Overview of Epitalon—Highly Bioactive Pineal Tetrapeptide with Promising Properties
Abstract
:1. Introduction and Basic Information on Epitalon
2. Medical, Pharmacological, and Biological Research on Epitalon
2.1. Cells
2.2. Drosophila melanogaster
2.3. Mice
2.4. Rats
2.5. Rhesus Monkey
2.6. Clinical Trials
2.7. Other Biological Models and Experiments
3. Knowledge About Epitalon Based on Physico-Chemical Studies
4. Design of the Study
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kozina, L.S. Effects of Bioactive Tetrapeptides on Free-Radical Processes. Bull. Exp. Biol. Med. 2007, 143, 744–746. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, V.N.; Khavinson, V.K.; Morozov, V.G.; Dil’man, V.M. Decrease in the threshold of sensitivity of the hypothalamo pituitary system to the action of estrogens under the influence of an extract of the epiphysis in old female rats. Dokl. Biol. Sci. 1973, 213, 537–539. [Google Scholar]
- Khavinson, V.K.; Morozov, V.G. Peptides of pineal gland and thymus prolong human life. Neuroendocrinol. Lett. 2003, 24, 233–240. [Google Scholar]
- Anisimov, V.N.; Khavinson, V.K.; Morozov, V.G. Twenty years of study on effects of pineal peptide preparation: Epithalamin in experimental gerontology and oncology. Ann. N. Y. Acad. Sci. 1994, 31, 483–493. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Kuznik, B.I.; Ryzhak, G.A. Peptide bioregulators: The new class of geroprotectors. Message 2. Clinical studies results. Adv. Gerontol. 2013, 26, 20–37. [Google Scholar] [PubMed]
- Linkova, N.S.; Polyakova, V.O.; Trofimov, A.V.; Sevostianova, N.N.; Kvetnoy, I.M. Influence of peptides from pineal gland on thymus function with aging. Adv. Gerontol. 2011, 1, 240–243. [Google Scholar] [CrossRef]
- Arutjunyan, A.; Kozina, L.; Milyutina, Y.; Korenevsky, A.; Stepanov, M.; Arutyunov, V. Melatonin and pineal gland peptides are able to correct the impairment of reproductive cycles in rats. Curr. Aging Sci. 2012, 5, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K. A Method for Obtaining Peptides with Tissue-Specific Activity and Pharmaceutical Compositions on Their Base. Patent of the Russian Federation No. 2161501, 10 January 2001. (In Russian). [Google Scholar]
- Khavinson, V.K.; Kopylov, A.T.; Vaskovsky, B.V.; Ryzhak, G.A.; Lin’kova, N.S. Identification of Peptide AEDG in the Polypeptide Complex of the Pineal Gland. Bull. Exp. Biol. Med. 2017, 164, 41–43. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Konovalov, S.S.; Yuzhakov, V.V.; Popuchiev, V.V.; Kvetnoi, I.M. Modulating Effects of Epithalamin and Epithalon on the Functional Morphology of the Spleen in Old Pinealectomized Rats. Bull. Exp. Biol. Med. 2001, 132, 1116–1120. [Google Scholar] [CrossRef]
- Kozina, L.S.; Arutjunyan, A.V.; Khavinson, V.K. Antioxidant properties of geroprotective peptides of the pineal gland. Arch. Gerontol. Geriatr. 2007, 44 (Suppl. 1), 213–216. [Google Scholar] [CrossRef]
- Storozhok, N.M.; Tsymbal, I.N.; Boldyreva, Y.V.; Burlakova, E.B.; Arutyunyan, A.V. New approaches to stabilization of oxidation of lipid micellar systems with biologically active oligopeptides. Russ. Chem. Bull. 2014, 63, 2175–2183. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Egorova, V.V.; Timofeeva, N.M.; Malinin, V.V.; Gordova, L.A.; Gromova, L.V. Effect of Vilon and Epithalon on glucose and glycine absorption in various regions of small intestine in aged rats. Bull. Exp. Biol. Med. 2002, 133, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K. Tissue-Specific Effects of Peptides. Bull. Exp. Biol. Med. 2001, 133, 228–229. [Google Scholar] [CrossRef]
- Brodsky, V.Y.; Khavinson, V.K.; Zolotarev, Y.A.; Nechaeva, N.N.; Malinin, V.V.; Novikova, T.E.; Gvazava, I.G.; Fateeva, V.I. Rhythm of Protein Synthesis in Cultures of Hepatocytes from Rats of Different Ages. Norm and Effect of the Peptide Lyvagen. Biol. Bull. 2001, 28, 435–438. [Google Scholar] [CrossRef]
