2010, 3, 51–63. [Google Scholar] [CrossRef]
- Taylor, C.P. Mechanisms of analgesia by gabapentin and pregabalin--calcium channel alpha2-delta [Cavalpha2-delta] ligands. Pain 2009, 142, 13–16. [Google Scholar] [CrossRef]
- Bang, S.; Yoo, S.; Hwang, S.W. Gabapentin Attenuates the Activation of Transient Receptor Potential A1 by Cinnamaldehyde. Exp. Neurobiol. 2009, 18, 1–7. [Google Scholar] [CrossRef]
- Cortright, D.N.; Szallasi, A. TRP Channels and Pain. Curr. Pharm. Des. 2009, 15, 1736–1749. [Google Scholar] [CrossRef] [PubMed]
- Demirdaş, A.; Nazıroğlu, M.; Övey, İ.S. Duloxetine reduces oxidative stress, apoptosis, and Ca2+ entry through modulation of TRPM2 and TRPV1 channels in the hippocampus and dorsal root ganglion of rats. Mol. Neurobiol. 2017, 54, 4683–4695. [Google Scholar] [CrossRef]
- Mackey, S.; Feinberg, S. Pharmacologic therapies for complex regional pain syndrome. Curr. Pain Headache Rep. 2007, 11, 38–43. [Google Scholar] [CrossRef]
- Arnold, L.M. Duloxetine and Other Antidepressants in the Treatment of Patients with Fibromyalgia. Pain Med. 2007, 8 (Suppl. S2), S63–S74. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, Y.; Tang, Y.; Zhao, Z.; Shi, W.; Jian, D.; Liu, F.; Gao, Q.; Wang, P.; Yang, J.; et al. Paroxetine is an effective treatment for refractory erythema of rosacea: Primary results from the Prospective Rosacea Refractory Erythema Randomized Clinical Trial. J. Am. Acad. Dermatol. 2023, 88, 1300–1307. [Google Scholar] [CrossRef]
- Sulzberger, M.; Worthmann, A.; Holtzmann, U.; Buck, B.; Jung, K.; Schoelermann, A.; Rippke, F.; Stäb, F.; Wenck, H.; Neufang, G.; et al. Effective treatment for sensitive skin: 4-t-butylcyclohexanol and licochalcone A. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 9–17. [Google Scholar] [CrossRef]
- Schoelermann, A.; Jung, K.; Buck, B.; Grönniger, E.; Conzelmann, S. Comparison of skin calming effects of cosmetic products containing 4-t-butylcyclohexanol or acetyl dipeptide-1 cetyl ester on capsaicin-induced facial stinging in volunteers with sensitive skin. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 18–20. [Google Scholar] [CrossRef]
- Schoelermann, A.; Weber, T.; Arrowitz, C.; Rizer, R.; Qian, K.; Babcock, M. Skin compatibility and efficacy of a cosmetic skin care regimen with licochalcone A and 4-t-butylcyclohexanol in patients with rosacea subtype I. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 21–27. [Google Scholar] [CrossRef]
- A Alsaati, A.; Alsaadoun, D.; I Kinkar, L.; Alkhamis, R.S.; Ahmed, W.A.; Almathami, A.H. The Efficacy and Safety of Botulinum Toxin A for the Treatment of Rosacea: A Systematic Review. Cureus 2023, 15, e51304. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, K.; Wang, Y.; Fang, R.; Sun, Q. Use of botulinum toxin in treating rosacea: A systematic review. Clin. Cosmet. Investig. Dermatol. 2021, 14, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Dayan, S.H.; Pritzker, R.N.; Arkins, J.P. A new treatment regimen for rosacea: OnabotulinumtoxinA. J. Drugs Dermatol. 2012, 11, e76–e79. [Google Scholar] [PubMed]
- Choi, J.E.; Werbel, T.; Wang, Z.; Wu, C.C.; Yaksh, T.L.; Di Nardo, A. Botulinum toxin blocks mast cells and prevents rosacea like inflammation. J. Dermatol. Sci. 2018, 93, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Muto, Y.; Wang, Z.; Vanderberghe, M.; Two, A.; Gallo, R.L.; Di Nardo, A. Mast Cells Are Key Mediators of Cathelicidin-Initiated Skin Inflammation in Rosacea. J. Investig. Dermatol. 2014, 134, 2728–2736. [Google Scholar] [CrossRef]
- Reddy, S.; Patt, R.B. The benzodiazepines as adjuvant analgesics. J. Pain Symptom Manag. 1994, 9, 510–514. [Google Scholar] [CrossRef]
- Stratton, J.R.; Halter, J.B. Effect of a benzodiazepine (Alprazolam) on plasma epinephrine and norepinephrine levels during exercise stress. Am. J. Cardiol. 1985, 56, 136–139. [Google Scholar] [CrossRef]
Neurogenic Rosacea (NR) | Erythematotelangiectatic Rosacea (ETR) | |
