Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections
Abstract
:1. Introduction
2. Bid Protein—The Structure and the Role in Apoptosis Regulation
2.1. The Structure of Bid Protein
2.2. Bid Protein in the Network of Apoptosis Regulatory Molecules
2.3. Targeting Bid to Mitochondria
2.4. The Mechanisms of the tBid-Mediated Induction of MOM Permeabilization
3. The Role of Bid Protein in Viral Infections
3.1. The Role of Bid Protein in HBV Infection
3.2. The Role of Bid Protein in HSV-2 Infection
3.3. The Role of Bid Protein in IAV Infection
3.4. The Role of Bid Protein in SARS-CoV-2 Infection
4. Therapeutic Potential of Bid (tBid) Protein in Apoptosis Regulation: Implications for Viral Infections and Virus-Associated Diseases
4.1. The Therapeutic Potential of tBid in HBV-Associated HCC
4.2. The Therapeutic Potential of tBid in HIV Infection
4.3. Challenges and Limitations of Potential tBid-Based Therapies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, J.; Song, Y.; Zhu, Z.; Huang, X.; Fan, J.; Qiao, J.; Mao, F. Cell–Cell Communication: New Insights and Clinical Implications. Signal Transduct. Target. Ther. 2024, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Jordan, D.; Hindocha, S.; Dhital, M.; Saleh, M.; Khan, W. The Epidemiology, Genetics and Future Management of Syndactyly. Open Orthop. J. 2012, 6, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Cassim, A.; Hettiarachchi, D.; Dissanayake, V.H.W. Genetic Determinants of Syndactyly: Perspectives on Pathogenesis and Diagnosis. Orphanet J. Rare Dis. 2022, 17, 198. [Google Scholar] [CrossRef]
- Arandjelovic, S.; Ravichandran, K.S. Phagocytosis of Apoptotic Cells in Homeostasis. Nat. Immunol. 2015, 16, 907–917. [Google Scholar] [CrossRef]
- Gudipaty, S.A.; Conner, C.M.; Rosenblatt, J.; Montell, D.J. Unconventional Ways to Live and Die: Cell Death and Survival in Development, Homeostasis, and Disease. Annu. Rev. Cell Dev. Biol. 2018, 34, 311–332. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jiao, Y.; Gong, X.; Liu, J.; Xiao, H.; Zheng, Q. Role of Transcription Factors in Apoptotic Cells Clearance. Front. Cell Dev. Biol. 2023, 11, 1110225. [Google Scholar] [CrossRef]
- Nair, A.; Chauhan, P.; Saha, B.; Kubatzky, K.F. Conceptual Evolution of Cell Signaling. Int. J. Mol. Sci. 2019, 20, 3292. [Google Scholar] [CrossRef]
- Valls, P.O.; Esposito, A. Signalling Dynamics, Cell Decisions, and Homeostatic Control in Health and Disease. Curr. Opin. Cell Biol. 2022, 75, 102066. [Google Scholar] [CrossRef] [PubMed]
- Suzanne, M.; Steller, H. Shaping Organisms with Apoptosis. Cell Death Differ. 2013, 20, 669–675. [Google Scholar] [CrossRef]
- Moujalled, D.; Strasser, A.; Liddell, J.R. Molecular Mechanisms of Cell Death in Neurological Diseases. Cell Death Differ. 2021, 28, 2029–2044. [Google Scholar] [CrossRef]
- Cavalcante, G.C.; Schaan, A.P.; Cabral, G.F.; Santana-Da-Silva, M.N.; Pinto, P.; Vidal, A.F.; Ribeiro-Dos-Santos, Â. A Cell’s Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int. J. Mol. Sci. 2019, 20, 4133. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Choudhury, S.M.; Kanneganti, T.D. Classical Apoptotic Stimulus, Staurosporine, Induces Lytic Inflammatory Cell Death, PANoptosis. J. Biol. Chem. 2024, 300, 107676. [Google Scholar] [CrossRef] [PubMed]
- Ergün, S.; Aslan, S.; Demir, D.; Kayaoğlu, S.; Saydam, M.; Keleş, Y.; Kolcuoğlu, D.; Taşkurt Hekim, N.; Güneş, S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol. Diagn. Ther. 2024, 28, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Ortner, D.; Strandt, H.; Tripp, C.H.; Spoeck, S.; Seretis, A.; Hornsteiner, F.; Dieckmann, S.; Schmuth, M.; Stoitzner, P. Langerhans Cells Orchestrate Apoptosis of DNA-Damaged Keratinocytes upon High-Dose UVB Skin Exposure. Eur. J. Immunol. 2024, 54, e2451020. [Google Scholar] [CrossRef]
- Wei, M.; He, X.; Liu, N.; Deng, H. Role of Reactive Oxygen Species in Ultraviolet-Induced Photodamage of the Skin. Cell Div. 2024, 19, 1. [Google Scholar] [CrossRef]
- Lu, K.C.; Tsai, K.W.; Wang, Y.K.; Hu, W.C. Types of Cell Death and Their Relations to Host Immunological Pathways. Aging 2024, 16, 11755–11768. [Google Scholar] [CrossRef]
- Kvansakul, M. Viral Infection and Apoptosis. Viruses 2017, 9, 356. [Google Scholar] [CrossRef]
- Rex, D.A.B.; Prasad, T.S.K.; Kandasamy, R.K. Revisiting Regulated Cell Death Responses in Viral Infections. Int. J. Mol. Sci. 2022, 23, 7023. [Google Scholar] [CrossRef]
- Verburg, S.G.; Lelievre, R.M.; Westerveld, M.J.; Inkol, J.M.; Sun, Y.L.; Workenhe, S.T. Viral-Mediated Activation and Inhibition of Programmed Cell Death. PLoS Pathog. 2022, 18, e1010718. [Google Scholar] [CrossRef]
- Wong, R.S.Y. Apoptosis in Cancer: From Pathogenesis to Treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef]
- Carneiro, B.A.; El-Deiry, W.S. Targeting Apoptosis in Cancer Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 Family Proteins: Changing Partners in the Dance towards Death. Cell Death Differ. 2017, 25, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Wyżewski, Z.; Stępkowska, J.; Kobylińska, A.M.; Mielcarska, A.; Mielcarska, M.B. Mcl-1 Protein and Viral Infections: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 1138. [Google Scholar] [CrossRef] [PubMed]
- Wyżewski, Z.; Świtlik, W.; Mielcarska, M.B.; Gregorczyk-Zboroch, K.P. The Role of Bcl-XL Protein in Viral Infections. Int. J. Mol. Sci. 2021, 22, 1956. [Google Scholar] [CrossRef]
- Guièze, R.; Liu, V.M.; Rosebrock, D.; Jourdain, A.A.; Hernández-Sánchez, M.; Martinez Zurita, A.; Sun, J.; Ten Hacken, E.; Baranowski, K.; Thompson, P.A.; et al. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell 2019, 36, 369–384.e13. [Google Scholar] [CrossRef]
- D’Aguanno, S.; Brignone, M.; Scalera, S.; Chiacchiarini, M.; Di Martile, M.; Valentini, E.; De Nicola, F.; Ricci, A.; Pelle, F.; Botti, C.; et al. Bcl-2 Dependent Modulation of Hippo Pathway in Cancer Cells. Cell Commun. Signal. 2024, 22, 277. [Google Scholar] [CrossRef]
- Neophytou, C.M.; Trougakos, I.P.; Erin, N.; Papageorgis, P. Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers 2021, 13, 4363. [Google Scholar] [CrossRef]
- Lopez, A.; Reyna, D.E.; Gitego, N.; Kopp, F.; Zhou, H.; Miranda-Roman, M.A.; Nordstrøm, L.U.; Narayanagari, S.R.; Chi, P.; Vilar, E.; et al. Co-Targeting of BAX and BCL-XL Proteins Broadly Overcomes Resistance to Apoptosis in Cancer. Nat. Commun. 2022, 13, 1199. [Google Scholar] [CrossRef]
- Billen, L.P.; Shamas-Din, A.; Andrews, D.W. Bid: A Bax-like BH3 Protein. Oncogene 2008, 27 (Suppl. S1), S93–S104. [Google Scholar] [CrossRef]
- Westphal, D.; Dewson, G.; Czabotar, P.E.; Kluck, R.M. Molecular Biology of Bax and Bak Activation and Action. Biochim. Biophys. Acta 2011, 1813, 521–531. [Google Scholar] [CrossRef]
- Cigalotto, L.; Martinvalet, D. Granzymes in Health and Diseases: The Good, the Bad and the Ugly. Front. Immunol. 2024, 15, 1371743. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Xie, W.L.; Wang, Y.T.; Chen, L.; Xu, Z.Z.; Lv, Y.; Wu, Q.P. Calpain: The Regulatory Point of Myocardial Ischemia-Reperfusion Injury. Front. Cardiovasc. Med. 2023, 10, 1194402. [Google Scholar] [CrossRef]
