What Is Next for Refractory Colorectal Cancer CRC? Looking Beyond SUNLIGHT, FRESCO2, RECURSE and CORRECT
Abstract
:1. Introduction
2. Refractory mCRC Disease
2.1. A Brief Summary of the Drugs Currently Indicated for Refractory Disease
2.1.1. Correct Trial and Regorafenib
2.1.2. RECOURSE, SUNLIGHT and Trifluridine/Tipiracil (FTD/TPI)
2.1.3. FRESCO2 and Fruquintinib
Study | Treatment | N pts | mOS | HR mOS | mPFS | HR mPFS | RR (%) | Main AEs | Prior Biologics |
---|---|---|---|---|---|---|---|---|---|
CORRECT Grothery et al. [6] | Regorafenib | 505 | 6.4 | HR 0.77 p = 0.0052 | 1.9 | HR 0.49 p < 0.0001 | 1.0 | HFSR Fatigue | 100% bevacizumab 100% anti-EGFR |
RECOURSE Mayer et al. [9] | TAS-102 | 534 | 7.1 | HR 0.68 p < 0.0001 | 2.0 | HR 0.48 p < 0.0001 | 1.6 | Neutropenia Diarrhea | 100% bevacizumab 100% anti-EGFR |
FRESCO Li et al. [19] | Fruquintinib | 278 | 9.3 | HR 0.65 p < 0.001 | 3.7 | HR 0.26 p < 0.001 | 4.7 | HFSR HTN | 30% bevacizumab 14% anti-EGFR |
SUNLIGHT Prager et al. [11] | TAS-102 + Beva | 246 | 10.8 | HR 0.61 p < 0.001 | 5.6 | HR 0.44 p < 0.001 | 6.3% | Neutropenia HTN | 71% bevacizumab 94% anti-EGFR |
FRESCO-2 Dasari et al. [17] | Fruquintinib | 516 | 7.1 | HR 0.66 p < 0.001 | 3.7 | HR 0.32 p < 0.001 | 2% | HFSR HTN | 97% anti-VEGF 39% anti-EGFR |
RAMTAS Annals, 2024 [16] | TAS-102 + Ramucirumab | 213 | 7.46 | HR 0.871 p = 0.1941 | 2.37 | HR 0.774 p = 0.0110 | 1.9% | Neutropenia Leukopenia | 87% bevacizumab |
2.2. Ongoing Clinical Trials with RAS Inhibitors
2.3. Ongoing Clinical Studies with Combination Therapies Using Immune Checkpoint Inhibitors
2.4. Ongoing Clinical Studies with Drugs Targeting Other Specific Mutations
2.4.1. ERB2 Amplification
2.4.2. Braf V600E
2.4.3. NTRK
Study | Interventions | Patients (n) | ORR (%) | mPFS (m) | mOS (m) | Grade ≥ 3 AEs (% of Patients) |
---|---|---|---|---|---|---|
HERACLES-A (phase II) [47] | Trastuzumab + lapatinib | 35 | 30 | 4.7 | 10.0 | 22%, including fatigue (9%) and LVSD (6%) |
MyPathway (phase II) [48] | Trastuzumab + pertuzumab | 57 | 32 | 2.9 | 11.5 | 37%, including hypokalemia (5%) and abdominal pain (3%) |
HERACLES-B (phase II) [51] | Pertuzumab + T-DM1 | 31 | 9.7 | 4.1 | NR | Thrombocytopenia (6%) |
TRIUMPH (phase II) [65] | Trastuzumab + pertuzumab | 30 | 33 (ctDNA evaluable) | 3.1 | 8.8 | NR |
TAPUR (phase II) [49] | Trastuzumab + pertuzumab | 28 | 25; DCR 54 | 12 weeks | 60 weeks | 10.5%, including anemia, infusion reaction, diarrhea, LVSD, and lymphocyte count reduction |
DESTINY-CRC01 (phase II) [50] | T-DXd 6.4 mg/kg | 53 | 45.3 | 6.9 | 15.5 | 85%, including neutrophil count reduction (22%), anemia (14%), and platelet count decreased (10%) |
DESTINY-CRC02 (phase II) [66] | T-DXd 6.4 mg/kg | 40 | 27.5 | 5.8 | NE | 41%, including neutrophil count reduction (26%), anemia (27%), and platelet count decreased (10%) |
T-DXd 5.4 mg/kg | 82 | 37.8 | 5.5 | 13.4 | 49%, including neutrophil count reduction (29%) and nausea (7%) | |
DESTINY-PanTumor01 (phase II) [67] | T-DXd 5.4 mg/kg | 20 | 20 | NR | NR | NR |
MOUNTAINEER (phase II) [68] | Trastuzumab + tucatinib | 84 | 38.1 | 8.1 | 23.9 | Hypertension (7%) and urinary tract infection (6%) |
Tucatinib | 30 | - | NR | 21.1 | AST increase (6.7%) | |
HER2-FUSCC (phase II) [69] | Trastuzumab + pyrotinib | 18 | 22.2 | 3.4 | NR | Diarrhea (65%) |
CodeBreaK 100 (phase II) [22] | Sotorasib | 62 | 9.7 | 4.0 | 10.6 | 12%, including diarrhea, fatigue, increased alanine aminotransferase, and increased aspartate aminotransferase |
CodeBreaK 300 (phase III) [28] | Sotorasib 960 mg + panitumumab | 53 | 30.2 | 5.6 vs. 2.0 | NE vs. 10.3 | 38.5%, including dermatitis acneiform (7.7%), hypomagnesemia (5.7%), and rash (7.7%) |
Sotorasib 240 mg + panitumumab | 53 | 7.5 | 1.8 vs. 10.6 | NE vs. 10.3 | 7.5%, including dermatitis acneiform (1.9%) and hypomagnesemia (1.9%) | |
KRYSTAL-1 (phase I–II) [27] | Adagrasib | 44 | 19 | 5.6 | 19.8 | 27%, including diarrhea (9%) and fatigue (7%) |
Adagrasib + cetuximab | 32 | 46 | 6.9 | 13.4 | 16%, including diarrhea, dermatitis acneiform, stomatitis, and infusion-related reactions | |
BEACON (phase III) [70] | Encorafenib + cetuximab + binimetinib | 224 | 26.8 | 4.5 vs. 1.5 | 9.3 vs. 5.9 | 65.8% |
Encorafenib + cetuximab | 220 | 19.5 | 4.3 vs. 1.5 | 9.3 vs. 5.9 | 57.4% | |
Chemotherapy | 221 | 1.8 | — | — | 64.2% | |
Yaeger et al. [71] | Vemurafenib + panitumumab | 15 | 13.0 | 7.6 | 3.2 | 20% |
Morris et al. [56] | Encorafenib + cetuximab + nivolumab | 23 | 48.0 | 15.1 | 7.4 | 19% |
Tabernero et al. [58] | Encorafenib + cetuximab + alpelisib vs. Encorafenib + cetuximab | 52 vs. 50 | 27 vs. 22 | 15.2 vs. not reached | 5.4 vs. 4.2 | 79% and 58% |
SWOG S1406 [72] | Vemurafenib + cetuximab + irinotecan vs. cetuximab + irinotecan | 50 vs. 56 | 17 vs. 4 | 9.6 vs. 5.9 | 4.2 vs. 2.0 | 30% vs 7% |
Hong et al. [31] | Larotrectinib | 153 (8 colon) | 79 (50 colon) | 25.8 | 44.4 | 13% |
Demetri et al. [73] | Entrectinib | 121 (10 colon) | 61 (20 colon) | 13.8 (2.8 colon) | 33.8 (16 colon) | Increased weight, anemia, nervous system disorder |
3. Patients with Heavily Pretreated mCRC Not Eligible to Target Therapy or Clinical Trials
3.1. Role of Treatments Rechallenge
