The Role of Energy Homeostasis-Associated Gene Expression and Serum Adropin Levels in Patients with Familial Mediterranean Fever
Abstract
:1. Introduction
2. Results
2.1. Clinical Findings
2.2. ENHO Expression Profiles
2.3. Serum Adropin Levels
2.4. Evaluation of Clinical, Biochemical, and Gene Expression Findings of Patients with FMF
2.5. Correlations Between FMF Characteristics and Laboratory Findings of Patients
3. Discussion
4. Material and Methods
4.1. Study Group
4.2. Total RNA Isolation
4.3. Serum Isolation
4.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
4.5. Enzyme-Linked Immunosorbent Assay (ELISA)
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tufan, A.; Lachmann, H.J. Familial Mediterranean fever, from pathogenesis to treatment: A contemporary review. Turk. J. Med. Sci. 2020, 50, 1591–1610. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M. Familial Mediterranean fever, review of the literature. Clin. Rheumatol. 2017, 36, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Shohat, M.; Halpern, G.J. Familial Mediterranean fever—A review. Genet. Med. 2011, 13, 487–498. [Google Scholar] [CrossRef]
- Yolbas, S.; Kara, M.; Kalayci, M.; Yildirim, A.; Gundogdu, B.; Aydin, S.; Koca, S.S. ENHO gene expression and serum adropin level in rheumatoid arthritis and systemic lupus erythematosus. Adv. Clin. Exp. Med. 2018, 27, 1637–1641. [Google Scholar] [CrossRef]
- Yolbas, S.; Kara, M.; Yilmaz, M.; Aydin, S.; Koca, S.S. Serum adropin level and ENHO gene expression in systemic sclerosis. Clin. Rheumatol. 2016, 35, 1535–1540. [Google Scholar] [CrossRef]
- Manna, R.; Rigante, D. Familial Mediterranean Fever: Assessing the Overall Clinical Impact and Formulating Treatment Plans. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019027. [Google Scholar] [CrossRef]
- El Hasbani, G.; Jawad, A.; Uthman, I. Update on the management of colchicine resistant Familial Mediterranean Fever (FMF). Orphanet J. Rare Dis. 2019, 14, 224. [Google Scholar] [CrossRef]
- Ozalper, V.; Kara, M.; Tanoglu, A.; Cetindagli, I.; Ozturker, C.; Hancerli, Y.; Hira, S.; Kara, K.; Beyazit, Y.; Yazgan, Y. Evaluation of endothelial dysfunction in patients with familial Mediterranean fever: The relationship between the levels of asymmetric dimethylarginine and endocan with carotid intima-media thickness and endothelium-dependent vasodilation. Clin. Rheumatol. 2017, 36, 2071–2077. [Google Scholar] [CrossRef]
- Yel, S.; Dursun, I.; Cetin, F.; Bastug, F.; Tulpar, S.; Dusunsel, R.; Gunduz, Z.; Poyrazoglu, H.; Yilmaz, K. Increased circulating endothelial microparticles in children with FMF. Biomarkers 2018, 23, 558–562. [Google Scholar] [CrossRef]
- Medina, G.; Vera-Lastra, O.; Peralta-Amaro, A.L.; Jimenez-Arellano, M.P.; Saavedra, M.A.; Cruz-Dominguez, M.P.; Jara, L.J. Metabolic syndrome, autoimmunity and rheumatic diseases. Pharmacol. Res. 2018, 133, 277–288. [Google Scholar] [CrossRef]
