A Probiotic Mixture of Lactobacillus rhamnosus LR 32, Bifidobacterium lactis BL 04, and Bifidobacterium longum BB 536 Counteracts the Increase in Permeability Induced by the Mucosal Mediators of Irritable Bowel Syndrome by Acting on Zonula Occludens 1
Abstract
:1. Introduction
2. Results
2.1. Demographical Characteristics of Study Subjects
2.2. Assessment of pH and Cell Viability of Caco-2
2.3. Effect of Serobioma on Caco-2 Paracellular Permeability
2.4. Effect of IBS Supernatants on Caco-2 Paracellular Permeability
2.5. Effect of Serobioma and IBS Supernatants on Caco-2 Paracellular Permeability
2.6. Effect of Serobioma with/Without AC/IBS Supernatants on ZO-1, Occludin, and JAM-A Expression
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Symptom Questionnaires
4.3. Mucosal Mediator Collection
4.4. Caco-2 Cell Culture
4.5. Preparation of the Serobioma
4.6. pH and Viability Assay
4.7. Permeability Assay
4.8. CaCo-2 Treatments and Permeability Evaluation
4.9. qPCR Analyses
- ZO-1 gene: 15 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 30 s at 53 °C, and 30 s at 72 °C;
- Occludin gene: 15 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 30 s at 53 °C, and 30 s at 72 °C;
- JAM-A gene: 15 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 30 s at 53 °C, and 30 s at 72 °C
- GAPDH gene: 15 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 30 s at 53 °C, and 30 s at 72 °C.
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACs | Asymptomatic controls |
TJ | Tight junction |
IBS | Irritable Bowel Syndrome |
IBS-D | diarrhea-predominant Irritable Bowel Syndrome |
IBS-C | constipation-prevalent Irritable Bowel Syndrome |
IBS-M | Irritable Bowel Syndrome with mixed bowel habits |
IBS-U | unclassified Irritable Bowel Syndrome |
SCFAs | Short-chain fatty acids |
S1 | Serobioma 106 CFU/mL |
S2 | Serobioma 103 CFU/mL |
BDQ | Bowel Disease Questionnaire |
ZO-1 | Zonula Occludens-1 |
JAM-A | Junctional adhesion molecule-A |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
References
- Lacy, B.E.; Mearin, F.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407.e5. [Google Scholar] [CrossRef] [PubMed]
- Lovell, R.M.; Ford, A.C. Global Prevalence of and Risk Factors for Irritable Bowel Syndrome: A Meta-Analysis. Clin. Gastroenterol. Hepatol. 2012, 10, 712–721.e4. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.D.; Kurlander, J.; Eswaran, S. Irritable Bowel Syndrome: A Clinical Review. JAMA 2015, 313, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, I.B.; O’Toole, P.W.; Öhman, L.; Claesson, M.J.; Deane, J.; Quigley, E.M.M.; Simrén, M. An Irritable Bowel Syndrome Subtype Defined by Species-Specific Alterations in Faecal Microbiota. Gut 2012, 61, 997–1006. [Google Scholar] [CrossRef]
- Rodiño-Janeiro, B.K.; Vicario, M.; Alonso-Cotoner, C.; Pascua-García, R.; Santos, J. A Review of Microbiota and Irritable Bowel Syndrome: Future in Therapies. Adv. Ther. 2018, 35, 289–310. [Google Scholar] [CrossRef]