3.2. “Old Drugs”: The Case of Mitomycin C Combined with Capecitabine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ree, A.H.; Høye, E.; Esbensen, Y.; Beitnes, A.R.; Negård, A.; Bernklev, L.; Tetlie, L.K.; Fretland, Å.A.; Hamre, H.M.; Kersten, C.; et al. Complete response of metastatic microsatellite-stable BRAF V600E colorectal cancer to first-line oxaliplatin-based chemotherapy and immune checkpoint blockade. Oncoimmunology 2024, 13, 2372886. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robert, C.; Ribas, A.; Hamid, O.; Daud, A.; Wolchok, J.D.; Joshua, A.M.; Hwu, W.J.; Weber, J.S.; Gangadhar, T.C.; Joseph, R.W.; et al. Durable Complete Response After Discontinuation of Pembrolizumab in Patients with Metastatic Melanoma. J. Clin. Oncol. 2018, 36, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
- Debien, V.; Agostinetto, E.; Bruzzone, M.; Ceppi, M.; Martins-Branco, D.; Molinelli, C.; Jacobs, F.; Nader-Marta, G.; Lambertini, M.; de Azambuja, E. The Impact of Initial Tumor Response on Survival Outcomes of Patients with HER2-Positive Advanced Breast Cancer Treated with Docetaxel, Trastuzumab, and Pertuzumab: An Exploratory Analysis of the CLEOPATRA Trial. Clin. Breast Cancer 2024, 24, 421–430.e3. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Li, J.; Qin, S.; Xu, R.; Yau, T.C.C.; Ma, B.; Pan, H.; Xu, J.; Bai, Y.; Chi, Y.; Wang, L.; et al. Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2015, 16, 619–629. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.S.; Ou, F.S.; Ahn, D.H.; Boland, P.M.; Ciombor, K.K.; Heying, E.N.; Dockter, T.J.; Jacobs, N.L.; Pasche, B.C.; Cleary, J.M.; et al. Regorafenib dose-optimisation in patients with refractory metastatic colorectal cancer (ReDOS): A randomised, multicentre, open-label, phase 2 study. Lancet Oncol. 2019, 20, 1070–1082. [Google Scholar] [CrossRef]
- Mayer, R.J.; Van Cutsem, E.; Falcone, A.; Yoshino, T.; Garcia-Carbonero, R.; Mizunuma, N.; Yamazaki, K.; Shimada, Y.; Tabernero, J.; Komatsu, Y.; et al. RECOURSE Study Group. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N. Engl. J. Med. 2015, 372, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kim, T.W.; Shen, L.; Sriuranpong, V.; Pan, H.; Xu, R.; Guo, W.; Han, S.W.; Liu, T.; Park, Y.S.; et al. Results of a Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Trifluridine/Tipiracil (TAS-102) Monotherapy in Asian Patients with Previously Treated Metastatic Colorectal Cancer: The TERRA Study. J. Clin. Oncol. 2018, 36, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Prager, G.W.; Taieb, J.; Fakih, M.; Ciardiello, F.; Van Cutsem, E.; Elez, E.; Cruz, F.M.; Wyrwicz, L.; Stroyakovskiy, D.; Pápai, Z.; et al. Trifluridine-Tipiracil and Bevacizumab in Refractory Metastatic Colorectal Cancer. N. Engl. J. Med. 2023, 388, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Zaniboni, A. Sunglasses for Sunlight: Considerations on New Treatment Opportunities for Refractory Colorectal Cancer. Cancers 2024, 16, 1348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- André, T.; Falcone, A.; Shparyk, Y.; Moiseenko, F.; Polo-Marques, E.; Csöszi, T.; Campos-Bragagnoli, A.; Liposits, G.; Chmielowska, E.; Aubel, P.; et al. Trifluridine-tipiracil plus bevacizumab versus capecitabine plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer ineligible for intensive therapy (SOLSTICE): A randomised, open-label phase 3 study. Lancet Gastroenterol. Hepatol. 2023, 8, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Danielewicz, I.; Saunders, M.P.; Pfeiffer, P.; Argilés, G.; Borg, C.; Glynne-Jones, R.; Punt, C.J.A.; Van de Wouw, A.J.; Fedyanin, M.; et al. First-line trifluridine/tipiracil + bevacizumab in patients with unresectable metastatic colorectal cancer: Final survival analysis in the TASCO1 study. Br. J. Cancer 2022, 126, 1548–1554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciracì, P.; Conca, V.; Moretto, R.; Antoniotti, C.; Ambrosini, M.; Murgioni, S.; Gori, G.; Russo, A.; Bergamo, F.; Randon, G.; et al. Trifluridine/tipiracil plus capecitabine and bevacizumab as upfront treatment for metastatic colorectal cancer: Results of the phase 1 TriComB study. J. Clin. Oncol. 2024, 42, 3558. [Google Scholar] [CrossRef]
- Kasper-Virchow, S.; Hofheinz, R.D.; Stintzing, S.; Dechow, T.N.; Ettrich, T.J.; Sinn, M.; Roderburg, C.; von Weikersthal, L.F.; Graeven, U.; Mueller, C.; et al. LBA25 Randomized phase III trial of ramucirumab in combination with TAS102 (Trifluridin/Tipiracil) vs. TAS102 monotherapy in heavily pretreated metastatic colorectal cancer: The RAMTAS/IKF643 trial of the German AIO (AIO-KRK-0316). Ann. Oncol. 2024, 35 (Suppl. S2), 1–72. [Google Scholar] [CrossRef]