- Ruiz-Blázquez, P.; Pistorio, V.; Fernández-Fernández, M.; Moles, A. The Multifaceted Role of Cathepsins in Liver Disease. J. Hepatol. 2021, 75, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Desagher, S.; Osen-Sand, A.; Montessuit, S.; Magnenat, E.; Vilbois, F.; Hochmann, A.; Journot, L.; Antonsson, B.; Martinou, J.C. Phosphorylation of Bid by Casein Kinases I and II Regulates Its Cleavage by Caspase 8. Mol. Cell 2001, 8, 601–611. [Google Scholar] [CrossRef]
- Shelton, S.N.; Shawgo, M.E.; Robertson, J.D. Cleavage of Bid by Executioner Caspases Mediates Feed Forward Amplification of Mitochondrial Outer Membrane Permeabilization during Genotoxic Stress-Induced Apoptosis in Jurkat Cells. J. Biol. Chem. 2009, 284, 11247–11255. [Google Scholar] [CrossRef]
- Gahl, R.F.; Dwivedi, P.; Tjandra, N. Bcl-2 Proteins Bid and Bax Form a Network to Permeabilize the Mitochondria at the Onset of Apoptosis. Cell Death Dis. 2016, 7, e2424. [Google Scholar] [CrossRef]
- Zha, J.; Weiler, S.; Oh, K.J.; Wei, M.C.; Korsmeyer, S.J. Posttranslational N-Myristoylation of BID as a Molecular Switch for Targeting Mitochondria and Apoptosis. Science 2000, 290, 1761–1765. [Google Scholar] [CrossRef] [PubMed]
- Fhu, C.W.; Ali, A. Protein Lipidation by Palmitoylation and Myristoylation in Cancer. Front. Cell Dev. Biol. 2021, 9, 673647. [Google Scholar] [CrossRef]
- Giglione, C.; Meinnel, T. Mapping the Myristoylome through a Complete Understanding of Protein Myristoylation Biochemistry. Prog. Lipid Res. 2022, 85, 101139. [Google Scholar] [CrossRef]
- Salisbury-Ruf, C.T.; Bertram, C.C.; Vergeade, A.; Lark, D.S.; Shi, Q.; Heberling, M.L.; Fortune, N.L.; Okoye, G.D.; Jerome, W.G.; Wells, Q.S.; et al. Bid Maintains Mitochondrial Cristae Structure and Function and Protects against Cardiac Disease in an Integrative Genomics Study. eLife 2018, 7, e40907. [Google Scholar] [CrossRef]
- Czabotar, P.E.; Garcia-Saez, A.J. Mechanisms of BCL-2 Family Proteins in Mitochondrial Apoptosis. Nat. Rev. Mol. Cell Biol. 2023, 24, 732–748. [Google Scholar] [CrossRef]
- Lalier, L.; Vallette, F.; Manon, S. Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules 2022, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Opferman, J.T.; Kothari, A. Anti-Apoptotic BCL-2 Family Members in Development. Cell Death Differ. 2017, 25, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Jeng, P.S.; Inoue-Yamauchi, A.; Hsieh, J.J.; Cheng, E.H. BH3-Dependent and Independent Activation of BAX and BAK in Mitochondrial Apoptosis. Curr. Opin. Physiol. 2018, 3, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, S.J.; Wei, M.C.; Saito, M.; Weiler, S.; Oh, K.J.; Schlesinger, P.H. Pro-Apoptotic Cascade Activates BID, Which Oligomerizes BAK or BAX into Pores That Result in the Release of Cytochrome c. Cell Death Differ. 2000, 7, 1166–1173. [Google Scholar] [CrossRef]
- Peña-Blanco, A.; García-Sáez, A.J. Bax, Bak and beyond—Mitochondrial Performance in Apoptosis. FEBS J. 2018, 285, 416–431. [Google Scholar] [CrossRef]
- Dewson, G.; Kluck, R.M. Mechanisms by Which Bak and Bax Permeabilise Mitochondria during Apoptosis. J. Cell Sci. 2009, 122, 2801–2808. [Google Scholar] [CrossRef]
- Kodama, T.; Hikita, H.; Kawaguchi, T.; Shigekawa, M.; Shimizu, S.; Hayashi, Y.; Li, W.; Miyagi, T.; Hosui, A.; Tatsumi, T.; et al. Mcl-1 and Bcl-XL Regulate Bak/Bax-Dependent Apoptosis of the Megakaryocytic Lineage at Multistages. Cell Death Differ. 2012, 19, 1856–1869. [Google Scholar] [CrossRef]
- Placzek, W.J.; Sturlese, M.; Wu, B.; Cellitti, J.F.; Wei, J.; Pellecchia, M. Identification of a Novel Mcl-1 Protein Binding Motif. J. Biol. Chem. 2011, 286, 39829–39835. [Google Scholar] [CrossRef]
- Murphy, K.M.; Ranganathan, V.; Farnsworth, M.L.; Kavallaris, M.; Lock, R.B. Bcl-2 Inhibits Bax Translocation from Cytosol to Mitochondria during Drug-Induced Apoptosis of Human Tumor Cells. Cell Death Differ. 2000, 7, 102–111. [Google Scholar] [CrossRef]
- Dlugosz, P.J.; Billen, L.P.; Annis, M.G.; Zhu, W.; Zhang, Z.; Lin, J.; Leber, B.; Andrews, D.W. Bcl-2 Changes Conformation to Inhibit Bax Oligomerization. EMBO J. 2006, 25, 2287–2296. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Ding, H.; Meng, X.W.; Lee, S.H.; Schneider, P.A.; Kaufmann, S.H. Contribution of Bcl-2 Phosphorylation to Bak Binding and Drug Resistance. Cancer Res. 2013, 73, 6998–7008. [Google Scholar] [CrossRef] [PubMed]
- Beigl, T.B.; Paul, A.; Fellmeth, T.P.; Nguyen, D.; Barber, L.; Weller, S.; Schäfer, B.; Gillissen, B.F.; Aulitzky, W.E.; Kopp, H.G.; et al. BCL-2 and BOK Regulate Apoptosis by Interaction of Their C-Terminal Transmembrane Domains. EMBO Rep. 2024, 25, 3896–3924. [Google Scholar] [CrossRef]
- Lomonosova, E.; Chinnadurai, G. BH3-Only Proteins in Apoptosis and beyond: An Overview. Oncogene 2008, 27, S2–S19. [Google Scholar] [CrossRef] [PubMed]
- Roufayel, R.; Younes, K.; Al-Sabi, A.; Murshid, N. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life 2022, 12, 256. [Google Scholar] [CrossRef]
- Du, H.; Wolf, J.; Schafer, B.; Moldoveanu, T.; Chipuk, J.E.; Kuwana, T. BH3 Domains Other than Bim and Bid Can Directly Activate Bax/Bak. J. Biol. Chem. 2010, 286, 491–501. [Google Scholar] [CrossRef]
- Leshchiner, E.S.; Braun, C.R.; Bird, G.H.; Walensky, L.D. Direct Activation of Full-Length Proapoptotic BAK. Proc. Natl. Acad. Sci. USA 2013, 110, E986–E995. [Google Scholar] [CrossRef]
- Bolaños, J.P.; Moro, M.A.; Lizasoain, I.; Almeida, A. Mitochondria and Reactive Oxygen and Nitrogen Species in Neurological Disorders and Stroke: Therapeutic Implications. Adv. Drug Deliv. Rev. 2009, 61, 1299–1315. [Google Scholar] [CrossRef]
- Kantari, C.; Walczak, H. Caspase-8 and Bid: Caught in the Act between Death Receptors and Mitochondria. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2011, 1813, 558–563. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Wei, S.; Nguyen, T.H.; Jo, Y.; Zhang, Y.; Park, W.; Gariani, K.; Oh, C.M.; Kim, H.H.; Ha, K.T.; et al. Mitochondria-Associated Programmed Cell Death as a Therapeutic Target for Age-Related Disease. Exp. Mol. Med. 2023, 55, 1595–1619. [Google Scholar] [CrossRef]
- Tiegs, G.; Horst, A.K. TNF in the Liver: Targeting a Central Player in Inflammation. Semin. Immunopathol. 2022, 44, 445–459. [Google Scholar] [CrossRef]
- Wei, M.C.; Lindsten, T.; Mootha, V.K.; Weiler, S.; Gross, A.; Ashiya, M.; Thompson, C.B.; Korsmeyer, S.J. TBID, a Membrane-Targeted Death Ligand, Oligomerizes BAK to Release Cytochrome c. Genes Dev. 2000, 14, 2060–2071. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.T.; Zhou, Q.L.; Su, Y.C.; Fu, N.Y.; Chang, H.C.; Tao, R.N.; Sukumaran, S.K.; Baksh, S.; Tan, Y.J.; Sabapathy, K.; et al. MOAP-1 Mediates Fas-Induced Apoptosis in Liver by Facilitating TBid Recruitment to Mitochondria. Cell Rep. 2016, 16, 174–185. [Google Scholar] [CrossRef]
- Cristofanon, S.; Fulda, S. ABT-737 Promotes TBid Mitochondrial Accumulation to Enhance TRAIL-Induced Apoptosis in Glioblastoma Cells. Cell Death Dis. 2012, 3, e432. [Google Scholar] [CrossRef] [PubMed]
- Beaudouin, J.; Liesche, C.; Aschenbrenner, S.; Hörner, M.; Eils, R. Caspase-8 Cleaves Its Substrates from the Plasma Membrane upon CD95-Induced Apoptosis. Cell Death Differ. 2013, 20, 599–610. [Google Scholar] [CrossRef]
- Kostova, I.; Mandal, R.; Becker, S.; Strebhardt, K. The Role of Caspase-8 in the Tumor Microenvironment of Ovarian Cancer. Cancer Metastasis Rev. 2020, 40, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Flores-Romero, H.; Hohorst, L.; John, M.; Albert, M.; King, L.E.; Beckmann, L.; Szabo, T.; Hertlein, V.; Luo, X.; Villunger, A.; et al. BCL-2-Family Protein TBID Can Act as a BAX-like Effector of Apoptosis. EMBO J. 2022, 41, e108690. [Google Scholar] [CrossRef]