- Caputi, S.; Trubiani, O.; Sinjari, B.; Trofimova, S.; Diomede, F.; Linkova, N.; Diatlova, A.; Khavinson, V.K. Effect of short peptides on neuronal differentiation of stem cells. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419828613. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Zemchikhina, V.N.; Trofimova, S.V.; Malinin, V.V. Effects of Peptides on Proliferative Activity of Retinal and Pigmented Epithelial Cells. Bull. Exp. Biol. Med. 2003, 135, 597–599. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Razumovskii, M.I.; Trofimova, S.V.; Grigor’yan, R.A.; Chaban, T.V.; Oleinik, T.L.; Razumovskaya, A.M. Effect of epithalon on age-specific changes in the retina in rats with hereditary pigmentary dystrophy. Bull. Exp. Biol. Med. 2002, 133, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K.; Razumovsky, M.I.; Trofimova, S.V.; Razumovskaya, A.M. Retinoprotective effect of Epithalon in campbell rats of various ages. Bull. Exp. Biol. Med. 2003, 135, 495–498. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Razumovsky, M.I.; Trofimova, S.V.; Grigorian, R.; Razumovskaya, A. Pineal-regulating tetrapeptide epitalon improves eye retina condition in retinitis pigmentosa. Neuroendocrinol. Lett. 2002, 23, 365–368. [Google Scholar] [PubMed]
- Khavinson, V.K.; Pronyaeva, V.E.; Linkova, N.S.; Trofimova, S.V. Peptidegic regulation of differentiation of embryonic retinal cells. Bull. Exp. Biol. Med. 2013, 155, 172–174. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Linkova, N.S.; Kvetnoy, I.M.; Kvetnaia, T.V.; Polyakova, V.O.; Korf, H.-W. Molecular Cellular Mechanisms of Peptide Regulation of Melatonin Synthesis in Pinealocyte Culture. Bull. Exp. Biol. Med. 2012, 153, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Djeridane, Y.; Khavinson, V.K.; Anisimov, V.N.; Touitou, Y. Effect of a synthetic pineal tetrapeptide (Ala-Glu-Asp-Gly) on melatonin secretion by the pineal gland of young and old rats. J. Endocrinol. Investig. 2003, 26, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Linkova, N.S.; Khavinson, V.K.; Chalisova, N.I.; Katanugina, A.S.; Koncevaya, E.A. Peptidegic stimulation of differentiation of pineal immune cells. Bull. Exp. Biol. Med. 2011, 152, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K.; Pendina, A.A.; Efimova, O.A.; Tikhonov, A.V.; Koltsova, A.S.; Krapivin, M.I.; Petrovskaia-Kaminskaia, A.V.; Petrova, L.I.; Lin’kova, N.S.; Baranov, V.S. Effect of Peptide AEDG on Telomere Length and Mitotic Index of PHA-Stimulated Human Blood Lymphocytes. Bull. Exp. Biol. Med. 2019, 168, 141–144. [Google Scholar] [CrossRef]
- Kazakova, T.B.; Barabanova, S.V.; Khavinson, V.K.; Glushikhina, M.S.; Parkhomenko, E.P.; Malinin, V.V.; Korneva, E.A. In Vitro Effect of Short Peptides on Expression of Interleukin-2 Gene in Splenocytes. Bull. Exp. Biol. Med. 2002, 133, 614–616. [Google Scholar] [CrossRef]
- Kozina, L.S.; Kochkina, E.G.; Nalivaeva, N.N.; Beliaev, N.D.; Turner, A.J.; Arutjunyan, A.V. The effects of vilon and epithalon peptides on the expression of neprilysin and insulin-degrading enzyme in human neuroblastoma NB7 cells under normal and hypoxic conditions. Neurochem. J. 2008, 2, 69–71. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Rybakina, E.G.; Malinin, V.V.; Pivanovich, I.Y.; Shanin, S.N.; Korneva, E.A. Effects of short peptides on thymocyte blast transformation and signal transduction along the sphingomyelin pathway. Bull. Exp. Biol. Med. 2002, 133, 497–499. [Google Scholar] [CrossRef]
- Grigor’ev, E.I.; Khavinson, V.K.; Malinin, V.V.; Grigor’ev, A.E.; Kudryavtseva, T.A. Role of Aqueous Medium in Mechanisms Underlying the Influence of Immunoactive Peptides in Ultralow Doses. Bull. Exp. Biol. Med. 2003, 136, 150–154. [Google Scholar] [CrossRef]
- Dzhokhadze, T.A.; Buadze, T.Z.; Rubanov, K.D.; Kiriia, N.A.; Lezhava, T.A. Genome instability in pulmonary tuberculosis before and after treatment. Georgian Med. News 2013, 224, 77–81. [Google Scholar] [PubMed]
- Khavinson, V.K.; Korneva, E.A.; Malinin, V.V.; Rybakina, E.G.; Pivanovich, I.Y.; Shanin, S.N. Effect of epitalon on interleukin-1beta signal transduction and the reaction of thymocyte blast transformation under stress. Neuroendocrinol. Lett. 2002, 23, 411–416. [Google Scholar]
- Lin’kova, N.S.; Trofimov, A.V.; Dudkov, A.V. Peptides from the Pituitary Gland and Cortex Stimulate Differentiation of Polypotent Embryonic Tissue. Bull. Exp. Biol. Med. 2011, 151, 530–531. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Bondarev, I.E.; Butyugov, A.A. Epithalon Peptide Induces Telomerase Activity and Telomere Elongation in Human Somatic Cells. Bull. Exp. Biol. Med. 2003, 135, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K.; Bondarev, I.E.; Butyugov, A.A.; Smirnova, T.D. Peptide Promotes Overcoming of the Division Limit in Human Somatic Cell. Bull. Exp. Biol. Med. 2004, 137, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K.; Lezhava, T.A.; Malinin, V.V. Effects of Short Peptides on Lymphocyte Chromatin in Senile Subjects. Bull. Exp. Biol. Med. 2004, 137, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Lezhava, T.; Jokhadze, T.; Monaselidze, J.; Buadze, T.; Gaiozishvili, M.; Sigua, T. Epigenetic modification under the influence of peptide bioregulators on the “old” chromatin. Georgian Med. News 2023, 335, 79–83. [Google Scholar]