- Dasari, A.; Lonardi, S.; Garcia-Carbonero, R.; Elez, E.; Yoshino, T.; Sobrero, A.; Yao, J.; García-Alfonso, P.; Kocsis, J.; Cubillo Gracian, A.; et al. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): An international, multicentre, randomised, double-blind, phase 3 study. Lancet 2023, 402, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Nukatsuka, M.; Fujioka, A.; Nagase, H.; Tanaka, G.; Hayashi, H. Evaluation of a Novel Combination Therapy, Based on Trifluridine/Tipiracil and Fruquintinib, against Colorectal Cancer. Chemotherapy 2023, 68, 102–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Wang, T.; Wu, Z.; Li, Y.; Ma, H.; Wang, L.; Lei, S.; Chen, W. Fruquintinib in combination with sintilimab or TAS-102 as third-line or above treatment in patients with metastatic colorectal cancer: A real-world study. Transl. Cancer Res. 2023, 12, 3034–3044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, J.; Wang, Y.; Xu, J.; Li, J.; Wang, T.; Zhang, Y.; Bai, Y. A Retrospective Study of Trifluridine/Tipiracil with Fruquintinib in Patients with Chemorefractory Metastatic Colorectal Cancer. J. Clin. Med. 2023, 13, 57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dinu, D.; Dobre, M.; Panaitescu, E.; Bîrlă, R.; Iosif, C.; Hoara, P.; Caragui, A.; Boeriu, M.; Constantinoiu, S.; Ardeleanu, C. Prognostic significance of KRAS gene mutations in colorectal cancer—Preliminary study. J. Med. Life 2015, 7, 581–587. [Google Scholar]
- Fakih, M.G.; Kopetz, S.; Kuboki, Y.; Kim, T.W.; Munster, P.N.; Krauss, J.C.; Falchook, G.S.; Han, S.-W.; Heinemann, V.; Muro, K.; et al. Sotorasib for previously treated colorectal cancers with KRASG12C mutation (CodeBreaK100): A prespecified analysis of a single-arm, phase 2 trial. Lancet Oncol. 2021, 23, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L. ESMO 2021—Highlights in colorectal cancer. MEMO—Mag. Eur. Med. Oncol. 2022, 15, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Qunaj, L.; May, M.S.; Neugut, A.I.; Herzberg, B.O. Prognostic and therapeutic impact of the KRAS G12C mutation in colorectal cancer. Front. Oncol. 2023, 13, 1252516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miyashita, H.; Hong, D.S. Combining EGFR and KRAS G12C Inhibitors for KRAS G12C Mutated Advanced Colorectal Cancer. J. Cancer Immunol. 2024, 6, 62–69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amodio, V.; Yaeger, R.; Arcella, P.; Cancelliere, C.; Lamba, S.; Lorenzato, A.; Arena, S.; Montone, M.; Mussolin, B.; Bian, Y.; et al. EGFR Blockade Reverts Resistance to KRASG12C Inhibition in Colorectal Cancer. Cancer Discov. 2020, 10, 1129–1139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yaeger, R.; Uboha, N.V.; Pelster, M.S.; Bekaii-Saab, T.S.; Barve, M.; Saltzman, J.; Sabari, J.K.; Peguero, J.A.; Paulson, A.S.; Janne, P.A.; et al. Efficacy and Safety of Adagrasib plus Cetuximab in Patients with KRASG12C-Mutated Metastatic Colorectal Cancer. Cancer Discov. 2024, 14, 982–993. [Google Scholar] [CrossRef]
- Fakih, M.G.; Salvatore, L.; Esaki, T.; Modest, D.P.; Lopez-Bravo, D.P.; Taieb, J.; Karamouzis, M.V.; Ruiz-Garcia, E.; Kim, T.-W.; Kuboki, Y.; et al. Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated, KRASG12C. N. Engl. J. Med. 2023, 389, 2125–2139. [Google Scholar] [CrossRef]
- Desai, J.; Alonso, G.; Kim, S.H.; Cervantes, A.; Karasic, T.; Medina, L.; Shacham-Shmueli, E.; Cosman, R.; Falcon, A.; Gort, E.; et al. Divarasib plus cetuximab in KRAS G12C-positive colorectal cancer: A phase 1b trial. Nat. Med. 2023, 30, 271–278. [Google Scholar] [CrossRef]
- Xu, R.-H.; Xu, Y.; Yan, D.; Munster, P.; Ruan, D.; Deng, Y.; Pan, H.; Underhill, C.; Richardson, G.; Nordman, I.; et al. 550O Safety and efficacy of D-1553 in combination with cetuximab in KRAS G12C mutated colorectal cancer (CRC): A phase II studytle. Ann. Oncol. 2023, 34, S410–S411. [Google Scholar] [CrossRef]
- Hong, D.S.; Kuboki, Y.; Strickler, J.H.; Fakih, M.; Houssiau, H.; Price, T.J.; Elez, E.; Siena, S.; Chan, E.; Nolte-Hippenmeyer, J.; et al. Sotorasib (Soto) plus panitumumab (Pmab) and FOLFIRI for previously treated KRAS G12C-mutated metastatic colorectal cancer (mCRC): CodeBreaK 101 phase 1b safety and efficacy. J. Clin. Oncol. 2023, 41 (Suppl. S16), 3513. [Google Scholar] [CrossRef]
- Clarke, J.M.; Felip, E.; Li, B.T.; Ruffinelli, J.C.; Garrido, P.; Zugazagoitia, J.; Goldberg, S.; Ramalingam, S.; Victoria, I.; Puri, S.; et al. MA0605 codeBreaK 101: Safety efficacy of sotorasib with carboplatin pemetrexed in KRAS G12C-mutated advanced NSCLC. J. Thorac. Oncol. 2023, 18, S118–S119. [Google Scholar] [CrossRef]
- Sakata, S.; Akamatsu, H.; Azuma, K.; Uemura, T.; Tsuchiya-Kawano, Y.; Yoshioka, H.; Osuga, M.; Koh, Y.; Morita, S.; Yamamoto, N. The primary endpoint analysis of SCARLET study: A single-arm, phase II study of sotorasib plus carboplatin-pemetrexed in patients with advanced non-squamous, non-small cell lung cancer with KRAS G12C mutation (WJOG14821L). J. Clin. Oncol. 2023, 41, 9006. [Google Scholar] [CrossRef]
- Ramalingam, S.; Fakih, M.; Strickler, J.; Govindan, R.; Li, B.T.; Goldberg, S.; Gandara, D.; Burns, T.; Barve, M.; Shu, C.; et al. Abstract P05-01: A phase 1b study evaluating the safety and efficacy of sotorasib, a KRASG12C inhibitor, in combination with trametinib, a MEK inhibitor, in KRAS p.G12C-Mutated Solid Tumors. Mol. Cancer Ther. 2021, 20, P05-01. [Google Scholar] [CrossRef]
- Awad, M.M.; Goldschmidt, J.; Spira, A.I.; Malhotra, R.; Yorio, J.T.; Bhambhani, V.; Cheng, Y.; Lee, P.S.; Govindan, R. Abstract C026: Initial safety, pharmacokinetics, and recommended Phase 2 dose from RAMP 203: A Phase 1/2 study of Avutometinib + Sotorasib in KRAS G12C Mutant Non-Small Cell Lung Cancer. Mol. Cancer Ther. 2023, 22, C026. [Google Scholar] [CrossRef]