- Hung, C.L.; Chang, H.H.; Lee, S.W.; Chiang, Y.W. Stepwise Activation of the Pro-Apoptotic Protein Bid at Mitochondrial Membranes. Cell Death Differ. 2021, 28, 1910–1925. [Google Scholar] [CrossRef]
- Shamas-Din, A.; Bindner, S.; Zhu, W.; Zaltsman, Y.; Campbell, C.; Gross, A.; Leber, B.; Andrews, D.W.; Fradin, C. TBid Undergoes Multiple Conformational Changes at the Membrane Required for Bax Activation. J. Biol. Chem. 2013, 288, 22111–22127. [Google Scholar] [CrossRef]
- Raemy, E.; Martinou, J.C. Involvement of Cardiolipin in TBID-Induced Activation of BAX during Apoptosis. Chem. Phys. Lipids 2014, 179, 70–74. [Google Scholar] [CrossRef]
- Wolf, P.; Schoeniger, A.; Edlich, F. Pro-Apoptotic Complexes of BAX and BAK on the Outer Mitochondrial Membrane. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119317. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef]
- Larsen, B.D.; Sørensen, C.S. The Caspase-Activated DNase: Apoptosis and Beyond. FEBS J. 2017, 284, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Wu, D.; Chen, W.; Yan, Z.; Shi, Y. Proteolytic Processing of the Caspase-9 Zymogen Is Required for Apoptosome-Mediated Activation of Caspase-9. J. Biol. Chem. 2013, 288, 15142–15147. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Narita, R.; Rashidi, A.S.; Fruhwürth, S.; Gao, Z.; Bak, R.O.; Thomsen, M.K.; Verjans, G.M.; Reinert, L.S.; Paludan, S.R. ER Stress Induces Caspase-2-TBID-GSDME-Dependent Cell Death in Neurons Lytically Infected with Herpes Simplex Virus Type 2. EMBO J. 2023, 42, e113118. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Xing, Y.; Liu, Y. Emerging Roles for the ER Stress Sensor IRE1α in Metabolic Regulation and Disease. J. Biol. Chem. 2019, 294, 18726–18741. [Google Scholar] [CrossRef]
- Siwecka, N.; Rozpędek-Kamińska, W.; Wawrzynkiewicz, A.; Pytel, D.; Diehl, J.A.; Majsterek, I. The Structure, Activation and Signaling of IRE1 and Its Role in Determining Cell Fate. Biomedicines 2021, 9, 156. [Google Scholar] [CrossRef]
- Zaltsman, Y.; Shachnai, L.; Yivgi-Ohana, N.; Schwarz, M.; Maryanovich, M.; Houtkooper, R.H.; Vaz, F.M.; De Leonardis, F.; Fiermonte, G.; Palmieri, F.; et al. MTCH2/MIMP Is a Major Facilitator of TBID Recruitment to Mitochondria. Nat. Cell Biol. 2010, 12, 553–562. [Google Scholar] [CrossRef]
- Cogliati, S.; Scorrano, L. A BID on Mitochondria with MTCH2. Cell Res. 2010, 20, 863–865. [Google Scholar] [CrossRef]
- Raemy, E.; Montessuit, S.; Pierredon, S.; Van Kampen, A.H.; Vaz, F.M.; Martinou, J.C. Cardiolipin or MTCH2 Can Serve as TBID Receptors during Apoptosis. Cell Death Differ. 2016, 23, 1165–1174. [Google Scholar] [CrossRef]
- Lutter, M.; Fang, M.; Luo, X.; Nishijima, M.; Xie, X.S.; Wang, X. Cardiolipin Provides Specificity for Targeting of TBid to Mitochondria. Nat. Cell Biol. 2000, 2, 754–756. [Google Scholar] [CrossRef]
- Ott, M.; Norberg, E.; Zhivotovsky, B.; Orrenius, S. Mitochondrial Targeting of TBid/Bax: A Role for the TOM Complex? Cell Death Differ. 2009, 16, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Ahmadpour, S.T.; Mahéo, K.; Servais, S.; Brisson, L.; Dumas, J.F. Cardiolipin, the Mitochondrial Signature Lipid: Implication in Cancer. Int. J. Mol. Sci. 2020, 21, 8031. [Google Scholar] [CrossRef]
- Wriessnegger, T.; Leitner, E.; Belegratis, M.R.; Ingolic, E.; Daum, G. Lipid Analysis of Mitochondrial Membranes from the Yeast Pichia Pastoris. Biochim. Biophys. Acta 2009, 1791, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Schafer, B.; Quispe, J.; Choudhary, V.; Chipuk, J.E.; Ajero, T.G.; Du, H.; Schneiter, R.; Kuwana, T. Mitochondrial Outer Membrane Proteins Assist Bid in Bax-Mediated Lipidic Pore Formation. Mol. Biol. Cell 2009, 20, 2276–2285. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Gonzalvez, F.; Jenkins, G.M.; Slomianny, C.; Chretien, D.; Arnoult, D.; Petit, P.X.; Frohman, M.A. Cardiolipin Deficiency Releases Cytochrome c from the Inner Mitochondrial Membrane and Accelerates Stimuli-Elicited Apoptosis. Cell Death Differ. 2006, 14, 597–606. [Google Scholar] [CrossRef]
- Miller, M.S.; Cowan, A.D.; Brouwer, J.M.; Smyth, S.T.; Peng, L.; Wardak, A.Z.; Uren, R.T.; Luo, C.; Roy, M.J.; Shah, S.; et al. Sequence Differences between BAX and BAK Core Domains Manifest as Differences in Their Interactions with Lipids. FEBS J. 2024, 291, 2335–2353. [Google Scholar] [CrossRef]
- Vona, R.; Ascione, B.; Malorni, W.; Straface, E. Mitochondria and Sex-Specific Cardiac Function. Adv. Exp. Med. Biol. 2018, 1065, 241–256. [Google Scholar] [CrossRef]
- Rose, M.; Kurylowicz, M.; Mahmood, M.; Winkel, S.; Moran-Mirabal, J.M.; Fradin, C. Direct Measurement of the Affinity between Tbid and Bax in a Mitochondria-like Membrane. Int. J. Mol. Sci. 2021, 22, 8240. [Google Scholar] [CrossRef]
- Saito, M.; Korsmeyer, S.J.; Schlesinger, P.H. BAX-Dependent Transport of Cytochrome c Reconstituted in Pure Liposomes. Nat. Cell Biol. 2000, 2, 553–555. [Google Scholar] [CrossRef]
- Dudko, H.V.; Urban, V.A.; Davidovskii, A.I.; Veresov, V.G. Structure-Based Modeling of Turnover of Bcl-2 Family Proteins Bound to Voltage-Dependent Anion Channel 2 (VDAC2): Implications for the Mechanisms of Proapoptotic Activation of Bak and Bax in Vivo. Comput. Biol. Chem. 2020, 85, 107203. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Osterlund, E.; Kale, J.; Andrews, D.W. The C-Terminal Sequences of Bcl-2 Family Proteins Mediate Interactions That Regulate Cell Death. Biochem. J. 2024, 481, 903–922. [Google Scholar] [CrossRef] [PubMed]
- Bleicken, S.; Hantusch, A.; Das, K.K.; Frickey, T.; Garcia-Saez, A.J. Quantitative Interactome of a Membrane Bcl-2 Network Identifies a Hierarchy of Complexes for Apoptosis Regulation. Nat. Commun. 2017, 8, 73. [Google Scholar] [CrossRef]
- Yao, Y.; Bobkov, A.A.; Plesniak, L.A.; Marassi, F.M. Mapping the Interaction of Pro-Apoptotic TBID with pro-Survival BCL-XL. Biochemistry 2009, 48, 8704–8711. [Google Scholar] [CrossRef]
- Roulston, A.; Marcellus, R.C.; Branton, P.E. Viruses and Apoptosis. Annu. Rev. Microbiol. 1999, 53, 577–628. [Google Scholar] [CrossRef]
- Everett, H.; McFadden, G. Apoptosis: An Innate Immune Response to Virus Infection. Trends Microbiol. 1999, 7, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Treeza, M.M.; Augustine, S.; Mathew, A.A.; Kanthlal, S.K.; Panonummal, R. Targeting Viral ORF3a Protein: A New Approach to Mitigate COVID-19 Induced Immune Cell Apoptosis and Associated Respiratory Complications. Adv. Pharm. Bull. 2023, 13, 678–687. [Google Scholar] [CrossRef]
- Gregorczyk, K.; Wyżewski, Z.; Szulc-Dąbrowska, L.; Niemiałtowski, M. Hamowanie Mitochondrialnego Szlaku Apoptozy Przez Białka Pokswirusów. Med. Weter. 2014, 70, 456–459. [Google Scholar]
- Wyżewski, Z.; Gregorczyk-Zboroch, K.P.; Mielcarska, M.B.; Bossowska-Nowicka, M.; Struzik, J.; Szczepanowska, J.; Toka, F.N.; Niemiałtowski, M.G.; Szulc-Dąbrowska, L. Mitochondrial Heat Shock Response Induced by Ectromelia Virus Is Accompanied by Reduced Apoptotic Potential in Murine L929 Fibroblasts. Arch. Immunol. Ther. Exp. 2019, 67, 401–414. [Google Scholar] [CrossRef]