- Procopio, V.; Manti, S.; Bianco, G.; Conti, G.; Romeo, A.; Maimone, F.; Arrigo, T.; Cutrupi, M.C.; Salpietro, C.; Cuppari, C. Genotype-phenotype correlation in FMF patients: A “non classic” recessive autosomal or “atypical” dominant autosomal inheritance? Gene 2018, 641, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, Q.; Lin, X.; Chen, M.; Liu, Q. A Review of Adropin as the Medium of Dialogue between Energy Regulation and Immune Regulation. Oxid. Med. Cell. Longev. 2020, 2020, 3947806. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.I.; D’Souza, C.; Singh, J.; Adeghate, E. Adropin’s Role in Energy Homeostasis and Metabolic Disorders. Int. J. Mol. Sci. 2022, 23, 8318. [Google Scholar] [CrossRef] [PubMed]
- Simac, P.; Perkovic, D.; Bozic, I.; Bilopavlovic, N.; Martinovic, D.; Bozic, J. Serum Adropin Levels in Patients with Rheumatoid Arthritis. Life 2022, 12, 169. [Google Scholar] [CrossRef]
- Wang, J.; Ding, N.; Chen, C.; Gu, S.; Liu, J.; Wang, Y.; Lin, L.; Zheng, Y.; Li, Y. Adropin: A key player in immune cell homeostasis and regulation of inflammation in several diseases. Front. Immunol. 2025, 16, 1482308. [Google Scholar] [CrossRef]
- Thomas, D.G.; Doran, A.C.; Fotakis, P.; Westerterp, M.; Antonson, P.; Jiang, H.; Jiang, X.C.; Gustafsson, J.A.; Tabas, I.; Tall, A.R. LXR Suppresses Inflammatory Gene Expression and Neutrophil Migration through cis-Repression and Cholesterol Efflux. Cell Rep. 2018, 25, 3774–3785.e4. [Google Scholar] [CrossRef]
- Alpturker, K.A. Characteristics of Patients with Familial Mediterranean Fever in Erzincan Province: A Cross-Sectional Study From A Single Center. Rheumatol. Q. 2023, 1, 57–62. [Google Scholar] [CrossRef]
- Cakar, M.; Akhan, M.; Dogan, T.; Taskin, G.; Ozturk, K.; Cinar, M.; Arslan, E.; Yilmaz, S. Investigation of the arterial stiffness and associated factors in patients with familial Mediterranean fever. Anatol. J. Cardiol. 2017, 17, 132–138. [Google Scholar] [CrossRef]
- Ben-Zvi, I.; Livneh, A. Chronic inflammation in FMF: Markers, risk factors, outcomes and therapy. Nat. Rev. Rheumatol. 2011, 7, 105–112. [Google Scholar] [CrossRef]
- Ozen, S.; Kone-Paut, I.; Gul, A. Colchicine resistance and intolerance in familial mediterranean fever: Definition, causes, and alternative treatments. Semin. Arthritis Rheum. 2017, 47, 115–120. [Google Scholar] [CrossRef]
- Demirel, A.; Celkan, T.; Kasapcopur, O.; Bilgen, H.; Ozkan, A.; Apak, H.; Arisoy, N.; Yildiz, I. Is Familial Mediterranean Fever a thrombotic disease or not? Eur. J. Pediatr. 2008, 167, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.S.; Piragasam, R.S.; Sarker, H.; Blackmore, D.; Yacyshyn, E.; Fernandez-Patron, C.; Fahlman, R.P.; Siddiqi, Z.A. Residual serum fibrinogen as a universal biomarker for all serotypes of Myasthenia gravis. Sci. Rep. 2023, 13, 21229. [Google Scholar] [CrossRef]
- Tyagi, N.; Roberts, A.M.; Dean, W.L.; Tyagi, S.C.; Lominadze, D. Fibrinogen induces endothelial cell permeability. Mol. Cell. Biochem. 2008, 307, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Greco, M.; Tonacci, A.; Negrini, S.; Borro, M.; Puppo, F.; Gangemi, S. IL-33/IL-31 Axis in Immune-Mediated and Allergic Diseases. Int. J. Mol. Sci. 2019, 20, 5856. [Google Scholar] [CrossRef]