- Barbaro, M.R.; Fuschi, D.; Cremon, C.; Carapelle, M.; Dino, P.; Marcellini, M.M.; Dothel, G.; De Ponti, F.; Stanghellini, V.; Barbara, G. Escherichia Coli Nissle 1917 Restores Epithelial Permeability Alterations Induced by Irritable Bowel Syndrome Mediators. Neurogastroenterol. Motil. 2018, 30, e13388. [Google Scholar] [CrossRef]
- Barbaro, M.R.; Cremon, C.; Marasco, G.; Savarino, E.; Guglielmetti, S.; Bonomini, F.; Palombo, M.; Fuschi, D.; Rotondo, L.; Mantegazza, G.; et al. Molecular Mechanisms Underlying Loss of Vascular and Epithelial Integrity in Irritable Bowel Syndrome. Gastroenterology 2024, 167, 1152–1166. [Google Scholar] [CrossRef]
- Vazquez-Roque, M.I.; Camilleri, M.; Smyrk, T.; Murray, J.A.; O’Neill, J.; Carlson, P.; Lamsam, J.; Eckert, D.; Janzow, D.; Burton, D.; et al. Association of HLA-DQ Gene with Bowel Transit, Barrier Function, and Inflammation in Irritable Bowel Syndrome with Diarrhea. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G1262–G1269. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.C.; Moayyedi, P.; Lacy, B.E.; Lembo, A.J.; Saito, Y.A.; Schiller, L.R.; Soffer, E.E.; Spiegel, B.M.R.; Quigley, E.M.M. Task Force on the Management of Functional Bowel Disorders American College of Gastroenterology Monograph on the Management of Irritable Bowel Syndrome and Chronic Idiopathic Constipation. Am. J. Gastroenterol. 2014, 109 (Suppl. S1), S2–S26; quiz S27. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Ohland, C.L.; MacNaughton, W.K. Probiotic Bacteria and Intestinal Epithelial Barrier Function. Am. J. Physiol.-Gastrointest. Liver Physiol. 2010, 298, G807–G819. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Younes, J.A.; Van der Mei, H.C.; Gloor, G.B.; Knight, R.; Busscher, H.J. Microbiota Restoration: Natural and Supplemented Recovery of Human Microbial Communities. Nat. Rev. Microbiol. 2011, 9, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Sarita, B.; Samadhan, D.; Hassan, M.Z.; Kovaleva, E.G. A Comprehensive Review of Probiotics and Human Health-Current Prospective and Applications. Front. Microbiol. 2025, 15, 1487641. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.B.; Odamaki, T.; Xiao, J. Beneficial Effects of Bifidobacterium Longum Subsp. Longum BB536 on Human Health: Modulation of Gut Microbiome as the Principal Action. J. Funct. Foods 2019, 54, 506–519. [Google Scholar] [CrossRef]
- Akatsu, H.; Iwabuchi, N.; Xiao, J.; Matsuyama, Z.; Kurihara, R.; Okuda, K.; Yamamoto, T.; Maruyama, M. Clinical Effects of Probiotic Bifidobacterium Longum BB536 on Immune Function and Intestinal Microbiota in Elderly Patients Receiving Enteral Tube Feeding. J. Parenter. Enter. Nutr. 2013, 37, 631–640. [Google Scholar] [CrossRef]
- di Vito, R.; Conte, C.; Traina, G. A Multi-Strain Probiotic Formulation Improves Intestinal Barrier Function by the Modulation of Tight and Adherent Junction Proteins. Cells 2022, 11, 2617. [Google Scholar] [CrossRef]
- Tamaki, H.; Nakase, H.; Inoue, S.; Kawanami, C.; Itani, T.; Ohana, M.; Kusaka, T.; Uose, S.; Hisatsune, H.; Tojo, M.; et al. Efficacy of Probiotic Treatment with Bifidobacterium Longum 536 for Induction of Remission in Active Ulcerative Colitis: A Randomized, Double-blinded, Placebo-controlled Multicenter Trial. Dig. Endosc. 2016, 28, 67–74. [Google Scholar] [CrossRef]