- Wurzer, W.J.; Planz, O.; Ehrhardt, C.; Giner, M.; Silberzahn, T.; Pleschka, S.; Ludwig, S. Caspase 3 Activation Is Essential for Efficient Influenza Virus Propagation. EMBO J. 2003, 22, 2717–2728. [Google Scholar] [CrossRef]
- Paim, A.C.; Badley, A.D.; Cummins, N.W. Mechanisms of Human Immunodeficiency Virus-Associated Lymphocyte Regulated Cell Death. AIDS Res. Hum. Retroviruses 2020, 36, 101–115. [Google Scholar] [CrossRef]
- Elbim, C.; Katsikis, P.D.; Estaquier, J. Neutrophil Apoptosis During Viral Infections. Open Virol. J. 2009, 3, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-González, A.M.; Contreras-Paredes, A.; Manzo-Merino, J.; Lizano, M. The Modulation of Apoptosis by Oncogenic Viruses. Virol. J. 2013, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.E.M.; Cabibbo, G.; Craxì, A. Hepatitis B Virus-Associated Hepatocellular Carcinoma. Viruses 2022, 14, 986. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimmons, L.; Kelly, G.L. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017, 9, 339. [Google Scholar] [CrossRef]
- Wyżewski, Z.; Mielcarska, M.B.; Gregorczyk-Zboroch, K.P.; Myszka, A. Virus-Mediated Inhibition of Apoptosis in the Context of EBV-Associated Diseases: Molecular Mechanisms and Therapeutic Perspectives. Int. J. Mol. Sci. 2022, 23, 7265. [Google Scholar] [CrossRef]
- Chen, G.G.; Lai, P.B.S.; Chan, P.K.S.; Chak, E.C.W.; Yip, J.H.Y.; Ho, R.L.K.; Leung, B.C.S.; Lau, W.Y. Decreased Expression of Bid in Human Hepatocellular Carcinoma Is Related to Hepatitis B Virus X Protein. Eur. J. Cancer 2001, 37, 1695–1702. [Google Scholar] [CrossRef]
- Yin, X.M.; Wang, K.; Gross, A.; Zhao, Y.; Zinkel, S.; Klocke, B.; Roth, K.A.; Korsmeyer, S.J. Bid-Deficient Mice Are Resistant to Fas-Induced Hepatocellular Apoptosis. Nature 1999, 400, 886–891. [Google Scholar] [CrossRef]
- Zamarin, D.; García-Sastre, A.; Xiao, X.; Wang, R.; Palese, P. Influenza Virus PB1-F2 Protein Induces Cell Death through Mitochondrial ANT3 and VDAC1. PLoS Pathog. 2005, 1, 40–54. [Google Scholar] [CrossRef]
- Qu, B.; Li, X.; Gao, W.; Sun, W.; Jin, Y.; Cardona, C.J.; Xing, Z. Human Intestinal Epithelial Cells Are Susceptible to Influenza Virus Subtype H9N2. Virus Res. 2012, 163, 151–159. [Google Scholar] [CrossRef]
- Chu, H.; Shuai, H.; Hou, Y.; Zhang, X.; Wen, L.; Huang, X.; Hu, B.; Yang, D.; Wang, Y.; Yoon, C.; et al. Targeting Highly Pathogenic Coronavirus-Induced Apoptosis Reduces Viral Pathogenesis and Disease Severity. Sci. Adv. 2021, 7, eabf8577. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Shu, T.; Wu, D.; Mu, J.; Wang, C.; Huang, M.; Han, Y.; Zhang, X.Y.; Zhou, W.; Qiu, Y.; et al. The ORF3a Protein of SARS-CoV-2 Induces Apoptosis in Cells. Cell Mol. Immunol. 2020, 17, 881–883. [Google Scholar] [CrossRef]
- Abdalla, A.E.; Xie, J.; Junaid, K.; Younas, S.; Elsaman, T.; Abosalif, K.O.A.; Alameen, A.A.M.; Mahjoob, M.O.; Elamir, M.Y.M.; Ejaz, H. Insight into the Emerging Role of SARS-CoV-2 Nonstructural and Accessory Proteins in Modulation of Multiple Mechanisms of Host Innate Defense. Bosn. J. Basic. Med. Sci. 2021, 21, 515–527. [Google Scholar] [CrossRef]
- Yuan, C.; Ma, Z.; Xie, J.; Li, W.; Su, L.; Zhang, G.; Xu, J.; Wu, Y.; Zhang, M.; Liu, W. The Role of Cell Death in SARS-CoV-2 Infection. Signal Transduct. Target. Ther. 2023, 8, 357. [Google Scholar] [CrossRef]
- Sterling, R.K.; Wahed, A.S.; Cloherty, G.; Hoofnagle, J.H.; Lee, W.M. Acute Hepatitis B Virus Infection in North American Adults. Clin. Gastroenterol. Hepatol. 2022, 21, 1881–1892. [Google Scholar] [CrossRef]
- Tang, L.S.Y.; Covert, E.; Wilson, E.; Kottilil, S. Chronic Hepatitis B Infection: A Review. JAMA 2018, 319, 1802–1813. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wu, J.F.; Zhang, Q.; Zhang, H.W.; Cao, G.W. Virus-Related Liver Cirrhosis: Molecular Basis and Therapeutic Options. World J. Gastroenterol. WJG 2014, 20, 6457–6469. [Google Scholar] [CrossRef]
- Peng, C.Y.; Chien, R.N.; Liaw, Y.F. Hepatitis B Virus-Related Decompensated Liver Cirrhosis: Benefits of Antiviral Therapy. J. Hepatol. 2012, 57, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Jieanu, C.F.; Ungureanu, B.S.; Săndulescu, D.L.; Gheonea, I.A.; Tudorașcu, D.R.; Ciurea, M.E.; Purcărea, V.L. Quantification of Liver Fibrosis in Chronic Hepatitis B Virus Infection. J. Med. Life 2015, 8, 285–290. [Google Scholar]
- Fontana, R.J. Management of Decompensated HBV Cirrhosis: Lamivudine and Beyond. Am. J. Gastroenterol. 2004, 99, 64–67. [Google Scholar] [CrossRef]
- Van Bömmel, F.; Berg, T. Treatment of HBV Related Cirrhosis. Liver Int. 2013, 33, 176–181. [Google Scholar] [CrossRef]
- Zhao, J.; Qi, Y.F.; Yu, Y.R. STAT3: A Key Regulator in Liver Fibrosis. Ann. Hepatol. 2021, 21, 100224. [Google Scholar] [CrossRef]
- Calvaruso, V.; Craxì, A. Regression of Fibrosis after HBV Antiviral Therapy: Is Cirrhosis Reversible? Liver Int. 2014, 34, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Xu, M.; Peng, F.; Gong, J.; Song, X.; Li, Y. A Nomogram Based on Psoas Muscle Index Predicting Long-Term Cirrhosis Incidence in Non-Cirrhotic Patients with HBV-Related Acute-on-chronic Liver Failure. Sci. Rep. 2023, 13, 21265. [Google Scholar] [CrossRef]
- Vallet-Pichard, A.; Mallet, V.; Costentin, C.E.; Pol, S. Treatment of HBV-Related Cirrhosis. Expert. Rev. Anti Infect. Ther. 2009, 7, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, H.; Deng, Y.; Zheng, H.; Xiang, H.; Nan, Y.; Hu, J.; Meng, Q.; Xu, X.; Fang, J.; et al. Validation of Baveno VII Criteria for Recompensation in Entecavir-Treated Patients with Hepatitis B-Related Decompensated Cirrhosis. J. Hepatol. 2022, 77, 1564–1572. [Google Scholar] [CrossRef]
- Duberg, A.S.; Lybeck, C.; Fält, A.; Montgomery, S.; Aleman, S. Chronic Hepatitis B Virus Infection and the Risk of Hepatocellular Carcinoma by Age and Country of Origin in People Living in Sweden: A National Register Study. Hepatol. Commun. 2022, 6, 2418–2430. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Gao, Y.; He, Y.; Hooper, J.D.; Yang, P. HBV Induced Hepatocellular Carcinoma and Related Potential Immunotherapy. Pharmacol. Res. 2020, 159, 104992. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Zhang, J.; Wang, X.; Chen, H.; Liu, L.; Liu, S. Long Non-Coding RNAs in HBV-Related Hepatocellular Carcinoma (Review). Int. J. Oncol. 2020, 56, 18–32. [Google Scholar] [CrossRef]
- Battistella, S.; Lynch, E.N.; Gambato, M.; Zanetto, A.; Pellone, M.; Shalaby, S.; Sciarrone, S.S.; Ferrarese, A.; Germani, G.; Senzolo, M.; et al. Hepatocellular Carcinoma Risk in Patients with HBV-Related Liver Disease Receiving Antiviral Therapy. Minerva Gastroenterol. 2021, 67, 38–49. [Google Scholar] [CrossRef]
- Sung, W.K.; Zheng, H.; Li, S.; Chen, R.; Liu, X.; Li, Y.; Lee, N.P.; Lee, W.H.; Ariyaratne, P.N.; Tennakoon, C.; et al. Genome-Wide Survey of Recurrent HBV Integration in Hepatocellular Carcinoma. Nat. Genet. 2012, 44, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Sivasudhan, E.; Blake, N.; Lu, Z.; Meng, J.; Rong, R. Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, I. Dysregulation of Apoptosis in Hepatocellular Carcinoma Cells. World J. Gastroenterol. WJG 2009, 15, 513–520. [Google Scholar] [CrossRef]
- Taxonomy Browser (Human Alphaherpesvirus 2). Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10310&lvl=3&lin=f&keep=1&srchmode=1&unlock (accessed on 8 January 2025).