- Lezhava, T.; Jokhadze, T.; Monaselidze, J.; Buadze, T.; Gaiozishvili, M.; Sigua, T.; Chigvinadze, N.; Kilaberia, E. Epigenetic Variations in Chromatin Caused by the Combination of Bioregulators with Heavy Metals During Aging. Int. J. Pept. Res. Ther. 2022, 28, 121. [Google Scholar] [CrossRef]
- Raikhlin, N.T.; Bukaeva, I.A.; Smirnova, E.A.; Yarilin, A.A.; Sharova, N.I.; Mitneva, M.M.; Khavinson, V.K.; Polyakova, V.O.; Trofimov, A.V.; Kvetnoi, I.M. Expression of argyrophilic proteins in the nucleolar organizer regions of human thymocytes and thymic epitheliocytes under conditions of coculturing with vilon and epithalon peptides. Bull. Exp. Biol. Med. 2004, 137, 588–591. [Google Scholar] [CrossRef]
- Ivko, O.M.; Drobintseva, A.O.; Leont’eva, D.O.; Kvetnoyc, I.M.; Polyakovab, V.O.; Linkova, N.S. Influence of AEDG and KE Peptides on Mitochondrial Staining and the Expression of Ribosomal Protein L7A with Aging of the Human Pineal Gland and Thymus Cell In Vitro. Adv. Gerontol. 2021, 11, 261–267. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Diomede, F.; Mironova, E.; Linkova, N.S.; Trofimova, S.V.; Trubiani, O.; Caputi, S.; Sinjari, B. AEDG Peptide (Epitalon) Stimulates Gene Expression and Protein Synthesis during Neurogenesis: Possible Epigenetic Mechanism. Molecules 2020, 25, 609. [Google Scholar] [CrossRef]
- Fedoreyeva, L.I.; Kireev, I.I.; Khavinson, V.K.; Vanyushin, B.F. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry 2011, 76, 1210–1219. [Google Scholar] [CrossRef]
- Labunets’, I.F. Circannual rhythms of bone marrow cell composition in animals during aging: The role of pineal factors. Fiziolohichnyi Zhurnal (1994) 2007, 53, 52–59. [Google Scholar] [PubMed]
- Labunets, I.F.; Butenko, G.M.; Dragunova, V.A.; Magdich, L.V.; Kopylova, G.V.; Rodnichenko, A.E.; Mikhal’skiĭ, S.A.; Khavinson, V.K.; Azarskova, M.V.; Maksiuk, T.V. The pineal gland’s peptides factors and the rhythms of functions of the thymus and bone marrow in animals during aging. Adv. Gerontol. 2004, 13, 81–89. [Google Scholar] [PubMed]
- Labunets, I.F.; Butenko, G.M.; Khavinson, V.K. Effects of bioactive factors of the pineal gland on thymus function and cell composition of the bone marrow and spleen in mice of different age. Bull. Exp. Biol. Med. 2004, 137, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Nalivaeva, N.N.; Makova, N.Z.; Kochkina, E.G.; John, D.; Arutyunovc, V.A.; Kozinac, L.S.; Arutjunyanc, A.V.; Zhuravina, I.A. Effects of geroprotective peptides on the activity of cholinesterases and formation of the soluble form of the amyloid precursor protein in human neuroblastoma SH-SY5Y cells. Neurochem. J. 2011, 5, 176–182. [Google Scholar] [CrossRef]
- Avolio, F.; Martinotti, S.; Khavinson, V.K.; Esposito, J.E.; Giambuzzi, G.; Marino, A.; Mironova, E.; Pulcini, R.; Robuffo, I.; Bologna, G.; et al. Peptides Regulating Proliferative Activity and Inflammatory Pathways in the Monocyte/Macrophage THP-1 Cell Line. Int. J. Mol. Sci. 2022, 23, 3607. [Google Scholar] [CrossRef]
- Gumen, A.V.; Kozinets, I.A.; Shanin, S.N.; Malinin, V.V.; Rybakina, E.G. Production of lymphocyte-activating factors by mouse macrophages during aging and under the effect of short peptides. Bull. Exp. Biol. Med. 2006, 142, 360–362. [Google Scholar] [CrossRef]
- Labunets, I.F.; Butenko, G.M.; Khavinson, V.K.; Magdich, L.V.; Dragunova, V.A.; Pishel’, I.N.; Azarskova, M.V. Regulating effect of pineal gland peptides on development of T-lymphocytes in CBA aging mice: Role of microenvironment of immune system organs and neuroendocrine factors. Adv. Gerontol. 2003, 12, 111–120. [Google Scholar] [PubMed]
- Il’ina, T.N.; Vinogradova, I.A.; Iliukha, V.A.; Khizhkin, E.A.; Anisimov, V.N.; Khavinson, V.K. The influences of geroprotectors on age-related changes of antioxidant system in rats liver under different light condition. Adv. Gerontol. 2008, 21, 386–393. [Google Scholar] [PubMed]
- Kraskovskaya, N.; Linkova, N.; Sakhenberg, E.; Krieger, D.; Polyakova, V.; Medvedev, D.; Krasichkov, A.; Khotin, M.; Ryzhak, G. Short Peptides Protect Fibroblast-Derived Induced Neurons from Age-Related Changes. Int. J. Mol. Sci. 2024, 25, 11363. [Google Scholar] [CrossRef]
- Yue, X.; Liu, S.L.; Guo, J.N.; Meng, T.G.; Zhang, X.R.; Li, H.X.; Song, C.Y.; Wang, Z.B.; Schatten, H.; Sun, Q.Y.; et al. Epitalon protects against post-ovulatory aging-related damage of mouse oocytes in vitro. Aging 2022, 14, 3191–3202. [Google Scholar] [CrossRef]