- Murdaca, G.; Colombo, B.M.; Puppo, F. The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases. Intern. Emerg. Med. 2011, 6, 487–495. [Google Scholar] [CrossRef]
- Murdaca, G.; Tagliafico, L.; Page, E.; Paladin, F.; Gangemi, S. Gender Differences in the Interplay between Vitamin D and Microbiota in Allergic and Autoimmune Diseases. Biomedicines 2024, 12, 1023. [Google Scholar] [CrossRef]
- Tamir, N.; Langevitz, P.; Zemer, D.; Pras, E.; Shinar, Y.; Padeh, S.; Zaks, N.; Pras, M.; Livneh, A. Late-onset familial Mediterranean fever (FMF): A subset with distinct clinical, demographic, and molecular genetic characteristics. Am. J. Med. Genet. 1999, 87, 30–35. [Google Scholar] [CrossRef]
- Ozdel, S.; Ozcakar, Z.B.; Kunt, S.S.; Elhan, A.H.; Yalcinkaya, F. Late-onset disease is associated with a mild phenotype in children with familial Mediterranean fever. Clin. Rheumatol. 2016, 35, 1837–1840. [Google Scholar] [CrossRef]
- Butler, A.A.; Tam, C.S.; Stanhope, K.L.; Wolfe, B.M.; Ali, M.R.; O’Keeffe, M.; St-Onge, M.P.; Ravussin, E.; Havel, P.J. Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. J. Clin. Endocrinol. Metab. 2012, 97, 3783–3791. [Google Scholar] [CrossRef]
- Kwon, O.S.; Andtbacka, R.H.I.; Hyngstrom, J.R.; Richardson, R.S. Vasodilatory function in human skeletal muscle feed arteries with advancing age: The role of adropin. J. Physiol. 2019, 597, 1791–1804. [Google Scholar] [CrossRef]
- Gunesacar, R.; Celik, M.M.; Arica, V.; Elmacioglu, S.; Ozturk, O.H. Frequency of MEFV gene mutations in Hatay province, Mediterranean region of Turkey and report of a novel missense mutation (I247V). Gene 2014, 546, 195–199. [Google Scholar] [CrossRef]
- El Roz, A.; Ghssein, G.; Khalaf, B.; Fardoun, T.; Ibrahim, J.N. Spectrum of MEFV Variants and Genotypes among Clinically Diagnosed FMF Patients from Southern Lebanon. Med. Sci. 2020, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Feghali, R.; Ibrahim, J.N.; Salem, N.; Moussallem, R.; Hijazi, G.; Attieh, C.; Yammine, T.; Chebly, A. Updates on the molecular spectrum of MEFV variants in lebanese patients with Familial Mediterranean Fever. Front. Genet. 2024, 15, 1506656. [Google Scholar] [CrossRef] [PubMed]
- Turkish FMF Study Group. Familial Mediterranean fever (FMF) in Turkey: Results of a nationwide multicenter study. Medicine 2005, 84, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Aydın, F.Ö.Z.; Yalçınkaya, F. Familial Mediterranean Fever Diagnosis and Treatment in Children. Turk. Klin. J. Rheumatol. 2017, 10, 46–54. [Google Scholar]
- Livneh, A.; Langevitz, P.; Zemer, D.; Zaks, N.; Kees, S.; Lidar, T.; Migdal, A.; Padeh, S.; Pras, M. Criteria for the diagnosis of familial Mediterranean fever. Arthritis Rheum. 1997, 40, 1879–1885. [Google Scholar] [CrossRef]
Mean (SD) | Min–Max | |
---|---|---|
Age (years) | 34.33 (13.79) | 19–65 |
Disease onset (years) | 18.45 (10.82) | 3–47 |
Age of diagnosis (years) | 27.66 (12.16) | 7–52 |
Delay in diagnosis (years) | 9.28 (7.89) | 1–25 |
Number of attacks (per month) | 2.10 (2.11) | 0–10 |