- Chang, W.; Jiao, X.; Sui, H.; Goswami, S.; Sherman, B.T.; Fromont, C.; Caravaca, J.M.; Tran, B.; Imamichi, T. Complete Genome Sequence of Herpes Simplex Virus 2 Strain G. Viruses 2022, 14, 536. [Google Scholar] [CrossRef] [PubMed]
- Hornig, J.; Mcgregor, A. Design and Development of Antivirals and Intervention Strategies against Human Herpesviruses Using High-Throughput Approach. Expert. Opin. Drug Discov. 2014, 9, 891–915. [Google Scholar] [CrossRef]
- Borase, H.; Shukla, D. The Interplay of Genital Herpes with Cellular Processes: A Pathogenesis and Therapeutic Perspective. Viruses 2023, 15, 2195. [Google Scholar] [CrossRef]
- Schiffer, J.T.; Corey, L. New Concepts in Understanding Genital Herpes. Curr. Infect. Dis. Rep. 2009, 11, 457–464. [Google Scholar] [CrossRef]
- Ayoub, H.H.; Amara, I.; Awad, S.F.; Omori, R.; Chemaitelly, H.; Abu-Raddad, L.J. Analytic Characterization of the Herpes Simplex Virus Type 2 Epidemic in the United States, 1950–2050. Open Forum Infect. Dis. 2021, 8, ofab218. [Google Scholar] [CrossRef]
- Johnston, C.; Magaret, A.; Roychoudhury, P.; Greninger, A.L.; Reeves, D.; Schiffer, J.; Jerome, K.R.; Sather, C.; Diem, K.; Lingappa, J.R.; et al. Dual-Strain Genital Herpes Simplex Virus Type 2 (HSV-2) Infection in the US, Peru, and 8 Countries in Sub-Saharan Africa: A Nested Cross-Sectional Viral Genotyping Study. PLoS Med. 2017, 14, e1002475. [Google Scholar] [CrossRef]
- Harfouche, M.; Alareeki, A.; Osman, A.M.M.; Alaama, A.S.; Hermez, J.G.; Abu-Raddad, L.J. Epidemiology of Herpes Simplex Virus Type 2 in the Middle East and North Africa: Systematic Review, Meta-Analyses, and Meta-Regressions. J. Med. Virol. 2023, 95, e28603. [Google Scholar] [CrossRef]
- Schulte, J.M.; Bellamy, A.R.; Hook, E.W.; Bernstein, D.I.; Levin, M.J.; Leone, P.A.; Sokol-Anderson, M.L.; Ewell, M.G.; Wolff, P.A.; Heineman, T.C.; et al. HSV-1 and HSV-2 Seroprevalence in the United States among Asymptomatic Women Unaware of Any Herpes Simplex Virus Infection (Herpevac Trial for Women). South. Med. J. 2014, 107, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Bergström, P.; Trybala, E.; Eriksson, C.E.; Johansson, M.; Satir, T.M.; Widéhn, S.; Fruhwürth, S.; Michno, W.; Nazir, F.H.; Hanrieder, J.; et al. Herpes Simplex Virus 1 and 2 Infections during Differentiation of Human Cortical Neurons. Viruses 2021, 13, 2072. [Google Scholar] [CrossRef] [PubMed]
- Kaewpoowat, Q.; Salazar, L.; Aguilera, E.; Wootton, S.H.; Hasbun, R. Herpes Simplex and Varicella Zoster CNS Infections: Clinical Presentations, Treatments and Outcomes. Infection 2016, 44, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Wyzewski, Z.; Gradowski, M.; Krysińska, M.; Dudkiewicz, M.; Pawłowski, K. A Novel Predicted ADP-Ribosyltransferase-like Family Conserved in Eukaryotic Evolution. PeerJ 2021, 9, e11051. [Google Scholar] [CrossRef]
- Mashimo, M.; Onishi, M.; Uno, A.; Tanimichi, A.; Nobeyama, A.; Mori, M.; Yamada, S.; Negi, S.; Bu, X.; Kato, J.; et al. The 89-KDa PARP1 Cleavage Fragment Serves as a Cytoplasmic PAR Carrier to Induce AIF-Mediated Apoptosis. J. Biol. Chem. 2021, 296, 100046. [Google Scholar] [CrossRef]
- Soldani, C.; Lazzè, M.C.; Bottone, M.G.; Tognon, G.; Biggiogera, M.; Pellicciari, C.E.; Scovassi, A.I. Poly(ADP-Ribose) Polymerase Cleavage during Apoptosis: When and Where? Exp. Cell Res. 2001, 269, 193–201. [Google Scholar] [CrossRef]
- Castri, P.; Lee, Y.-j.; Ponzio, T.; Maric, D.; Spatz, M.; Bembry, J.; Hallenbeck, J. Poly(ADP-Ribose) Polymerase-1 and Its Cleavage Products Differentially Modulate Cellular Protection through NF-KappaB-Dependent Signaling. Biochim. Biophys. Acta 2014, 1843, 640–651. [Google Scholar] [CrossRef]
- Brown-Suedel, A.N.; Bouchier-Hayes, L. Caspase-2 Substrates: To Apoptosis, Cell Cycle Control, and Beyond. Front. Cell Dev. Biol. 2020, 8, 610022. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with Peptidases in the PANTHER Database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef]
- Ma, F.; Ghimire, L.; Ren, Q.; Fan, Y.; Chen, T.; Balasubramanian, A.; Hsu, A.; Liu, F.; Yu, H.; Xie, X.; et al. Gasdermin E Dictates Inflammatory Responses by Controlling the Mode of Neutrophil Death. Nat. Commun. 2024, 15, 386. [Google Scholar] [CrossRef]
- Dong, S.; Shi, Y.; Dong, X.; Xiao, X.; Qi, J.; Ren, L.; Xiang, Z.; Zhou, Z.; Wang, J.; Lei, X. Gasdermin E Is Required for Induction of Pyroptosis and Severe Disease during Enterovirus 71 Infection. J. Biol. Chem. 2022, 298, 101850. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.P.; Branton, W.G.; Cohen, E.A.; Koopman, G.; Kondova, I.; Gelman, B.B.; Power, C. Caspase Cleavage of Gasdermin E Causes Neuronal Pyroptosis in HIV-Associated Neurocognitive Disorder. Brain 2024, 147, 717–734. [Google Scholar] [CrossRef] [PubMed]
- Neel, D.V.; Basu, H.; Gunner, G.; Bergstresser, M.D.; Giadone, R.M.; Chung, H.; Miao, R.; Chou, V.; Brody, E.; Jiang, X.; et al. Gasdermin-E Mediates Mitochondrial Damage in Axons and Neurodegeneration. Neuron 2023, 111, 1222–1240.e9. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and Diseases. Signal Transduct. Target. Ther. 2021, 6, 128. [Google Scholar] [CrossRef]
- Liu, X.; Xia, S.; Zhang, Z.; Wu, H.; Lieberman, J. Channelling Inflammation: Gasdermins in Physiology and Disease. Nat. Rev. Drug Discov. 2021, 20, 384–405. [Google Scholar] [CrossRef] [PubMed]
- Carter, T.; Iqbal, M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024, 16, 316. [Google Scholar] [CrossRef]
- Hao, W.; Wang, L.; Li, S. Roles of the Non-Structural Proteins of Influenza A Virus. Pathogens 2020, 9, 812. [Google Scholar] [CrossRef]
- Radomski, J.P.; Słonimski, P.P.; Zagórski-Ostoja, W.; Borowicz, P. Mapping of the Influenza A Hemagglutinin Serotypes Evolution by the ISSCOR Method. Acta Biohim. Pol. 2014, 61, 441–451. [Google Scholar] [CrossRef]
- Soszynska-Jozwiak, M.; Pszczola, M.; Piasecka, J.; Peterson, J.M.; Moss, W.N.; Taras-Goslinska, K.; Kierzek, R.; Kierzek, E. Universal and Strain Specific Structure Features of Segment 8 Genomic RNA of Influenza A Virus-Application of 4-Thiouridine Photocrosslinking. J. Biol. Chem. 2021, 297, 101245. [Google Scholar] [CrossRef]
- Szutkowska, B.; Wieczorek, K.; Kierzek, R.; Zmora, P.; Peterson, J.M.; Moss, W.N.; Mathews, D.H.; Kierzek, E. Secondary Structure of Influenza A Virus Genomic Segment 8 RNA Folded in a Cellular Environment. Int. J. Mol. Sci. 2022, 23, 2452. [Google Scholar] [CrossRef]