- Vale, G.C.; Mota, B.I.S.; Ando-Suguimoto, E.S.; Mayer, M.P.A. Effect of Probiotics Lactobacillus Acidophilus and Lacticaseibacillus Rhamnosus on Antibacterial Response Gene Transcription of Human Peripheral Monocytes. Probiotics Antimicrob. Proteins 2023, 15, 264–274. [Google Scholar] [CrossRef]
- Huang, C.; Yue, Q.; Sun, L.; Di, K.; Yang, D.; Hao, E.; Wang, D.; Chen, Y.; Shi, L.; Zhou, R.; et al. Restorative Effects of Lactobacillus Rhamnosus LR-32 on the Gut Microbiota, Barrier Integrity, and 5-HT Metabolism in Reducing Feather-Pecking Behavior in Laying Hens with Antibiotic-Induced Dysbiosis. Front. Microbiol. 2023, 14, 1173804. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; DongLian, C.; Weijian, X.; Stewart, M.; Ni, J.; Stewart, T.; Miller, L.E. Probiotics Reduce Symptoms of Antibiotic Use in a Hospital Setting: A Randomized Dose Response Study. Vaccine 2014, 32, 458–463. [Google Scholar] [CrossRef]
- Engelbrektson, A.; Korzenik, J.R.; Pittler, A.; Sanders, M.E.; Klaenhammer, T.R.; Leyer, G.; Kitts, C.L. Probiotics to Minimize the Disruption of Faecal Microbiota in Healthy Subjects Undergoing Antibiotic Therapy. J. Med. Microbiol. 2009, 58, 663–670. [Google Scholar] [CrossRef]
- Bartosch, S.; Woodmansey, E.J.; Paterson, J.C.M.; McMurdo, M.E.T.; Macfarlane, G.T. Microbiological Effects of Consuming a Synbiotic Containing Bifidobacterium Bifidum, Bifidobacterium Lactis, and Oligofructose in Elderly Persons, Determined by Real-Time Polymerase Chain Reaction and Counting of Viable Bacteria. Clin. Infect. Dis. 2005, 40, 28–37. [Google Scholar] [CrossRef] [PubMed]
- West, N.P.; Horn, P.L.; Pyne, D.B.; Gebski, V.J.; Lahtinen, S.J.; Fricker, P.A.; Cripps, A.W. Probiotic Supplementation for Respiratory and Gastrointestinal Illness Symptoms in Healthy Physically Active Individuals. Clin. Nutr. 2014, 33, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Grover, M.; Vanuytsel, T.; Chang, L. Intestinal Permeability in Disorders of Gut-Brain Interaction: From Bench to Bedside. Gastroenterology 2024, 168, 480–495. [Google Scholar] [CrossRef]
- Lacy, B.E.; Chey, W.D.; Lembo, A.J. New and Emerging Treatment Options for Irritable Bowel Syndrome. Gastroenterol. Hepatol. 2015, 11, 1–19. [Google Scholar]
- So, D.; Quigley, E.M.M.; Whelan, K. Probiotics in Irritable Bowel Syndrome and Inflammatory Bowel Disease: Review of Mechanisms and Effectiveness. Curr. Opin. Gastroenterol. 2023, 39, 103–109. [Google Scholar] [CrossRef]
- Martínez, C.; Lobo, B.; Pigrau, M.; Ramos, L.; González-Castro, A.M.; Alonso, C.; Guilarte, M.; Guilá, M.; de Torres, I.; Azpiroz, F.; et al. Diarrhoea-Predominant Irritable Bowel Syndrome: An Organic Disorder with Structural Abnormalities in the Jejunal Epithelial Barrier. Gut 2013, 62, 1160–1168. [Google Scholar] [CrossRef]
- Dunlop, S.P.; Hebden, J.; Campbell, E.; Naesdal, J.; Olbe, L.; Perkins, A.C.; Spiller, R.C. Abnormal Intestinal Permeability in Subgroups of Diarrhea-Predominant Irritable Bowel Syndromes. Am. J. Gastroenterol. 2006, 101, 1288–1294. [Google Scholar] [CrossRef]