- Hofmann, M.H.; Gmachl, M.; Ramharter, J.; Savarese, F.; Gerlach, D.; Marszalek, J.R.; Sanderson, M.P.; Kessler, D.; Trapani, F.; Arnhof, H.; et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 2021, 11, 142–157. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, L.; Maldonato, B.J.; Wang, Y.; Holderfield, M.; Aronchik, I.; Winters, I.P.; Salman, Z.; Blaj, C.; Menard, M.; et al. Translational and Therapeutic Evaluation of RAS-GTP Inhibition by RMC-6236 in RAS-Driven Cancers. Cancer Discov. 2024, 14, 994–1017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holderfield, M.; Lee, B.J.; Jiang, J.; Tomlinson, A.; Seamon, K.J.; Mira, A.; Patrucco, E.; Goodhart, G.; Dilly, J.; Gindin, Y.; et al. Concurrent inhibition of oncogenic and wild-type RAS-GTP for cancer therapy. Nature 2024, 629, 919–926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grothey, A. Pembrolizumab in MSI-H-dMMR Advanced Colorectal Cancer—A New Standard of Care. N. Engl. J. Med. 2020, 383, 2283–2285. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Diaz, L.A., Jr.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.H.; Kavan, P.; et al. Pembrolizumab for previously treated, microsatellite instability-high/mismatch repair-deficient advanced colorectal cancer: Final analysis of KEYNOTE-164. Eur. J. Cancer 2023, 186, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Antoniotti, C.; Boccaccino, A.; Seitz, R.; Giordano, M.; Catteau, A.; Rossini, D.; Pietrantonio, F.; Salvatore, L.; McGregor, K.; Bergamo, F.; et al. An Immune-Related Gene Expression Signature Predicts Benefit from Adding Atezolizumab to FOLFOXIRI plus Bevacizumab in Metastatic Colorectal Cancer. Clin. Cancer Res. 2023, 29, 2291–2298. [Google Scholar] [CrossRef] [PubMed]
- Gandini, A.; Puglisi, S.; Pirrone, C.; Martelli, V.; Catalano, F.; Nardin, S.; Seeber, A.; Puccini, A.; Sciallero, S. The role of immunotherapy in microsatellites stable metastatic colorectal cancer: State of the art and future perspectives. Front. Oncol. 2023, 13, 1161048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bullock, A.J.; Schlechter, B.L.; Fakih, M.G.; Tsimberidou, A.M.; Grossman, J.E.; Gordon, M.S.; Wilky, B.A.; Pimentel, A.; Mahadevan, D.; Balmanoukian, A.S.; et al. Botensilimab plus balstilimab in relapsed/refractory microsatellite stable metastatic colorectal cancer: A phase 1 trial. Nat. Med. 2024, 30, 2558–2567. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aruquipa, M.P.S.; Donadio, M.S.; Peixoto, R.D. Liver metastasis and resistance to immunotherapy in microsatellite stable colorectal cancer. A literature review. Ecancermedicalscience 2024, 18, 1771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, E.X.; Loree, J.M.; Titmuss, E.; Jonker, D.J.; Kennecke, H.F.; Berry, S.; Couture, F.; Ahmad, C.E.; Goffin, J.R.; Kavan, P.; et al. Liver Metastases and Immune Checkpoint Inhibitor Efficacy in Patients with Refractory Metastatic Colorectal Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open. 2023, 6, e2346094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robinson, H.R.; Messersmith, W.A.; Lentz, R.W. HER2-Positive Metastatic Colorectal Cancer. Curr. Treat. Options Oncol. 2024, 25, 585–604. [Google Scholar] [CrossRef] [PubMed]
- Tosi, F.; Sartore-Bianchi, A.; Lonardi, S.; Amatu, A.; Leone, F.; Ghezzi, S.; Martino, C.; Bencardino, K.; Bonazzina, E.; Bergamo, F.; et al. Long-term Clinical Outcome of Trastuzumab and Lapatinib for HER2-positive Metastatic Colorectal Cancer. Clin. Color. Cancer 2020, 19, 256–262.e2. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Hurwitz, H.; Raghav, K.P.S.; McWilliams, R.R.; Fakih, M.; VanderWalde, A.; Swanton, C.; Kurzrock, R.; Burris, H.; Sweeney, C.; et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): An updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2019, 20, 518–530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, R.; Meric-Bernstam, F.; Rothe, M.; Garrett-Mayer, E.; Mangat, P.K.; D’Andre, S.; Ahn, E.R.; O’Lone, R.; Halabi, S.; Grantham, G.N.; et al. Pertuzumab Plus Trastuzumab in Patients with Colorectal Cancer with ERBB2 Amplification or ERBB2/3 Mutations: Results From the TAPUR Study. JCO Precis. Oncol. 2022, 6, e2200306. [Google Scholar] [CrossRef] [PubMed]
- Siena, S.; Di Bartolomeo, M.; Raghav, K.; Masuishi, T.; Loupakis, F.; Kawakami, H.; Yamaguchi, K.; Nishina, T.; Fakih, M.; Elez, E.; et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): A multicentre, open-label, phase 2 trial. Lancet Oncol. 2021, 22, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Lonardi, S.; Martino, C.; Fenocchio, E.; Tosi, F.; Ghezzi, S.; Leone, F.; Bergamo, F.; Zagonel, V.; Ciardiello, F.; et al. Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: The phase II HERACLES-B trial. ESMO Open 2020, 5, e000911. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ros, J.; Rodríguez-Castells, M.; Saoudi, N.; Baraibar, I.; Salva, F.; Tabernero, J.; Élez, E. Treatment of BRAF-V600E mutant metastatic colorectal cancer: New insights and biomarkers. Expert Rev. Anticancer Ther. 2023, 23, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Grothey, A.; Van Cutsem, E.; Yaeger, R.; Wasan, H.; Yoshino, T.; Desai, J.