- Dadonaite, B.; Gilbertson, B.; Knight, M.L.; Trifkovic, S.; Rockman, S.; Laederach, A.; Brown, L.E.; Fodor, E.; Bauer, D.L.V. The Structure of the Influenza A Virus Genome. Nat. Microbiol. 2019, 4, 1781–1789. [Google Scholar] [CrossRef]
- Kawabata, K.; Sato, Y.; Kubo, T.; Tokumura, A.; Nishi, H.; Morimoto, K. Phospholipid Analysis of Two Influenza A Virus-Infected Cell Lines Differing in Their Viral Replication Kinetics. Arch. Virol. 2023, 168, 132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, T.; Li, K.; Jin, Y.; Yue, J.; Ren, H.; Liang, L. Different Subtypes of Influenza Viruses Target Different Human Proteins and Pathways Leading to Different Pathogenic Phenotypes. Biomed. Res. Int. 2019, 2019, 4794910. [Google Scholar] [CrossRef] [PubMed]
- Pantin-Jackwood, M.J.; Swayne, D.E. Pathogenesis and Pathobiology of Avian Influenza Virus Infection in Birds. Rev. Sci. Tech. 2009, 28, 113–136. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.H.H.; Lee, T.W.T.; Chan, C.P.; Jin, D.Y. Influenza A Virus PB1-F2 Protein: An Ambivalent Innate Immune Modulator and Virulence Factor. J. Leukoc. Biol. 2020, 107, 763–771. [Google Scholar] [CrossRef]
- Chambers, T.M. Equine Influenza. Cold Spring Harb. Perspect. Med. 2022, 12, a038331. [Google Scholar] [CrossRef]
- Anderson, T.K.; Chang, J.; Arendsee, Z.W.; Venkatesh, D.; Souza, C.K.; Kimble, J.B.; Lewis, N.S.; Davis, C.T.; Vincent, A.L. Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harb. Perspect. Med. 2021, 11, a038737. [Google Scholar] [CrossRef]
- Klivleyeva, N.G.; Glebova, T.I.; Shamenova, M.G.; Saktaganov, N.T. Influenza A Viruses Circulating in Dogs: A Review of the Scientific Literature. Open Vet. J. 2022, 12, 676–687. [Google Scholar] [CrossRef]
- Reddy, M.K.; CA, J.; Kandi, V.; Murthy, P.M.; Harikrishna, G.V.; Reddy, S.; GR, M.; Sam, K.; Challa, S.T. Exploring the Correlation Between Influenza A Virus (H3N2) Infections and Neurological Manifestations: A Scoping Review. Cureus 2023, 15, e36936. [Google Scholar] [CrossRef]
- Nolan, K.E.; Baer, L.A.; Karekar, P.; Nelson, A.M.; Stanford, K.I.; Doolittle, L.M.; Rosas, L.E.; Hickman-Davis, J.M.; Singh, H.; Davis, I.C. Metabolic Shifts Modulate Lung Injury Caused by Infection with H1N1 Influenza A Virus. Virology 2021, 559, 111–119. [Google Scholar] [CrossRef]
- Beans, C. Researchers Getting Closer to a “Universal” Flu Vaccine. Proc. Natl. Acad. Sci. USA 2022, 119, e2123477119. [Google Scholar] [CrossRef]
- de Fougerolles, T.R.; Baïssas, T.; Perquier, G.; Vitoux, O.; Crépey, P.; Bartelt-Hofer, J.; Bricout, H.; Petitjean, A. Public Health and Economic Benefits of Seasonal Influenza Vaccination in Risk Groups in France, Italy, Spain and the UK: State of Play and Perspectives. BMC Public Health 2024, 24, 1222. [Google Scholar] [CrossRef] [PubMed]
- Grohskopf, L.A.; Ferdinands, J.M.; Blanton, L.H.; Broder, K.R.; Loehr, J. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices—United States, 2024–2025 Influenza Season. MMWR Recomm. Rep. 2024, 73, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Kamal, R.P.; Alymova, I.V.; York, I.A. Evolution and Virulence of Influenza A Virus Protein PB1-F2. Int. J. Mol. Sci. 2017, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.E.; Cleary, D.W.; Clarke, S.C. Secondary Bacterial Infections Associated with Influenza Pandemics. Front. Microbiol. 2017, 8, 1041. [Google Scholar] [CrossRef]
- Chen, W.; Calvo, P.A.; Malide, D.; Gibbs, J.; Schubert, U.; Bacik, I.; Basta, S.; O’Neill, R.; Schickli, J.; Palese, P.; et al. A Novel Influenza A Virus Mitochondrial Protein That Induces Cell Death. Nat. Med. 2001, 7, 1306–1312. [Google Scholar] [CrossRef]
- Mitzner, D.; Dudek, S.E.; Studtrucker, N.; Anhlan, D.; Mazur, I.; Wissing, J.; Jänsch, L.; Wixler, L.; Bruns, K.; Sharma, A.; et al. Phosphorylation of the Influenza A Virus Protein PB1-F2 by PKC Is Crucial for Apoptosis Promoting Functions in Monocytes. Cell Microbiol. 2009, 11, 1502–1516. [Google Scholar] [CrossRef]
- Lowy, R.J. Influenza Virus Induction of Apoptosis by Intrinsic and Extrinsic Mechanisms. Int. Rev. Immunol. 2003, 22, 425–449. [Google Scholar] [CrossRef]
- Kakkola, L.; Denisova, O.V.; Tynell, J.; Viiliäinen, J.; Ysenbaert, T.; Matos, R.C.; Nagaraj, A.; Öhman, T.; Kuivanen, S.; Paavilainen, H.; et al. Anticancer Compound ABT-263 Accelerates Apoptosis in Virus-Infected Cells and Imbalances Cytokine Production and Lowers Survival Rates of Infected Mice. Cell Death Dis. 2013, 4, e742. [Google Scholar] [CrossRef]
- Leitl, K.D.; Sperl, L.E.; Hagn, F. Preferred Inhibition of Pro-Apoptotic Bak by BclxL via a Two-Step Mechanism. Cell Rep. 2024, 43, 114526. [Google Scholar] [CrossRef]
- Wang, B.; Mai, Z.; Du, M.; Wang, L.; Yang, F.; Ma, Y.; Wang, X.; Chen, T. BCL-XL Directly Retrotranslocates the Monomeric BAK. Cell Signal 2019, 61, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Tu, Z.; Yang, F.; Mai, Z.; Chen, H.; Tang, Q.; Ye, X.; Wang, K.; Wang, X.; Chen, T. Evaluating the Inhibitory Priority of Bcl-XL to Bad, TBid and Bax by Using Live-Cell Imaging Assay. Cytom. Part A 2021, 99, 1091–1101. [Google Scholar] [CrossRef]
- LaTourrette, K.; Holste, N.M.; Rodriguez-Peña, R.; Leme, R.A.; Garcia-Ruiz, H. Genome-Wide Variation in Betacoronaviruses. J. Virol. 2021, 95, e0049621. [Google Scholar] [CrossRef]
- Li, X.; Mi, Z.; Liu, Z.; Rong, P. SARS-CoV-2: Pathogenesis, Therapeutics, Variants, and Vaccines. Front. Microbiol. 2024, 15, 1334152. [Google Scholar] [CrossRef]
- Bai, C.; Zhong, Q.; Gao, G.F. Overview of SARS-CoV-2 Genome-Encoded Proteins. Sci. China Life Sci. 2022, 65, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Tavakolifard, N.; Moeini, M.; Haddadpoor, A.; Heidari, K.; Rezaee, M.; Amini, Z. Clinical Symptoms of COVID-19 and Their Association with Disease Outcome. Adv. Biomed. Res. 2022, 11, 2. [Google Scholar] [CrossRef]
- Trougakos, I.P.; Stamatelopoulos, K.; Terpos, E.; Tsitsilonis, O.E.; Aivalioti, E.; Paraskevis, D.; Kastritis, E.; Pavlakis, G.N.; Dimopoulos, M.A. Insights to SARS-CoV-2 Life Cycle, Pathophysiology, and Rationalized Treatments That Target COVID-19 Clinical Complications. J. Biomed. Sci. 2021, 28, 9. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Ge, W.; Lei, Z.; Luo, W.; Liu, Y.; Guan, Z.; Chen, L.; Yu, Z.; Shen, M.; Hu, D.; et al. SARS-CoV-2 N Protein Enhances the Anti-Apoptotic Activity of MCL-1 to Promote Viral Replication. Signal Transduct. Target. Ther. 2023, 8, 194. [Google Scholar] [CrossRef]
- Cheng, L.; Rui, Y.; Wang, Y.; Chen, S.; Su, J.; Yu, X.F. A Glimpse into Viral Warfare: Decoding the Intriguing Role of Highly Pathogenic Coronavirus Proteins in Apoptosis Regulation. J. Biomed. Sci. 2024, 31, 70. [Google Scholar] [CrossRef]