- Sinjari, B.; Diomede, F.; Khavinson, V.; Mironova, E.; Linkova, N.; Trofimova, S.; Trubiani, O.; Caputi, S. Short Peptides Protect Oral Stem Cells from Ageing. Stem Cell Rev. Rep. 2020, 16, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lin’kova, N.S.; Drobintseva, A.O.; Orlova, O.A.; Kuznetsova, E.P.; Polyakova, V.O.; Kvetnoy, I.M.; Khavinson, V.K. Peptide Regulation of Skin Fibroblast Functions during Their Aging In Vitro. Bull. Exp. Biol. Med. 2016, 161, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Gutop, E.O.; Linkova, N.S.; Kozhevnikova, E.O.; Fridman, N.V.; Ivko, O.M.; Khavinson, V.K. AEDG Peptide Prevents Oxidative Stress in the Model of Induced Aging of Skin Fibroblasts. Adv. Gerontol. 2022, 12, 143–148. [Google Scholar] [CrossRef]
- Chalisova, N.I.; Linkova, N.S.; Zhekalov, A.N.; Orlova, A.O.; Ryzhak, G.A.; Khavinson, V.K. Short peptides stimulate cell regeneration in skin during aging. Adv. Gerontol. 2015, 5, 176–179. [Google Scholar] [CrossRef]
- Ullah, S.; Haider, Z.; Perera, C.D.; Lee, S.H.; Idrees, M.; Park, S.; Kong, I. Epitalon-activated telomerase enhance bovine oocyte maturation rate and post-thawed embryo development. Life Sci. 2025, 362, 123381. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Myl’nikov, S.V. Effect of epithalone on the age-specific changes in the time course of lipid peroxidation in Drosophila melanogaster. Bull. Exp. Biol. Med. 2000, 130, 1116–1119. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Myl’nikov, S.V. Effect of pineal tetrapeptide on antioxidant defense in Drosophila melanogaster. Bull. Exp. Biol. Med. 2000, 129, 355–356. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Myl’nikov, S.V.; Oparina, T.I.; Arutyunyan, A.V. Effects of Peptides on Generation of Reactive Oxygen Species in Subcellular Fractions of Drosophila Melanogaster. Bull. Exp. Biol. Med. 2001, 132, 682–685. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Izmaylov, D.M.; Obukhova, L.K.; Malinin, V.V. Effect of epitalon on the lifespan increase in Drosophila melanogaster. Mech. Ageing Dev. 2000, 120, 141–149. [Google Scholar] [CrossRef]
- Izmaylov, D.M.; Obukhova, L.K. Geroprotector effectiveness of melatonin: Investigation of lifespan of Drosophila melanogaster. Mech. Ageing Dev. 1999, 106, 233–240. [Google Scholar] [CrossRef]
- Rosenfeld, S.V.; Togo, E.F.; Mikheev, V.S.; Popovich, I.G.; Khavinson, V.K.; Anisimov, V.N. Effect of epithalon on the incidence of chromosome aberrations in senescence-accelerated mice. Bull. Exp. Biol. Med. 2002, 133, 274–276. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Khavinson, V.K.; Popovich, I.G.; Zabezhinski, M.A.; Alimova, I.N.; Rosenfeld, S.V.; Zavarzina, N.Y.; Semenchenko, A.V.; Yashin, A.I. Effect of Epitalon on biomarkers of aging, life span and spontaneous tumor incidence in female Swiss-derived SHR mice. Biogerontology 2003, 4, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Dzhokhadze, T.A.; Buadze, T.Z.; Gaĭozishvili, M.N.; Rogava, M.A.; Lazhava, T.A. Functional regulation of genome with peptide bioregulators by hypertrophic cardiomyopathy (by patients and relatives). Georgian Med. News 2013, 225, 94–97. [Google Scholar] [PubMed]
- Anisimov, V.N.; Khavinson, V.K.; Mikhalski, A.I.; Yashin, A.I. Effect of synthetic thymic and pineal peptides on biomarkers of ageing, survival and spontaneous tumour incidence in female CBA mice. Mech. Ageing Dev. 2001, 122, 41–68. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Khavinson, V.K.; Alimova, I.N.; Semchenko, A.V.; Yashin, A.I. Epithalon decelerates aging and suppresses development of breast adenocarcinomas in transgenic her-2/neu mice. Bull. Exp. Biol. Med. 2002, 134, 187–190. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Khavinson, V.K.; Provinciali, M.; Alimova, I.N.; Baturin, D.A.; Popovich, I.G.; Zabezhinski, M.A.; Imyanitov, E.N.; Mancini, R.; Franceschi, C. Inhibitory effect of the peptide epitalon on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Int. J. Cancer 2002, 101, 7–10. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Khavinsov, V.K.; Alimova, I.N.; Provintsiali, M.; Manchini, R.; Francheski, K. Epithalon inhibits tumor growth and expression of HER-2/neu oncogene in breast tumors in transgenic mice characterized by accelerated aging. Bull. Exp. Biol. Med. 2002, 133, 167–170. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Iuzhakov, V.V.; Kvetnoĭ, I.M.; Malinin, V.V. Effect of epithalone on growth kinetics and functional morphology of M-1 sarcoma. Vopr. Onkol. 2001, 47, 461–466. [Google Scholar] [PubMed]