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib Plus Cetuximab as a New Standard of Care for Previously Treated BRAF V600E-Mutant Metastatic Colorectal Cancer: Updated Survival Results and Subgroup Analyses from the BEACON Study. J. Clin. Oncol. 2021, 39, 273–284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reddy, S.M.; Reuben, A.; Wargo, J.A. Influences of BRAF Inhibitors on the Immune Microenvironment and the Rationale for Combined Molecular and Immune Targeted Therapy. Curr. Oncol. Rep. 2016, 18, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, J.; Chen, J.H.; Chao, S.X.; Pelka, K.; Giannakis, M.; Hess, J.; Burke, K.; Jorgji, V.; Sindurakar, P.; Braverman, J.; et al. Combined PD-1, BRAF and MEK inhibition in BRAFV600E colorectal cancer: A phase 2 trial. Nat. Med. 2023, 29, 458–466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morris, V.K.; Parseghian, C.M.; Escano, M.; Johnson, B.; Raghav, K.P.S.; Dasari, A.; Huey, R.; Overman, M.J.; Willis, J.; Lee, M.S.; et al. Phase I/II trial of encorafenib, cetuximab, and nivolumab in patients with microsatellite stable (MSS), BRAFV600E metastatic colorectal cancer. J. Clin. Oncol. 2022, 40, 3598. [Google Scholar] [CrossRef]
- Corcoran, R.; Giannakis, M.; Allen, J.; Chen, J.; Pelka, K.; Chao, S.; Meyerhardt, J.; Enzinger, A.; Enzinger, P.; McCleary, N.; et al. SO-26 clinical efficacy of combined BRAF, MEK, and PD-1 inhibition in BRAFV600E colorectal cancer patients. Ann. Oncol. 2020, 31, S226–S227. [Google Scholar] [CrossRef]
- Tabernero, J.; Geel, R.V.; Guren, T.K.; Yaeger, R.D.; Spreafico, A.; Faris, J.E.; Yoshino, T.; Yamada, Y.; Kim, T.W.; Bendell, J.C.; et al. Phase 2 results: Encorafenib (ENCO) and cetuximab (CETUX) with or without alpelisib (ALP) in patients with advanced BRAF-mutant colorectal cancer (BRAFm CRC). J. Clin. Oncol. 2016, 34, 3544. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Di Nicolantonio, F.; Schrock, A.B.; Lee, J.; Tejpar, S.; Sartore-Bianchi, A.; Hechtman, J.F.; Christiansen, J.; Novara, L.; Tebbutt, N.; et al. ALK, ROS1, and NTRK Rearrangements in Metastatic Colorectal Cancer. J. Natl. Cancer Inst. 2017, 109, djx089. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Z.W.; Ou, Q.; Wu, X.; Nagasaka, M.; Shao, Y.; Ou, S.I.; Yang, Y. NTRK fusion positive colorectal cancer is a unique subset of CRC with high TMB and microsatellite instability. Cancer Med. 2022, 11, 2541–2549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282, Erratum in Lancet Oncol. 2020, 21, e70. https://doi.org/10.1016/S1470-2045(20)30029-2. Erratum in Lancet Oncol. 2020, 21, e341. https://doi.org/10.1016/S1470-2045(20)30345-4. Erratum in Lancet Oncol. 2020, 21, e372. https://doi.org/10.1016/S1470-2045(20)30382-X. Erratum in Lancet Oncol. 2021, 22, e428. https://doi.org/10.1016/S1470-2045(21)00538-6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, B.C.; Doebele, R.C.; Lin, J.; Nagasaka, M.; Baik, C.; Van Der Wekken, A.; Velcheti, V.; Lee, K.H.; Liu, S.; Solomon, B.; et al. MA11.07 phase 1/2 TRIDENT-1 study of repotrectinib in patients with ROS1+ or NTRK+ advanced solid tumors. J. Thorac. Oncol. 2021, 16, S174–S175. [Google Scholar] [CrossRef]
- Papadopoulos, K.P.; Borazanci, E.; Shaw, A.T.; Katayama, R.; Shimizu, Y.; Zhu, V.W.; Sun, T.Y.; Wakelee, H.A.; Madison, R.; Schrock, A.B.; et al. Phase I First-in-human Study of Taletrectinib (DS-6051b/AB-106), a ROS1/TRK Inhibitor, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2020, 26, 4785–4794. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Okamoto, W.; Kato, T.; Hasegawa, H.; Kato, K.; Iwasa, S.; Esaki, T.; Komatsu, Y.; Masuishi, T.; Nishina, T.; et al. TRIUMPH: Primary eficacy of a phase II trial of trastuzumab (T) and pertuzumab (P) in patients (pts) with metastatic colorectal cancer (mCRC) with HER2 (ERBB2) amplification (amp) in tumour tissue or circulating tumour DNA (ctDNA): A GOZILA sub-study. Ann. Oncol. 2019, 30, v199–v200. [Google Scholar] [CrossRef]
- Raghav, K.; Siena, S.; Takashima, A.; Kato, T.; Van den Eynde, M.; Pietrantonio, F.; Komatsu, Y.; Kawakami, H.; Peeters, M.; Andre, T.; et al. Trastuzumab deruxtecan in patients with HER2-positive advanced colorectal cancer (tapur-CRC02): Primary results from a multicentre, randomised, phase 2 trial. Lancet Oncol. 2024, 25, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.-Y.; Banerjee, S.; Gonzalez-Martin, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: Primary results from the DESTINY-pantumor02 phase II trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.S.; Van Cutsem, E.; Tabernero, J.; Siena, S.; Yoshino, T.; Nakamura, Y.; Raghav, K.P.S.; Cercek, A.; Heinemann, V.; Adelberg, D.E.; et al. MOUNTAINEER-03: Phase 3 study of tucatinib, trastuzumab, and mFOLFOX6 as first-line treatment in HER2+ metastatic colorectal cancer—Trial in progress. J. Clin. Oncol. 2023, 41, TPS261. [Google Scholar] [CrossRef]
- Chang, J.; Xu, M.; Wang, C.; Huang, D.; Zhang, Z.; Chen, Z.; Zhu, X.; Li, W. Dual HER2 targeted therapy with pyrotinib and trastuzumab in refractory HER2 positive metastatic colorectal cancer: A result from HER2-FUSCC-G study. Clin. Color. Cancer 2022, 21, 347–353. [Google Scholar] [CrossRef]