- Merino, V.F.; Yan, Y.; Ordonez, A.A.; Bullen, C.K.; Lee, A.; Saeki, H.; Ray, K.; Huang, T.; Jain, S.K.; Pomper, M.G. Nucleolin Mediates SARS-CoV-2 Replication and Viral-Induced Apoptosis of Host Cells. Antivir. Res. 2023, 211, 105550. [Google Scholar] [CrossRef]
- Miller, A.N.; Houlihan, P.R.; Matamala, E.; Cabezas-bratesco, D.; Lee, G.Y.; Cristofori-armstrong, B.; Dilan, T.L.; Sanchez-martinez, S.; Matthies, D.; Yan, R.; et al. The SARS-CoV-2 Accessory Protein Orf3a Is Not an Ion Channel, but Does Interact with Trafficking Proteins. eLife 2023, 12, e84477. [Google Scholar] [CrossRef]
- Premeaux, T.A.; Yeung, S.T.; Bukhari, Z.; Bowler, S.; Alpan, O.; Gupta, R.; Ndhlovu, L.C. Emerging Insights on Caspases in COVID-19 Pathogenesis, Sequelae, and Directed Therapies. Front. Immunol. 2022, 13, 842740. [Google Scholar] [CrossRef]
- Yapasert, R.; Khaw-On, P.; Banjerdpongchai, R. Coronavirus Infection-Associated Cell Death Signaling and Potential Therapeutic Targets. Molecules 2021, 26, 7459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ejikemeuwa, A.; Gerzanich, V.; Nasr, M.; Tang, Q.; Simard, J.M.; Zhao, R.Y. Understanding the Role of SARS-CoV-2 ORF3a in Viral Pathogenesis and COVID-19. Front. Microbiol. 2022, 13, 854567. [Google Scholar] [CrossRef] [PubMed]
- Kakavandi, S.; Zare, I.; VaezJalali, M.; Dadashi, M.; Azarian, M.; Akbari, A.; Ramezani Farani, M.; Zalpoor, H.; Hajikhani, B. Structural and Non-Structural Proteins in SARS-CoV-2: Potential Aspects to COVID-19 Treatment or Prevention of Progression of Related Diseases. Cell Commun. Signal 2023, 21, 110. [Google Scholar] [CrossRef] [PubMed]
- Ryback, R.; Eirin, A. Mitochondria, a Missing Link in COVID-19 Heart Failure and Arrest? Front. Cardiovasc. Med. 2022, 8, 830024. [Google Scholar] [CrossRef]
- Scozzi, D.; Cano, M.; Ma, L.; Zhou, D.; Zhu, J.H.; O’Halloran, J.A.; Goss, C.; Rauseo, A.M.; Liu, Z.; Sahu, S.K.; et al. Circulating Mitochondrial DNA Is an Early Indicator of Severe Illness and Mortality from COVID-19. JCI Insight 2021, 6, e143299. [Google Scholar] [CrossRef]
- Miao, J.; Chen, G.G.; Chun, S.Y.; Yun, J.P.; Chak, E.C.W.; Ho, R.L.K.; Lai, P.B.S. Adenovirus-Mediated TBid Overexpression Results in Therapeutic Effects on P53-Resistant Hepatocellular Carcinoma. Int. J. Cancer 2006, 119, 1985–1993. [Google Scholar] [CrossRef]
- Yan, B.; Ouyang, Q.; Zhao, Z.; Cao, F.; Wang, T.; Jia, X.; Meng, Y.; Jiang, S.; Liu, J.; Chen, R.; et al. Potent Killing of HBV-Related Hepatocellular Carcinoma by a Chimeric Protein of Anti-HBsAg Single-Chain Antibody and Truncated Bid. Biomaterials 2013, 34, 4880–4889. [Google Scholar] [CrossRef]
- Huelsmann, P.M.; Hofmann, A.D.; Knoepfel, S.A.; Popp, J.; Rauch, P.; Di Giallonardo, F.; Danke, C.; Gueckel, E.; Schambach, A.; Wolff, H.; et al. A Suicide Gene Approach Using the Human Pro-Apoptotic Protein TBid Inhibits HIV-1 Replication. BMC Biotechnol. 2011, 11, 4. [Google Scholar] [CrossRef]
- Klinnert, S.; Schenkel, C.D.; Freitag, P.C.; Günthard, H.F.; Plückthun, A.; Metzner, K.J. Targeted Shock-and-Kill HIV-1 Gene Therapy Approach Combining CRISPR Activation, Suicide Gene TBid and Retargeted Adenovirus Delivery. Gene Ther. 2023, 31, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Shoraka, S.; Hosseinian, S.M.; Hasibi, A.; Ghaemi, A.; Mohebbi, S.R. The Role of Hepatitis B Virus Genome Variations in HBV-Related HCC: Effects on Host Signaling Pathways. Front. Microbiol. 2023, 14, 1213145. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, C.; Zhao, L.; Tian, Z. HBV DNA Polymerase Regulates Tumor Cell Glycogen to Enhance the Malignancy of HCC Cells. Hepatol. Commun. 2024, 8, e0387. [Google Scholar] [CrossRef]
- Khan, M.N.; Mao, B.; Hu, J.; Shi, M.; Wang, S.; Rehman, A.U.; Li, X. Tumor-Associated Macrophages and CD8+ T Cells: Dual Players in the Pathogenesis of HBV-Related HCC. Front. Immunol. 2024, 15, 1472430. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Gao, Y.; Fu, J.; Xie, R.; Zhu, Z.; Hong, Z.; Meng, L.; Du, S.; Liu, J.; Wang, F.S.; et al. Epigenetic Regulation of HBV-Specific Tumor-Infiltrating T Cells in HBV-Related HCC. Hepatology 2023, 78, 943–958. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Sun, Q.; Yao, H.; Shi, R.; Wang, C.; Ma, Z.; Xu, H.; Zhou, G.; Cheng, Z.; Xia, H. Single-Cell Landscape Identifies the Immunophenotypes and Microenvironments of HBV-Positive and HBV-Negative Liver Cancer. Hepatol. Commun. 2024, 8, e0364. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Y.; Ning, Z.; Deng, Y.; Li, B.; Sun, Y.; Meng, Z. Metabolic Self-Feeding in HBV-Associated Hepatocarcinoma Centered on Feedback between Circulation Lipids and the Cellular MAPK/MTOR Axis. Cell Commun. Signal. 2024, 22, 280. [Google Scholar] [CrossRef]
- Ringelhan, M.; Schuehle, S.; van de Klundert, M.; Kotsiliti, E.; Plissonnier, M.L.; Faure-Dupuy, S.; Riedl, T.; Lange, S.; Wisskirchen, K.; Thiele, F.; et al. HBV-Related HCC Development in Mice Is STAT3 Dependent and Indicates an Oncogenic Effect of HBx. JHEP Rep. 2024, 6, 101128. [Google Scholar] [CrossRef]
- Li, Y.T.; Wu, H.L.; Liu, C.J. Molecular Mechanisms and Animal Models of HBV-Related Hepatocellular Carcinoma: With Emphasis on Metastatic Tumor Antigen 1. Int. J. Mol. Sci. 2021, 22, 9380. [Google Scholar] [CrossRef]
- Yeh, S.H.; Li, C.L.; Lin, Y.Y.; Ho, M.C.; Wang, Y.C.; Tseng, S.T.; Chen, P.J. Hepatitis B Virus DNA Integration Drives Carcinogenesis and Provides a New Biomarker for HBV-Related HCC. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 921–929. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, J.; Gong, L.; Shu, Z.; Xiang, D.; Zhang, X.; Bi, K.; Diao, H. Hepatitis B Virus P Protein Initiates Glycolytic Bypass in HBV-Related Hepatocellular Carcinoma via a FOXO3/MiRNA-30b-5p/MINPP1 Axis. J. Exp. Clin. Cancer Res. 2021, 40, 1. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Verma, R.K.; Prinja, S.; Dhiman, R.K. Cost-Effectiveness of Sorafenib for Treatment of Advanced Hepatocellular Carcinoma in India. J. Clin. Exp. Hepatol. 2019, 9, 468–475. [Google Scholar] [CrossRef]
- Farasati Far, B.; Rabie, D.; Hemati, P.; Fooladpanjeh, P.; Faal Hamedanchi, N.; Broomand Lomer, N.; Karimi Rouzbahani, A.; Naimi-Jamal, M.R. Unresectable Hepatocellular Carcinoma: A Review of New Advances with Focus on Targeted Therapy and Immunotherapy. Livers 2023, 3, 121–160. [Google Scholar] [CrossRef]
- Kumari, R.; Sahu, M.K.; Tripathy, A.; Uthansingh, K.; Behera, M. Hepatocellular Carcinoma Treatment: Hurdles, Advances and Prospects. Hepat. Oncol. 2018, 5, HEP08. [Google Scholar] [CrossRef] [PubMed]