- Pliss, G.B.; Mel’nikov, A.S.; Malinin, V.V.; Khavinson, V.K. Effect of vilon and epithalone on induction and growth of induced bladder neoplasms in rats. Vopr. Onkol. 2001, 47, 601–607. [Google Scholar] [PubMed]
- Kossoy, G.; Anisimov, V.N.; Ben-Hur, H.; Kossoy, N.; Zusman, I. Effect of the synthetic pineal peptide epitalon on spontaneous carcinogenesis in female C3H/He mice. In Vivo 2006, 20, 253–257. [Google Scholar] [PubMed]
- Semenchenko, G.V.; Anisimov, V.N.; Yashin, A.I. Stressors and antistressors: How do they influence life span in HER-2/neu transgenic mice? Exp. Gerontol. 2004, 39, 1499–1511. [Google Scholar] [CrossRef] [PubMed]
- Mylnikov, S.V.; Pavlova, N.V.; Barabanova, L.V. Antimutagenic effects of synthetic epithalon peptide in mice Mus musculus different in hair color. Russ. J. Genet. Appl. Res. 2012, 2, 378–389. [Google Scholar] [CrossRef]
- Anisimov, S.V.; Bokheler, K.R.; Khavinson, V.K.; Anisimov, V.N. Studies of the effects of Vilon and Epithalon on gene expression in mouse heart using DNA-microarray technology. Bull. Exp. Biol. Med. 2002, 133, 293–299. [Google Scholar] [CrossRef]
- Anisimov, S.V.; Khavinson, V.K.; Anisimov, V.N. Effect of melatonin and tetrapeptide on gene expression in mouse brain. Bull. Exp. Biol. Med. 2004, 138, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, V.N.; Khavinson, V.K.; Zavarzina, N.I.; Zabezhinskiĭ, M.A.; Zimina, O.A.; Popovich, I.G.; Shtylik, A.V.; Arutiunian, A.V.; Oparina, T.I.; Prokopenko, V.M. Effect of pineal peptide on parameters of the biological age and life span in mice. Rossiiskii Fiziologicheskii Zhurnal Imeni IM Sechenova 2001, 87, 125–136. [Google Scholar] [PubMed]
- Khavinson, V.K.; Kvetnoĭ, I.M.; Popuchiev, V.V.; Iuzhakov, V.V.; Kotlova, L.N. Effect of pineal peptides on neuroendocrine system after pinealectomy. Arkh. Patol. 2001, 63, 18–21. [Google Scholar] [PubMed]
- Khavinson, V.K.; Popuchiev, V.V.; Kvetnoii, I.M.; Yuzhakov, V.V.; Kotlova, L.N. Regulating effect of epithalone on gastric endocrine cells in pinealectomized rats. Bull. Exp. Biol. Med. 2000, 130, 1169–1171. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K.; Yuzhakov, V.V.; Kvetnoi, I.M.; Malinin, V.V.; Popuchiev, V.V.; Fomina, N.K. Immunohistochemical and morphometric analysis of effects of vilon and epithalon on functional morphology of radiosensitive organs. Bull. Exp. Biol. Med. 2001, 131, 285–292. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Khavinson, V.K.; Popovich, I.G.; Zabezhinski, M.A. Inhibitory effect of peptide Epitalon on colon carcinogenesis induced by 1,2-dimethylhydrazine in rats. Cancer Lett. 2002, 183, 1–8. [Google Scholar] [CrossRef]
- Kossoy, G.; Zandbank, J.; Tendler, E.; Anisimov, V.; Khavinson, V.; Popovich, I.; Zabezhinski, M.; Zusman, I.; Ben-Hur, H. Epitalon and colon carcinogenesis in rats: Proliferative activity and apoptosis in colon tumors and mucosa. Int. J. Mol. Med. 2003, 12, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Morozov, A.V.; Khizhkin, E.A.; Svechkina, E.B.; Vinogradova, I.A.; Ilyukha, V.A.; Anisimov, V.N.; Khavinson, V.K. Effects of Geroprotectors on Age-Related Changes in Proteolytic Digestive Enzyme Activities at Different Lighting Conditions. Bull. Exp. Biol. Med. 2015, 159, 761–763. [Google Scholar] [CrossRef] [PubMed]
- Uzenbaeva, L.B.; Vinogradova, I.A.; Golubeva, A.G.; Niuppieva, M.G.; Iliukha, V.A. The influence of melatonin and epithalon on blood leukocyte count and leukocyte alkaline phosphatase in rats under different lighting conditions during ontogenesis. Adv. Gerontol. 2008, 21, 394–401. [Google Scholar] [PubMed]
- Vinogradova, I.A.; Bukalev, A.V.; Zabezhinski, M.A.; Semenchenko, A.V.; Khavinson, V.K.; Anisimov, V.N. Geroprotective effect of ala-glu-asp-gly peptide in male rats exposed to different illumination regimens. Bull. Exp. Biol. Med. 2008, 145, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, I.A.; Bukalev, A.V.; Zabezhinski, M.A.; Semenchenko, A.V.; Khavinson, V.K.; Anisimov, V.N. Effect of Ala-Glu-Asp-Gly peptide on life span and development of spontaneous tumors in female rats exposed to different illumination regimes. Bull. Exp. Biol. Med. 2007, 144, 825–830. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Kvetnoii, I.M. Peptide bioregulators inhibit apoptosis. Bull. Exp. Biol. Med. 2000, 130, 1175–1176. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K.; Yakovleva, N.D.; Popuchiev, V.V.; Kvetnoi, I.M.; Manokhina, R.P. Reparative Effect of Epithalon on Pineal Gland Ultrastructure in γ-Irradiated Rats. Bull. Exp. Biol. Med. 2001, 131, 81–85. [Google Scholar] [CrossRef]