- di Vito, R.; Di Mezza, A.; Conte, C.; Traina, G. The Crosstalk between Intestinal Epithelial Cells and Mast Cells Is Modulated by the Probiotic Supplementation in Co-Culture Models. Int. J. Mol. Sci. 2023, 24, 4157. [Google Scholar] [CrossRef]
- Barbaro, M.R.; Di Sabatino, A.; Cremon, C.; Giuffrida, P.; Fiorentino, M.; Altimari, A.; Bellacosa, L.; Stanghellini, V.; Barbara, G. Interferon-γ Is Increased in the Gut of Patients with Irritable Bowel Syndrome and Modulates Serotonin Metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G439–G447. [Google Scholar] [CrossRef]
AC (n = 7) | IBS (n = 28) | IBS-D (n = 10) | IBS-C (n = 9) | IBS-M (n = 9) | p Values | |
---|---|---|---|---|---|---|
Age | 56 ± 4.8 | 41 ± 2.4 b | 33 ± 2.1 c | 50 ± 4.4 d | 40 ± 4.2 b | p < 0.01 a |
Percentage of women | 2 (29%) g | 16 (57%) | 4 (40%) g | 8 (89%) | 4 (44%) g | 0.065 |
Abdominal pain severity | - | 1.7 ± 0.2 | 2 ± 0.5 | 1.4 ± 0.5 | 1.6 ± 0.4 | 0.627 |
Abdominal pain frequency | - | 1.8 ± 0.3 | 2.3 ± 0.5 | 1.3 ± 0.6 | 1.9 ± 0.4 | 0.388 |
Abdominal distention severity | - | 1.7 ± 0.2 | 1.4 ± 0.4 | 2.3 ± 0.2 e | 1.6 ± 0.2 | 0.078 |
Abdominal distention frequency | - | 2.4 ± 0.3 | 1.9 ± 0.6 | 3.1 ± 0.3 | 2.3 ± 0.4 | 0.203 |
Quality of life | 7.9 ± 0.3 | 4.8 ± 0.5 f | 3.1 ± 0.7 e,f | 5.5 ± 1.1 | 5.7 ± 0.5 f | p < 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbaro, M.R.; Bianco, F.; Cremon, C.; Marasco, G.; Stanghellini, V.; Barbara, G. A Probiotic Mixture of Lactobacillus rhamnosus LR 32, Bifidobacterium lactis BL 04, and Bifidobacterium longum BB 536 Counteracts the Increase in Permeability Induced by the Mucosal Mediators of Irritable Bowel Syndrome by Acting on Zonula Occludens 1. Int. J. Mol. Sci. 2025, 26, 2656. https://doi.org/10.3390/ijms26062656
Barbaro MR, Bianco F, Cremon C, Marasco G, Stanghellini V, Barbara G. A Probiotic Mixture of Lactobacillus rhamnosus LR 32, Bifidobacterium lactis BL 04, and Bifidobacterium longum BB 536 Counteracts the Increase in Permeability Induced by the Mucosal Mediators of Irritable Bowel Syndrome by Acting on Zonula Occludens 1. International Journal of Molecular Sciences. 2025; 26(6):2656. https://doi.org/10.3390/ijms26062656
Chicago/Turabian StyleBarbaro, Maria Raffaella, Francesca Bianco, Cesare Cremon, Giovanni Marasco, Vincenzo Stanghellini, and Giovanni Barbara. 2025. "A Probiotic Mixture of Lactobacillus rhamnosus LR 32, Bifidobacterium lactis BL 04, and Bifidobacterium longum BB 536 Counteracts the Increase in Permeability Induced by the Mucosal Mediators of Irritable Bowel Syndrome by Acting on Zonula Occludens 1" International Journal of Molecular Sciences 26, no. 6: 2656. https://doi.org/10.3390/ijms26062656
APA StyleBarbaro, M. R., Bianco, F., Cremon, C., Marasco, G., Stanghellini, V., & Barbara, G. (2025). A Probiotic Mixture of Lactobacillus rhamnosus LR 32, Bifidobacterium lactis BL 04, and Bifidobacterium longum BB 536 Counteracts the Increase in Permeability Induced by the Mucosal Mediators of Irritable Bowel Syndrome by Acting on Zonula Occludens 1. International Journal of Molecular Sciences, 26(6), 2656. https://doi.org/10.3390/ijms26062656