Attack duration (hours) | 57.28 (24.79) | 5–96 |
Systolic blood pressure | 116.7 (8.20) | 95–130 |
Diastolic blood pressure | 74.63 (6.19) | 65–90 |
Colchicine dose (mg/day) | 0.86 (0.61) | 0–2 |
WBC (×103/μL) | 8022 (3516) | 4000–18,660 |
ESR (mm/h) | 9.83 (7.70) | 2–33 |
CRP (mg/L) | 13.21 (24.37) | 2–111 |
Fibrinogen (mg/dL) | 364.1 (100.6) | 194–643 |
Microproteinuria (mg/day) | 195.1 (330.3) | 7–1742 |
w n (%) | w/o n (%) | |
Fever | 15 (50%) | 15 (50%) |
Abdominal pain | 24 (80%) | 6 (20%) |
Joint pain | 22 (73%) | 8 (27%) |
Chest pain | 14 (47%) | 16 (53%) |
Muscle pain | 22 (73%) | 8 (27%) |
Erysipelas-like erythema | 1 (3%) | 29 (97%) |
Scrotal pain | 9 (30%) | 21 (70%) |
Disease Characteristics | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Parameters | Fever | Abdominal Pain | Joint Pain | Chest Pain | Muscle Pain | Scrotal Pain | ||||||||||||
Mean (SD) | p * | Mean (SD) | p * | Mean (SD) | p * | Mean (SD) | p * | Mean (SD) | p * | Mean (SD) | p * | |||||||
w | w/o | w | w/o | w | w/o | w | w/o | w | w/o | w | w/o | |||||||
Number of attacks (per month) | 2.93 (2.79) | 1.33 (0.62) | 0.05 | 2.39 (2.271) | 1.00 (0.632) | 0.04 | 2.41 (2.32) | 1.14 (0.69) | 0.08 | 2.60 (2.80) | 1.57 (0.76) | 0.68 | 2.38 (2.38) | 1.38 (0.92) | 0.28 | 2.56 (2.30) | 1.90 (2.05) | 0.47 |
Attack duration (hours) | 61.71 (22.50) | 53.13 (26.85) | 0.48 | 60.74 (24.39) | 44.00 (23.60) | 0.17 | 58.91 (21.88) | 52.14 (33.94) | 0.75 | 57.93 (24.54) | 56.57 (25.96) | 0.85 | 57.14 (23.36) | 57.63 (29.98) | 0.87 | 51.22 (29.45) | 60.00 (22.70) | 0.47 |
SBP (mmHg) | 117.31 (5.99) | 116.07 (10.03) | 0.72 | 117.50 (6.86) | 113.00 (13.04) | 0.45 | 116.00 (8.68) | 118.57 (6.90) | 0.50 | 117.67 (6.78) | 115.42 (9.88) | 0.58 | 115.79 (8.21) | 118.75 (8.35) | 0.52 | 114.44 (9.82) | 117.78 (7.32) | 0.49 |
DBP (mmHg) | 75.77 (4.94) | 73.57 (7.19) | 0.28 | 76.14 (5.76) | 68.00 (2.74) | 0.01 | 75.00 (6.28) | 73.57 (6.27) | 0.69 | 77.00 (5.92) | 71.67 (5.37) | 0.04 | 75.00 (6.67) | 73.75 (5.18) | 0.74 | 75.56 (7.68) | 74.17 (5.49) | 0.78 |
Colchicine dose (mg/day) | 0.71 (0.61) | 1.00 (0.60) | 0.31 | 0.76 (0.60) | 1.25 (0.52) | 0.10 | 0.95 (0.60) | 0.57 (0.61) | 0.20 | 0.93 (0.59) | 0.79 (0.64) | 0.53 | 0.86 (0.59) | 0.88 (0.69) | 0.99 | 0.78 (0.51) | 0.90 (0.66) | 0.63 |
WBC (x103/μL) | 8185.33 (3415.94) | 7858 (3724.93) | 0.44 | 7719.58 (3339.23) | 9230.00 (4266.27) | 0.37 | 8290.87 (3887.45) | 7137.14 (1770.25) | 0.67 | 8111.33 (3921.50) | 7932.00 (3194.65) | 0.87 | 8658.18 (3804.83) | 6271.25 (1731.22) | 0.97 | 7226.67 (3565.23) | 8362.38 (3525.65) | 0.26 |
ESR (mm/h) | 9.29 (6.01) | 10.33 (9.19) | 0.88 | 9.04 (6.40) | 12.83 (11.75) | 0.48 | 9.36 (6.89) | 11.29 (10.36) | 0.78 | 9.36 (6.46) | 10.27(8.91) | 0.88 | 11.00 (8.40) | 6.75 (4.53) | 0.28 | 5.25 (4.03) | 11.57 (8.11) | 0.04 |
CRP (mg/L) | 10.15 (16.39) | 16.27 (30.68) | 0.74 | 10.18 (17.63) | 25.33 (42.35) | 0.13 | 13.80 (27.62) | 11.29 (8.26) | 0.21 | 13.62 (21.51) | 12.80 (27.70) | 0.35 | 15.73 (28.04) | 6.29 (5.18) | 0.84 | 22.37 (38.97) | 9.29 (14.14) | 0.72 |