- Bullitt, E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J. Comp. Neurol. 1990, 296, 517–530. [Google Scholar] [CrossRef]
- Sibarov, D.A.; Kovalenko, R.I.; Malinin, V.V.; Khavinson, V.K. Epitalon influences pineal secretion in stress-exposed rats in the daytime. Neuroendocrinol. Lett. 2002, 23, 452–454. [Google Scholar] [PubMed]
- Barabanova, S.V.; Artyukhina, Z.E.; Ovchinnikova, K.T.; Abramova, T.V.; Kazakova, T.B.; Khavinson, V.K.; Malinin, V.V.; Korneva, E.A. Comparative analysis of the expression of c-Fos and interleukin-2 proteins in hypothalamus cells during various treatments. Neurosci. Behav. Physiol. 2008, 38, 237–243. [Google Scholar] [CrossRef]
- Rendakov, N.L.; Tiutiunnik, N.N.; Vinogradova, I.A. Effect of age, different light conditions, melatonin, and epitalon on lysosomal proteinase activity in the liver and kidneys of rats. Adv. Gerontol. 2008, 19, 72–78. [Google Scholar] [PubMed]
- Khavinson, V.K.; Malinin, V.V.; Timofeeva, N.M.; Egorova, V.V.; Nikitina, A.A. Effects of epithalon on activities gastrointestinal enzymes in young and old rats. Bull. Exp. Biol. Med. 2002, 133, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K.; Timofeeva, N.M.; Malinin, V.V.; Gordova, L.A.; Nikitina, A.A. Effect of Vilon and Epithalon on Activity of Enzymes in Epithelial and Subepithelial Layers in Small Intestine of Old Rats. Bull. Exp. Biol. Med. 2002, 134, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Barabanova, S.V.; Artiukhina, Z.E.; Ovchinnikova, K.T.; Abramova, T.V.; Kazakova, T.B.; Khavinson, V.K.; Malinin, V.V.; Korneva, E.A. Parallel analysis of c-Fos protein and interleukin-2 expression in hypothalamic cells under different influence. Rossiiskii Fiziologicheskii Zhurnal Imeni IM Sechenova 2007, 93, 150–160. [Google Scholar] [PubMed]
- Kuznik, B.I.; Pateiuk, A.V.; Baranchugova, L.M.; Rusaeva, N.S. Effects of epithalon and cortagene on immunity and hemostasis in neonatally hypophysectomized chicken and old birds. Adv. Gerontol. 2008, 21, 372–381. [Google Scholar] [PubMed]
- Kazakova, T.B.; Barabanova, S.V.; Novikova, N.S.; Glushikhina, M.S.; Khavinson, V.K.; Malinin, V.V.; Korneva, E.A. Synthesis of IL-2 mRNA in cells of rat hypothalamic structures after injection of short peptides. Bull. Exp. Biol. Med. 2005, 139, 718–720. [Google Scholar] [CrossRef]
- Barabanova, S.V.; Artyukhina, Z.E.; Kazakova, T.B.; Khavinson, V.K.; Malinin, V.V.; Korneva, E.A. Interleukin-2 concentration in hypothalamic structures of rats receiving peptides during mild stress. Bull. Exp. Biol. Med. 2006, 141, 390–393. [Google Scholar] [CrossRef]
- Korenevsky, A.V.; Milyutina, Y.P.; Bukalyov, A.V.; Baranova, Y.P.; Vinogradova, I.A.; Arutjunyan, A.V. The protective effect of melatonin and epithalon on hypothalamic regulation of the reproductive function in female rats in a model of its premature aging and on the estrous cycles of aging animals in different lighting conditions. Adv. Gerontol. 2014, 4, 67–77. [Google Scholar] [CrossRef]
- Milyutina, Y.P.; Korenevskii, A.V.; Stepanov, M.G.; Arutyunyan, A.V. Effects of melatonin and epiphysis peptides on the catecholamine link of hypothalamic regulation of the reproductive function of rats. Neurochem. J. 2010, 4, 196–203. [Google Scholar] [CrossRef]
- Sibarov, D.A.; Vol’nova, A.B.; Frolov, D.S.; Nozdrachev, A.D. Effects of intranasal administration of epitalon on neuron activity in the rat neocortex. Neurosci. Behav. Physiol. 2007, 37, 889–893. [Google Scholar] [CrossRef]
- Zamorskii, I.I.; Shchudrova, T.S.; Zeleniuk, V.G.; Linkova, N.S.; Nichik, T.E.; Khavinson, V.K. The influence of peptides on the morphofunctional state of old rats kidneys. Adv. Gerontol. 2019, 9, 75–80. [Google Scholar] [CrossRef]
- Zamorskii, I.I.; Shchudrova, T.S. Main mechanisms of rhabdomyolysis-caused kidney injury and their correction by organospecific peptides. Biophysics 2014, 59, 834–836. [Google Scholar] [CrossRef]
- Zamorskii, I.I.; Shchudrova, T.S.; Lin’kova, N.S.; Nichik, T.E.; Khavinson, V.K. Peptides Restore Functional State of the Kidneys During Cisplatin-Induced Acute Renal Failure. Bull. Exp. Biol. Med. 2015, 159, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Goncharova, N.D.; Khavinson, B.K.; Lapin, B.A. Regulatory effect of Epithalon on production of melatonin and cortisol in old monkeys. Bull. Exp. Biol. Med. 2001, 131, 394–396. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Goncharova, N.; Lapin, B. Synthetic tetrapeptide epitalon restores disturbed neuroendocrine regulation in senescent monkeys. Neuroendocrinol. Lett. 2001, 22, 251–254. [Google Scholar]