---|---|---|
Primary Symptoms | Burning, stinging, dysesthesias, eye symptoms | Facial erythema, telangiectasia |
Distribution | Lateral aspects of the face, mostly involving the cheeks | Central face, including the nose and cheeks |
Triggers | Heat, stress, exercise, menstruation, cold (reduces symptoms) | Heat, sun exposure, spicy foods, alcohol |
Response to Standard Treatments | Tends to be refractory | Tends to show improvement |
Neurological Symptoms | Common (burning, stinging, dysesthesias) | Less common |
Neuropsychiatric Disorders | Frequently co-existing (CRPS, OCD, PTSD, depression) | Less commonly associated |
Treatment (general) | Beta-blockers, neuromodulators (pregabaline, gabapentin), antidepressants (duloxetine, paroxetine) | Alpha-2 adrenergic agonists, beta blockers, energy-based devices. |
Intervention | Dosage | Evaluation | Response Time | Time of Follow-Up | Adverse Effects | Type of Evidence | Outcomes |
---|---|---|---|---|---|---|---|
Gabapentin [5,48] | Initiated at 300 mg/day, titrated for pain control | VAS, DGA | 2–4 weeks | 8–12 weeks | Sedation, dizziness, fatigue | CS | Alleviates hyperalgesia and burning; anxiolytic effect. |
Pregabalin [5,48,55] | 300 mg AM + 150 mg PM | VAS, DGA | 2–4 weeks | 8–12 weeks | Sedation, dizziness, weight gain | CS | Alleviates hyperalgesia and burning; anxiolytic effect. |
Duloxetine [84,85] | 30–60 mg/BID | VAS, DGA, depression rating scales | 4–6 weeks | 8–12 weeks | GI disturbance, sedation, sexual dysfunction | RCT | Reduces neuropathic pain and erythema. |
Paroxetine [86] | 25 mg/day | DGA | 2–4 weeks | 12 weeks | GI disturbance, sexual dysfunction, withdrawal | RCT | Improves persistent erythema, flushing, burning, and depressive symptoms |
Beta-Blockers (Carvedilol, Propranolol) [65,66] | Carvedilol up to 12.5 mg BID; propranolol regimens vary | FSS, DGA | 2–6 weeks | 8–12 weeks | Bradycardia, hypotension, dizziness | CS, RS | Decrease facial erythema, flushing, and persistent erythema |
Topical TRPV1 Inhibitors [87,88] | Trial formulations under study | ESS stinging/ burning rating scales | Immediate–2 weeks | 4–8 weeks | Mild irritation, transient erythema | Pilot studies | Rapid reduction in stinging and burning; moderate erythema improvement |
Botulinum Toxin Injections [90,91] | Varies by protocol (units/site) | FSS, DGA | 1–2 weeks | 3–6 months | Bruising, pain at injection site, possible unintended muscle relaxation | CS, pilot studies | Reduction in facial flushing and erythema; further standardized protocols are needed for broader validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aedo, G.; Chahuán, M.; Gatica, E.; Herrera, I.; Parada, L.F.; Seguel, A.; Murray, N.P.; Aedo, S.; Aragón-Caqueo, D. Managing a Burning Face: Clinical Manifestations and Therapeutic Approaches for Neurogenic Rosacea. Int. J. Mol. Sci. 2025, 26, 2366. https://doi.org/10.3390/ijms26052366
Aedo G, Chahuán M, Gatica E, Herrera I, Parada LF, Seguel A, Murray NP, Aedo S, Aragón-Caqueo D. Managing a Burning Face: Clinical Manifestations and Therapeutic Approaches for Neurogenic Rosacea. International Journal of Molecular Sciences. 2025; 26(5):2366. https://doi.org/10.3390/ijms26052366
Chicago/Turabian StyleAedo, Gabriel, Marco Chahuán, Elsa Gatica, Isabel Herrera, Luis Felipe Parada, Alvaro Seguel, Nigel P. Murray, Sócrates Aedo, and Diego Aragón-Caqueo. 2025. "Managing a Burning Face: Clinical Manifestations and Therapeutic Approaches for Neurogenic Rosacea" International Journal of Molecular Sciences 26, no. 5: 2366. https://doi.org/10.3390/ijms26052366
APA StyleAedo, G., Chahuán, M., Gatica, E., Herrera, I., Parada, L. F., Seguel, A., Murray, N. P., Aedo, S., & Aragón-Caqueo, D. (2025). Managing a Burning Face: Clinical Manifestations and Therapeutic Approaches for Neurogenic Rosacea. International Journal of Molecular Sciences, 26(5), 2366. https://doi.org/10.3390/ijms26052366