- Kopetz, S.; Murphy, D.A.; Pu, J.; Ciardiello, F.; Desai, J.; Grothey, A.; Van Cutsem, E.; Wasan, H.S.; Yaeger, R.; Yoshino, T.; et al. Molecular correlates of clinical benefit in previously treated patients (pts) with BRAF V600E-mutant metastatic colorectal cancer (mCRC) from the BEACON study. J. Clin. Oncol. 2021, 39, 3513. [Google Scholar] [CrossRef]
- Yaeger, R.; Cercek, A.; O’Reilly, E.M.; Reidy, D.L.; Kemeny, N.; Wolinsky, T.; Capanu, M.; Gollub, M.J.; Rosen, N.; Berger, M.F.; et al. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin. Cancer Res. 2015, 21, 1313–1320. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kopetz, S.; Guthrie, K.A.; Morris, V.K.; Lenz, H.J.; Magliocco, A.M.; Maru, D.; Yan, Y.; Lanman, R.; Manyam, G.; Hong, D.S.; et al. Randomized Trial of Irinotecan and Cetuximab with or Without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J. Clin. Oncol. 2021, 39, 285–294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demetri, G.D.; De Braud, F.; Drilon, A.; Siena, S.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.J.; Chiu, C.H.; Lin, J.J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Patients with NTRK Fusion-Positive Solid Tumors. Clin. Cancer Res. 2022, 28, 1302–1312, Erratum in Clin. Cancer Res. 2022, 28, 2196. https://doi.org/10.1158/1078-0432.CCR-22-1108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Q.; Wang, Q.; Wang, X.; Li, J.; Shen, L.; Peng, Z. Regorafenib, TAS-102, or fruquintinib for metastatic colorectal cancer: Any difference in randomized trials? Int. J. Color. Dis. 2020, 35, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Mauri, G.; Gori, V.; Bonazzina, E.; Amatu, A.; Tosi, F.; Bencardino, K.; Ruggieri, L.; Patelli, G.; Arena, S.; Bardelli, A.; et al. Oxaliplatin retreatment in metastatic colorectal cancer: Systematic review and future research opportunities. Cancer Treat Rev. 2020, 91, 102112. [Google Scholar] [CrossRef] [PubMed]
- Argyriou, A.A.; Kalofonou, F.; Litsardopoulos, P.; Anastopoulou, G.G.; Kalofonos, H.P. Oxaliplatin rechallenge in metastatic colorectal cancer patients with clinically significant oxaliplatin-induced peripheral neurotoxicity. J. Peripher. Nerv. Syst. 2021, 26, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Townsend, A.R.; Bishnoi, S.; Broadbridge, V.; Beeke, C.; Karapetis, C.S.; Jain, K.; Luke, C.; Padbury, R.; Price, T.J. Rechallenge with oxaliplatin and fluoropyrimidine for metastatic colorectal carcinoma after prior therapy. Am. J. Clin. Oncol. 2013, 36, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Reddy, T.P.; Khan, U.; Burns, E.A.; Abdelrahim, M. Chemotherapy rechallenge in metastatic colon cancer: A case report and literature review. World J. Clin. Oncol. 2020, 11, 959–967. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, X.; George, G.C.; Tsimberidou, A.M.; Naing, A.; Wheler, J.J.; Kopetz, S.; Fu, S.; Piha-Paul, S.A.; Eng, C.; Falchook, G.S.; et al. Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: Impact of intervening time interval and prior anti-EGFR response. BMC Cancer 2015, 15, 713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schulz, M.S.; Wolf, S.; Struck, V.; Thomas, N.; Husman, G.; Zeuzem, S.; Koch, C.; Trojan, J.; Schnitzbauer, A.A.; Bechstein, W.O.; et al. Anti-EGFR Reintroduction and Rechallenge in Metastatic Colorectal Cancer (mCRC): A Real-World Analysis. Cancers 2022, 14, 1641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chong, L.C.; Hardingham, J.E.; Townsend, A.R.; Piantadosi, C.; Rico, G.T.; Karapetis, C.; Padbury, R.; Maddern, G.; Roy, A.; Price, T.J. Rechallenge with Anti-EGFR Therapy in Metastatic Colorectal Cancer (mCRC): Results from South Australia mCRC Registry. Target Oncol. 2020, 15, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Cremolini, C.; Rossini, D.; Dell’Aquila, E.; Lonardi, S.; Conca, E.; Del Re, M.; Busico, A.; Pietrantonio, F.; Danesi, R.; Aprile, G.; et al. Rechallenge for Patients with RAS and BRAF Wild-Type Metastatic Colorectal Cancer with Acquired Resistance to First-line Cetuximab and Irinotecan: A Phase 2 Single-Arm Clinical Trial. JAMA Oncol. 2019, 5, 343–350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Masuishi, T.; Tsuji, A.; Kotaka, M.; Nakamura, M.; Kochi, M.; Takagane, A.; Shimada, K.; Denda, T.; Segawa, Y.; Tanioka, H.; et al. Phase 2 study of irinotecan plus cetuximab rechallenge as third-line treatment in KRAS wild-type metastatic colorectal cancer: JACCRO CC-08. Br. J. Cancer 2020, 123, 1490–1495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsuji, A.; Nakamura, M.; Watanabe, T.; Manaka, D.; Matsuoka, H.; Kataoka, M.; Takeuchi, M.; Ichikawa, W.; Fujii, M. Phase II Study of Third-Line Panitumumab Rechallenge in Patients with Metastatic Wild-Type KRAS Colorectal Cancer Who Obtained Clinical Benefit from First-Line Panitumumab-Based Chemotherapy: JACCRO CC-09. Target Oncol. 2021, 16, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, D.; Mauri, G.; Sartore-Bianchi, A.; Siena, S.; Zampino, M.G.; Fazio, N.; Cervantes, A. The role of anti-EGFR rechallenge in metastatic colorectal cancer, from available data to future developments: A systematic review. Cancer Treat Rev. 2024, 124, 102683. [Google Scholar] [CrossRef] [PubMed]