- Goncharova, N.D.; Vengerin, A.A.; Khavinson, V.K.; Lapin, B.A. Peptide correction of age-related hormonal dysfunction of the pancreas in monkeys. Bull. Exp. Biol. Med. 2004, 138, 80–83. [Google Scholar] [CrossRef]
- Goncharova, N.D.; Vengerin, A.A.; Khavinson, V.K.; Lapin, B.A. Pineal peptides restore the age-related disturbances in hormonal functions of the pineal gland and the pancreas. Exp. Gerontol. 2005, 40, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ivko, O.M.; Linkova, N.S.; Ilina, A.R.; Sharova, A.A.; Ruzhak, G.A. AEDG Peptide Regulation of the Expression of Human Circadian Rhythm Genes upon Accelerated Aging of the Pineal Gland. Adv. Gerontol. 2021, 11, 53–58. [Google Scholar] [CrossRef]
- Lapina, E.A.; Nazarova, L.A.; Petrova, O.P.; Sibarov, D.A.; Zubzhitskaya, L.B.; Pavlova, N.G.; Konstantinova, N.N.; Konovalov, Y.S.; Kvetnoi, I.M.; Arutyunyan, A.V.; et al. Fluorescent microscopic study of epithalon binding in maternal and fetal rabbit tissues in health and under conditions of placental insufficiency. Bull. Exp. Biol. Med. 2005, 139, 615–618. [Google Scholar] [CrossRef]
- Kost, N.V.; Sokolov, O.Y.; Gabaeva, M.V.; Zolotarev, Y.A.; Malinin, V.V.; Khavinson, V.K. Effects of Livagen and Epitalon, New Peptide Bioregulators, on Enkephalin-Degrading Enzymes from Human Serum. Biol. Bull. 2003, 30, 351–353. [Google Scholar] [CrossRef]
- Fedoreyeva, L.I.; Dilovarova, T.A.; Ashapkin, V.V.; Martirosyan, Y.T.; Khavinson, V.K.; Kharchenko, P.N.; Vanyushin, B.F. Short exogenous peptides regulate expression of CLE, KNOX1, and GRF family genes in Nicotiana tabacum. Biochemistry 2017, 82, 521–528. [Google Scholar] [CrossRef]
- Fedoreyeva, L.I.; Vanyushin, B.F. Regulation of DNA methyltransferase gene expression by short peptides in nicotiana tabacum regenerants. AIMS Biophys. 2021, 8, 66–79. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Shataeva, L.K.; Chernova, A.A. Effect of Regulatory Peptides on Gene Transcription. Bull. Exp. Biol. Med. 2003, 136, 288–290. [Google Scholar] [CrossRef]
- Rogachevskii, I.V.; Shchegolev, B.F.; Khavinson, V.K. Geometric structure of a molecule of Epitalon tetrapeptide: A molecular-dynamics simulation. Russ. J. Gen. Chem. 2006, 76, 826–831. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Shataeva, L.; Chernova, A. DNA double-helix binds regulatory peptides similarly to transcription factors. Neuroendocrinol. Lett. 2005, 26, 237–241. [Google Scholar] [PubMed]
- Schildkraut, C. Dependence of the melting temperature of DNA on salt concentration. Biopolymers 1965, 3, 195–208. [Google Scholar] [CrossRef] [PubMed]
- SantaLucia, J., Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 1998, 95, 1460–1465. [Google Scholar] [CrossRef]
- Solovyev, A.Y.; Tarnovskaya, S.I.; Chernova, I.A.; Shataeva, L.K.; Skorik, Y.A. The interaction of amino acids, peptides, and proteins with DNA. Int. J. Biol. Macromol. 2015, 78, 39–45. [Google Scholar] [CrossRef]
- Fedoreyeva, L.I.; Smirnova, T.A.; Kolomijtseva, G.Y.; Khavinson, V.K.; Vanyushin, B.F. Interaction of short peptides with FITC-labeled wheat histones and their complexes with deoxyribooligonucleotides. Biochemistry 2013, 78, 166–175. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Linkova, N.S.; Rudskoy, A.I.; Petukhov, M.G. Feasibility of Transport of 26 Biologically Active Ultrashort Peptides via LAT and PEPT Family Transporters. Biomolecules 2023, 13, 552. [Google Scholar] [CrossRef]
- Neelov, I.; Popova, E.; Khamidova, D.; Tarasenko, I. Interaction of Lysine Dendrimers with Therapeutic Peptides-Molecular Dynamics Simulation. Int. J. Biol. Eng. 2018, 11, 194–203. [Google Scholar]
- Fatullaev, E.I.; Bezrodnyi, V.V.; Neelov, I.M. MD Simulation of AEDG Peptide Complexes with New K2R Dendrimer and Dendrigraft. Int. J. Biol. Biomed. Eng. 2022, 16, 73–81. [Google Scholar] [CrossRef]
- Zhu, M.; Qu, J.; Deng, Q. Identification of potential inhibitors against Staphylococcus aureus shikimate dehydrogenase through virtual screening and susceptibility test. J. Enzym. Inhib. Med. Chem. 2024, 39, 2301768. [Google Scholar] [CrossRef] [PubMed]