- Hanif, H.; Ali, M.J.; Khan, I.W.; Luna-Cuadros, M.A.; Khan, M.M.; Tan-Yeung Lau, D.; Susheela, A.T. Update on the Applications and Limitations of Alpha-Fetoprotein for Hepatocellular Carcinoma. World J. Gastroenterol. 2022, 28, 216–229. [Google Scholar] [CrossRef]
- Inoue, J.; Sato, K.; Ninomiya, M.; Masamune, A. Envelope Proteins of Hepatitis B Virus: Molecular Biology and Involvement in Carcinogenesis. Viruses 2021, 13, 1124. [Google Scholar] [CrossRef] [PubMed]
- Nastri, B.M.; Pagliano, P.; Zannella, C.; Folliero, V.; Masullo, A.; Rinaldi, L.; Galdiero, M.; Franci, G. HIV and Drug-Resistant Subtypes. Microorganisms 2023, 11, 221. [Google Scholar] [CrossRef]
- Krupkin, M.; Jackson, L.N.; Ha, B.; Puglisi, E.V. Advances in Understanding the Initiation of HIV-1 Reverse Transcription. Curr. Opin. Struct. Biol. 2020, 65, 175–183. [Google Scholar] [CrossRef]
- Dwivedi, R.; Prakash, P.; Kumbhar, B.V.; Balasubramaniam, M.; Dash, C. HIV-1 Capsid and Viral DNA Integration. mBio 2024, 15, e00212-22. [Google Scholar] [CrossRef]
- Zila, V.; Margiotta, E.; Turoňová, B.; Müller, T.G.; Zimmerli, C.E.; Mattei, S.; Allegretti, M.; Börner, K.; Rada, J.; Müller, B.; et al. Cone-Shaped HIV-1 Capsids Are Transported through Intact Nuclear Pores. Cell 2021, 184, 1032–1046.e18. [Google Scholar] [CrossRef]
- Ward, A.B.; Wilson, I.A. Insights into the Trimeric HIV-1 Envelope Glycoprotein Structure. Trends Biochem. Sci. 2015, 40, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.Y.; Bukrinsky, M.I. HIV-1 Accessory Proteins: VpR. Methods Mol. Biol. 2014, 1087, 125. [Google Scholar] [CrossRef]
- Clark, E.; Nava, B.; Caputi, M. Tat Is a Multifunctional Viral Protein That Modulates Cellular Gene Expression and Functions. Oncotarget 2017, 8, 27569–27581. [Google Scholar] [CrossRef]
- Jayaraman, B.; Fernandes, J.D.; Yang, S.; Smith, C.; Frankel, A.D. Highly Mutable Linker Regions Regulate HIV-1 Rev Function and Stability. Sci. Rep. 2019, 9, 5139. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. Editorial: Forty Years of Waiting for Prevention and Cure of HIV Infection—Ongoing Challenges and Hopes for Vaccine Development and Overcoming Antiretroviral Drug Resistance. Med. Sci. Monit. 2024, 30, e944600. [Google Scholar] [CrossRef]
- Sankaranantham, M. HIV—Is a Cure Possible? Indian J. Sex. Transm. Dis. AIDS 2019, 40, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sonti, S.; Sharma, A.L.; Tyagi, M. HIV-1 Persistence in the CNS: Mechanisms of Latency, Pathogenesis and an Update on Eradication Strategies. Virus Res. 2021, 303, 198523. [Google Scholar] [CrossRef]
- Veenhuis, R.T.; Abreu, C.M.; Shirk, E.N.; Gama, L.; Clements, J.E. HIV Replication and Latency in Monocytes and Macrophages. Semin. Immunol. 2021, 51, 101472. [Google Scholar] [CrossRef]
- Busca, A.; Saxena, M.; Kumar, A. Critical Role for Antiapoptotic Bcl-XL and Mcl-1 in Human Macrophage Survival and Cellular IAP1/2 (CIAP1/2) in Resistance to HIV-Vpr-Induced Apoptosis. J. Biol. Chem. 2012, 287, 15118–15133. [Google Scholar] [CrossRef]
- Swingler, S.; Mann, A.M.; Zhou, J.; Swingler, C.; Stevenson, M. Apoptotic Killing of HIV-1–Infected Macrophages Is Subverted by the Viral Envelope Glycoprotein. PLoS Pathog. 2007, 3, e134. [Google Scholar] [CrossRef]
- Holec, A.D.; Mandal, S.; Prathipati, P.K.; Destache, C.J. Nucleotide Reverse Transcriptase Inhibitors: A Thorough Review, Present Status and Future Perspective as HIV Therapeutics. Curr. HIV Res. 2017, 15, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Naggie, S.; Hicks, C. Protease Inhibitor-Based Antiretroviral Therapy in Treatment-Naive HIV-1-Infected Patients: The Evidence behind the Options. J. Antimicrob. Chemother. 2010, 65, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Rayeed, N.; Novak, R.M.; Li, J.; Palella, F.J.; Buchacz, K. INSTI-Based Initial Antiretroviral Therapy in Adults with HIV, the HIV Outpatient Study, 2007–2018. AIDS Res. Hum. Retroviruses 2021, 37, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Orkin, C.; Cahn, P.; Castagna, A.; Emu, B.; Harrigan, P.R.; Kuritzkes, D.R.; Nelson, M.; Schapiro, J. Opening the Door on Entry Inhibitors in HIV: Redefining the Use of Entry Inhibitors in Heavily Treatment Experienced and Treatment-Limited Individuals Living with HIV. HIV Med. 2022, 23, 936–946. [Google Scholar] [CrossRef]
- Wilkin, T.J.; Gulick, R.M. CCR5 Antagonism in HIV Infection: Current Concepts and Future Opportunities. Annu. Rev. Med. 2012, 63, 81–93. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The Blood-Brain Barrier: Structure, Regulation, and Drug Delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef]
Virus | Viral Proteins | Impact on Bid and Bid-Associated Mechanisms | Apoptotic Pathway Impact | References |
---|---|---|---|---|
HBV | HBx | HBx reduces Bid levels | Resistance to Fas- and TNF-α-mediated apoptosis | [107,108] |
HSV-2 | Misfolded viral proteins | The accumulation of misfolded viral proteins leads to ER stress and the subsequent activation of caspase-2 that cleaves Bid | ER stress-induced intrinsic apoptosis, leading to pyroptosis | [75] |
IAV | PB1-F2 | PB1-F2 synergizes with tBid in MOM permeabilization | PB1-F2/tBid-mediated intrinsic apoptosis promoting viral replication and immune evasion | [109] |
SARS-CoV-2 | ORF3a | ORF3a activates caspase-8, leading to Bid cleavage | ORF3a-dependent Bid-mediated apoptosis, contributing to viral propagation and lung injury | [111,112,113,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyżewski, Z.; Gregorczyk-Zboroch, K.P.; Mielcarska, M.B.; Świtlik, W.; Niedzielska, A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int. J. Mol. Sci. 2025, 26, 2385. https://doi.org/10.3390/ijms26062385
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. International Journal of Molecular Sciences. 2025; 26(6):2385. https://doi.org/10.3390/ijms26062385
Chicago/Turabian StyleWyżewski, Zbigniew, Karolina Paulina Gregorczyk-Zboroch, Matylda Barbara Mielcarska, Weronika Świtlik, and Adrianna Niedzielska. 2025. "Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections" International Journal of Molecular Sciences 26, no. 6: 2385. https://doi.org/10.3390/ijms26062385
APA StyleWyżewski, Z., Gregorczyk-Zboroch, K. P., Mielcarska, M. B., Świtlik, W., & Niedzielska, A. (2025). Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. International Journal of Molecular Sciences, 26(6), 2385. https://doi.org/10.3390/ijms26062385