- Santini, D.; Vincenzi, B.; Addeo, R.; Garufi, C.; Masi, G.; Scartozzi, M.; Mancuso, A.; Frezza, A.M.; Venditti, O.; Imperatori, M.; et al. Cetuximab rechallenge in metastatic colorectal cancer patients: How to come away from acquired resistance? Ann. Oncol. 2012, 23, 2313–2318. [Google Scholar] [CrossRef]
- Ohhara, Y.; Shinozaki, E.; Osawa, H.; Nakamura, M.; Shindo, Y.; Shiozawa, M.; Uetake, H.; Matsumoto, H.; Ureshino, N.; Satake, H.; et al. Liquid biopsy for optimizing the rechallenge of cetuximab in metastatic colorectal cancer: Additional study of E-rechallenge trial. J. Clin. Oncol. 2019, 37, 585. [Google Scholar] [CrossRef]
- Sartore-Bianchi, A.; Pietrantonio, F.; Lonardi, S.; Mussolin, B.; Rua, F.; Crisafulli, G.; Bartolini, A.; Fenocchio, E.; Amatu, A.; Manca, P.; et al. Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: The phase 2 CHRONOS trial. Nat. Med. 2022, 28, 1612–1618. [Google Scholar] [CrossRef]
- Kagawa, Y.; Kotani, D.; Bando, H.; Takahashi, N.; Hamaguchi, T.; Kanazawa, A.; Kato, T.; Satake, K.A.H.; Shinozaki, E.; Sunakawa, Y.; et al. Plasma RAS dynamics and anti-EGFR rechallenge eficacy in patients with RAS/BRAF wild-type metastatic colorectal cancer: REMARRY and PURSUIT trials. J. Clin. Oncol. 2022, 40, 3518. [Google Scholar] [CrossRef]
- Martinelli, E.; Martini, G.; Famiglietti, V.; Troiani, T.; Napolitano, S.; Pietrantonio, F.; Ciardiello, D.; Terminiello, M.; Borrelli, C.; Vitiello, P.P.; et al. Cetuximab rechallenge plus avelumab in pretreated patients with RAS wild-type metastatic colorectal cancer: The phase 2 single-arm clinical CAVE trial. JAMA Oncol. 2021, 7, 1529–1535. [Google Scholar] [CrossRef]
- Napolitano, S.; De Falco, V.; Martini, G.; Ciardiello, D.; Martinelli, E.; Della Corte, C.M.; Esposito, L.; Famiglietti, V.; Di Liello, A.; Avallone, A.; et al. Panitumumab plus trifluridine-tipiracil as anti-epidermal growth factor receptor rechallenge therapy for refractory RAS wild-type metastatic colorectal cancer. JAMA Oncol. 2023, 9, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Vivas, C.S.; Barrull, J.V.; Rodriguez, C.F.; Ballabrera, F.S.; Alonso-Orduna, V.; Garcia-Carbonero, R.; Losa, F.; Llavero, N.T.; Aguileria, M.S.; Herrero, F.R.; et al. 511MO—Third line rechallenge with cetuximab (Cet) and irinotecan in circulating tumor DNA (ctDNA) selected metastatic colorectal cancer (mCRC) patients: The randomized phase II CITRIC trial. Ann. Oncol. 2024, 35, S433–S434. [Google Scholar] [CrossRef]
- Rao, S.; Cunningham, D.; Price, T.; Hill, M.E.; Ross, P.J.; Tebbutt, N.; Norman, A.R.; Oates, J.; Shellito, P. Phase II study of capecitabine and mitomycin C as first-line treatment in patients with advanced colorectal cancer. Br. J. Cancer 2004, 91, 839–843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Twelves, C.; Xeloda Colorectal Cancer Group. Capecitabine as first-line treatment in colorectal cancer. Pooled data from two large, phase III trials. Eur. J. Cancer 2002, 38 (Suppl. S2), 15–20. [Google Scholar] [CrossRef] [PubMed]
- Chong, G.; Dickson, J.L.; Cunningham, D.; Norman, A.R.; Rao, S.; Hill, M.E.; Price, T.J.; Oates, J.; Tebbutt, N. Capecitabine and mitomycin C as third-line therapy for patients with metastatic colorectal cancer resistant to fluorouracil and irinotecan. Br. J. Cancer 2005, 93, 510–514. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dimou, A.; Syrigos, K.N.; Saif, M.W. Is there a role for mitomycin C in metastatic colorectal cancer? Expert Opin. Investig. Drugs. 2010, 19, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Saif, M.W.; Kaley, K.; Brennan, M.; Garcon, M.C.; Rodriguez, G. Mitomycin-C and capecitabine (MIXE) as salvage treatment in patients with refractory metastatic colorectal cancer: A retrospective study. Anticancer. Res. 2013, 33, 2743–2746. [Google Scholar] [PubMed]
- Ferrarotto, R.; Machado, K.; Mak, M.P.; Shah, N.; Takahashi, T.K.; Costa, F.P.; Overman, M.J.; Kopetz, S.; Hoff, P.M. A multicenter, multinational analysis of mitomycin C in refractory metastatic colorectal cancer. Eur. J. Cancer 2012, 48, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Sobrero, A.; Dasari, A.; Aquino, J.; Lonardi, S.; Garcia-Carbonero, R.; Elez, E.; Yoshino, T.; Yao, J.; Garcia-Alfonso, P.; Kocsis, J.; et al. Health-related quality of life associated with fruquintinib in patients with metastatic colorectal cancer: Results from the FRESCO-2 study. Eur. J. Cancer 2025, 218, 115268. [Google Scholar] [CrossRef] [PubMed]
- Hofheinz, R.D.; Bruix, J.; Demetri, G.D.; Grothey, A.; Marian, M.; Bartsch, J.; Odom, D. Effect of Regorafenib in Delaying Definitive Deterioration in Health-Related Quality of Life in Patients with Advanced Cancer of Three Different Tumor Types. Cancer Manag. Res. 2021, 13, 5523–5533. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Cutsem, E.; Falcone, A.; Garcia-Carbonero, R.; Komatsu, Y.; Pastorino, A.; Peeters, M.; Shimada, Y.; Yamazaki, K.; Yoshino, T.; Zaniboni, A.; et al. Proxies of quality of life in metastatic colorectal cancer: Analyses in the RECOURSE trial. ESMO Open 2017, 2, e000261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Trial | Intervention | Outcome | Safety (Grade 3–4) |