Fibrinogen (mg/dL) | 389.79 (101.90) | 340.20 (96.48) | 0.22 | 363.35 (104.35 ) | 367.17 (93.26) | 0.81 | 362.91 (108.03) | 368.00 (79.43) | 0.75 | 382.36 (119.84) | 347.13 (79.02) | 0.43 | 382.33 (111.04) | 316.38 (40.15) | 0.17 | 342.75 (100.97) | 372.29 (101.65) | 0.58 |
Microproteinuria (mg/day) | 139.54 (120.83) | 246.64 (445.79) | 0.91 | 219.64 (362.20) | 87.00 (48.30) | 0.56 | 213.25 (378.19) | 143.14 (124.53) | 0.65 | 297.57 (439.74) | 84.69 (37.30) | 0.03 | 224.35 (373.85) | 111.43 (138.11) | 0.48 | 168.25 (169.07) | 206.37 (382.08) | 0.66 |
Relative ENHO expression (2−ΔCt) | 0.00091 (0.00034) | 0.00107 (0.00054) | 0.60 | 0.001 (0.00043) | 0.00097 (0.00056) | 0.86 | 0.001 (0.00043) | 0.00088 (0.00052) | 0.36 | 0.00105 (0.0004) | 0.00093 (0.0005) | 0.37 | 0.00091 (0.00044) | 0.00122 (0.00043) | 0.06 | 0.00104 (0.00044) | 0.00097 (0.00046) | 0.69 |
Adropin levels (pg/mL) | 56.34 (37.21) | 60.10 (46.66) | 0.87 | 60.77 (44.57) | 48.02 (26.47) | 0.71 | 61.83 (45.23) | 46.34 (24.79) | 0.56 | 59.44 (49.13) | 57.00 (33.96) | 0.54 | 66.57 (44.80) | 35.24 (17.16) | 0.50 | 58.33 (47.71) | 58.17 (39.85) | 0.72 |
Attack Status of Patients | |||
---|---|---|---|
Parameters | Active (n = 6) Mean (SD) | Inactive (n = 24) Mean (SD) | p * |
SBP (mmHg) | 110.83 (11.14) | 118.33 (6.59) | 0.07 |
DBP (mmHg) | 68.33 (2.59) | 76.43 (5.73) | 0.004 |
WBC (×103/μL) | 9793.33 (4034.13) | 7578.75 (3319.93) | 0.14 |
ESR (mm/h) | 15.50 (11.22) | 8.35 (5.99) | 0.14 |
CRP (mg/L) | 47.83 (39.44) | 4.56 (4.45) | <0.001 |
Fibrinogen (mg/dL) | 430.50 (90.31) | 346.83 (97.47) | 0.036 |
Microproteinuria (mg/day) | 97.60 (21.09) | 217.22 (363.58) | 0.56 |
Relative ENHO expression (2−ΔCt) | 0.00083 (0.00041) | 0.00103 (0.00046) | 0.35 |
Adropin levels (pg/mL) | 66.97 (40.59) | 56.02 (42.30) | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir Eksi, D.; Gulbol Duran, G.; Celik, M.M.; Eksi, Y.E.; Gunesacar, R. The Role of Energy Homeostasis-Associated Gene Expression and Serum Adropin Levels in Patients with Familial Mediterranean Fever. Int. J. Mol. Sci. 2025, 26, 2371. https://doi.org/10.3390/ijms26052371
Demir Eksi D, Gulbol Duran G, Celik MM, Eksi YE, Gunesacar R. The Role of Energy Homeostasis-Associated Gene Expression and Serum Adropin Levels in Patients with Familial Mediterranean Fever. International Journal of Molecular Sciences. 2025; 26(5):2371. https://doi.org/10.3390/ijms26052371
Chicago/Turabian StyleDemir Eksi, Durkadin, Gulay Gulbol Duran, Muhammet Murat Celik, Yunus Emre Eksi, and Ramazan Gunesacar. 2025. "The Role of Energy Homeostasis-Associated Gene Expression and Serum Adropin Levels in Patients with Familial Mediterranean Fever" International Journal of Molecular Sciences 26, no. 5: 2371. https://doi.org/10.3390/ijms26052371
APA StyleDemir Eksi, D., Gulbol Duran, G., Celik, M. M., Eksi, Y. E., & Gunesacar, R. (2025). The Role of Energy Homeostasis-Associated Gene Expression and Serum Adropin Levels in Patients with Familial Mediterranean Fever. International Journal of Molecular Sciences, 26(5), 2371. https://doi.org/10.3390/ijms26052371