---|---|---|---|
Phase 1a–1b (Botensilimab + Balstilimab) NCT03860272. | Botensilimab (anti-CTLA4) + Balstilimab (anti-PD-1) | ORR: 17%, mPFS: 3.5 months, mOS: 20.9 months, | 32%. Results more pronounced in patients without liver metastases |
Phase 1b ACTIVATE-Colorectal (NCT05608044) | Botensilimab ± Balstilimab vs. Regorafenib or FTD–TPI | ORR: 22% 0%, mPFS 4.1 vs. 1.4, mOS 20.9 vs. 7.4 months | Data not provided |
Phase 1b/2 OrigAMI-1 NCT05379595. | Amivantamab (EGFR–MET bispecific antibody) ± chemotherapy (FOLFOX or FOLFIRI) | Cohort A (L-sided, no anti-EGFR) (n = 17) mPFS 5.7 months, B (n = 54) (L-sided, post anti-EGFR) mpFS 3.75 months, C (n = 18)(R-sided, ±anti-EGFR) mPFS 3.5 months | The most frequent treatment-emergent adverse events were rash (84%) and infusion-related reactions (53%) |
Phase 1 (Divarasib) NCT04449874 | Divarasib (KRAS G12C inhibitor) | ORR: 29.1%, mPFS: 5.6 months. | 11%. Grade 4 event: 1%. Dose reductions: 14%. Discontinuation: 3% |
Phase 1b (Divarasib + Cetuximab) NCT04449874 | Divarasib + Cetuximab | ORR: 62.5%, Median PFS: 8.1 months, Median duration of response: 6.9 months. | Dose reductions: 13.8%. No withdrawals due to AEs |
Phase 1 NCT05382559 | ASP3082 degrader selectively targeting KRAS G12D | Potentially active in KRASG12D-mutant CRC | AEs occurred in 69.4% pts, including 5% with grade 3. Among AEs were fatigue, infusion-related reactions, pruritus, nausea, urticaria, aminotransferases increased and vomiting |
RMC-9805 (covalent KRASG12D inhibitor) | |||
Phase 1/2 study NCT05737706 | MRTX-1133 (non-covalent KRASG12D inhibitor) | ||
Phase 1–2 Combination therapies (BRAF/ICI) NCT03668431. | Encorafenib + EGFR inhibitors ± ICIs | ORR: 50%, mPFS: 7.4 months, mOS: 15.4 months. | 18% |
Phase 2 SWOG S2107 NCT02928224 | Encorafenib + Cetuximab ± Nivolumab | Data not provided. | Data not provided |
Phase 2 NCT03485027 | Rechallenge chemotherapy (XELOX, FOLFOX, FOLFIRI, Irinotecan monotherapy) | ORR: 2.4%, mPFS 4.0 months (95% CI, 2.62–5.38). The data of OS was still immature. | 11.76% neutropenia 9.7%, oxaliplatin related acute anaphylaxis 4.8%, diarrhea 4.8% |
Phase 2 REPAN NCT03940131 | KRAS/RAS wild mCRC after repeated RAS testing at last line of therapy, rechallenge panitumumab combined with chemotherapy similar to that given at 1st line (5-fluorouracil/leucoverin combined with oxaliplatin or irinotecan) | Data not available | Data not available |
Study | Interventions | Patients (n) | ORR (%) | mPFS (m) | mOS (m) | Grade ≥ 3 AEs (% of Patients) |
---|---|---|---|---|---|---|
Santini et al. [86] | FOLFIRI/irinotecan + cetuximab | 39 | 53.8 | 6.6 | NR | Skin rash (38.5%), neutropenia (18.0%) and diarrhea (7.7%) |
JACCRO CC-08 [83] | Irinotecan + cetuximab | 34 | 2.9 | 2.4 (3-month PFS 44.1%) | NR | Neutropenia (2%) |
JACCRO CC-09 [84] | Irinotecan + panitumumab | 25 | 8 | 3-month PFS 50% | NR | Acneiform rash (17%), hypomagnesemia (13%) and dry skin (13%) |
CRICKET [82] | Irinotecan + cetuximab | 28 | 21 | 3.4 | 9.8 | Diarrhea (9%), skin toxicity (4%), neutropenia (4%) and HFS (7%) |
E-Rechallenge [87] | Irinotecan + cetuximab | 33 | 15.6 | 2.9 | 8.6 | NR |
CHRONOS [88] | Panitumumab | 27 | 30 | 4.5 | 13.8 | Skin rash (5%), folliculitis (6%) |
PURSUIT [89] | Panitumumab + irinotecan | 50 | NR | 3.6 | NR | 58.5% |
CAVE Li [90] | Cetuximab + avelumab | 32 | 6.5 | 3.6 | 11.6 | Cutaneous eruption (14%) and diarrhea (4%) |
VELO [91] | FTD-TPI vs. FTD-TPI + panitumumab | 31 vs. 31 | 9.0 vs. 7.7 | 2.5 vs. 4.0, HR 0.48, 95% CI 0.28–0.82, p = 0.007 | 13 vs. 16, HR 0.54–1.17, p = 0.9 | Rash (19%) in the experimental arm |
CITRIC [92] | Irinotecan + cetuximab + investigator choice | 27 | 12.9 vs. NR, p = 0.012 | 4.4 vs. 2.2, HR 0.72, 95% CI 0.40–1.28, p = 0.26 | NR | Diarrhea (16.1%), skin rash (9.7%), mucositis (6.4%) and neutropenia (6.4%) in the experimental arm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherri, S.; Libertini, M.; Noventa, S.; Oneda, E.; Meriggi, F.; Zaniboni, A. What Is Next for Refractory Colorectal Cancer CRC? Looking Beyond SUNLIGHT, FRESCO2, RECURSE and CORRECT. Int. J. Mol. Sci. 2025, 26, 2522. https://doi.org/10.3390/ijms26062522
Cherri S, Libertini M, Noventa S, Oneda E, Meriggi F, Zaniboni A. What Is Next for Refractory Colorectal Cancer CRC? Looking Beyond SUNLIGHT, FRESCO2, RECURSE and CORRECT. International Journal of Molecular Sciences. 2025; 26(6):2522. https://doi.org/10.3390/ijms26062522
Chicago/Turabian StyleCherri, Sara, Michela Libertini, Silvia Noventa, Ester Oneda, Fausto Meriggi, and Alberto Zaniboni. 2025. "What Is Next for Refractory Colorectal Cancer CRC? Looking Beyond SUNLIGHT, FRESCO2, RECURSE and CORRECT" International Journal of Molecular Sciences 26, no. 6: 2522. https://doi.org/10.3390/ijms26062522
APA StyleCherri, S., Libertini, M., Noventa, S., Oneda, E., Meriggi, F., & Zaniboni, A. (2025). What Is Next for Refractory Colorectal Cancer CRC? Looking Beyond SUNLIGHT, FRESCO2, RECURSE and CORRECT. International Journal of Molecular Sciences, 26(6), 2522. https://doi.org/10.3390/ijms26062522