- Vanhee, C.; Moens, G.; Van Hoeck, E.; Deconinck, E.; De Beer, J.O. Identification of the small research tetra peptide Epitalon, assumed to be a potential treatment for cancer, old age and Retinitis Pigmentosa in two illegal pharmaceutical preparations. Drug Test. Anal. 2015, 7, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Twardzik, D.R.; Peterkofsky, A. Glutamic acid as a precursor to N terminal pyroglutamic acid in mouse plasmacytoma protein (protein synthesis-initiation-immunoglobulins-pyrrolidone carboxylic acid). Proc. Natl. Acad. Sci. USA 1972, 69, 274. [Google Scholar] [CrossRef]
Cell Type/Line | Origin | Parameter Investigated | Reference |
---|---|---|---|
Isolated primary retinal cells | Rat | Proliferation and growth dynamics | [17] |
Isolated pigmented epithelial cells | |||
Isolated hepatocytes | Rat | Protein synthesis | [15] |
Isolated pinealocytes | Rat | Transcription factor and enzyme level | [22] |
Expression of CD5, CD20, CD4, and CD8 | [24] | ||
Perifused pineal gland | Rat | Melatonin release | [23] |
Isolated primary fibroblast | Rat | Expression of Ki-67, CD98hc, caspase-3, and MMP-9 | [53] |
Organotypic cultures of isolated skin explants | Rat | Ratio of the total explant area | [55] |
Brain cortex tissue | Rat | Proliferation | [14] |
Subcortical (pineal) tissue | |||
Liver tissue | |||
Thymus tissue | |||
Bone marrow tissue | Mouse | SPC-F and CD4+ cells population | [44] |
Splenocytes | IL-2 mRNA expression | [26] | |
Contribution of CD8+ cells | [44] | ||
Isolated peritoneal macrophages | Mouse | Lymphocyte-activating characteristics of macrophages | [47] |
HeLa | Human | Telomerase subunit expression and telomere elongation | [33] |
Membrane penetration | [41] | ||
DNA binding | [41] | ||
Fetal lung fibroblasts 602/17 | Human | Telomerase subunit expression and telomere elongation | [33] |
Division limit | [34] | ||
Thymocytes | Mouse | Proliferation | [28,29,31] |
Neutral sphingomyelinase activity | [31] | ||
Thymic serum factor presence in supernatant fraction | [44] | ||
Involvement in sphingomyelin pathway | [28] | ||
Human | Argyrophyllic proteins expression | [38] | |
Aging, L7A protein expression | [39] | ||
Pinealocytes | Human | Aging, L7A protein expression | [39] |
Thymic epithelial cells | Human | Argyrophyllic proteins expression | [38] |
Isolated lymphocytes | Human | Effects on chromatin | [35,36,37] |
Telomere length and mitotic index | [25] | ||
NB7 neuroblastoma | Human | NEP and IDE expression | [27] |
Fission cavity | Frog 1 | Differentiation | [32] |
SH-SY5Y neuroblastoma | Human | AChE and BuChE activity | [45] |
Amyloid precursor protein secretion level | [45] | ||
THP-1 monocytic leukemia | Human | Inflammatory pathways | [46] |
Fibroblasts derived into neurons | Human | DNA damage prevention, mitochondrial and lysosomal activity, and morphology post-Epitalon administration | [50] |
Periodontal ligament stem cells | Human | MTT, GAP43, and Nestin protein expression | [16] |
p16 and p21 expression | [52] | ||
MII oocytes | Mice | ROS level, morphology, mitochondrial membrane potential, mtDNA copy number, apoptosis, and DNA damage | [51] |
Gingival mesenchymal stem cells | Human | GAP43, Nestin, β-tubulin III, and Doublecortin mRNA expression | [40] |
p16 and p21 expression | [52] | ||
Retina | Chicken | Pax6, Vsx1, Brn3, Prox 1, and TTR expression | [21] |
Isolated skin fibroblasts | Human | SOD-1, NQO1, and catalase expression | [54] |
Cumulus cells | Bovine | Telomerase activity, mitochondrial health, and mRNA expression | [56] |
Oocytes | Telomerase activity, TERT protein localization, and mitochondrial health | ||
Post-thawed embryos | Development, re-expansion, implantation potential, mitochondrial health, and trophectoderm integrity |
Strain | Route of Administration | Dose | Period of Administration | Parameter Investigated | Reference |
---|---|---|---|---|---|
SAMP-1 | Subcutaneous injection | 1 µg/mouse, 5 times a week | 10 months | Incidence of chromosome aberrations | [62] |
SAMR-1 | Subcutaneous injection | 1 µg/mouse, 5 times a week | 10 months | Incidence of chromosome aberrations | [62] |
SHR | Subcutaneous injection | 1 µg/mouse, 5 times a week | 10 months | Incidence of chromosome aberrations | [62] |
9 months | Incidence of chromosome aberrations in bone marrow | [63] | |||
Until natural death | Body temperature, life span, food consumption, estrous function, and weight | [63] | |||
CBA | Subcutaneous injection | 0.1 µg/mouse, 5 times a week | Until natural death | Body weight and food consumption dynamics, physical activity, age-related estrus functionality, body temperature, muscular strength and physical fatigability, longevity, and carcinogenesis | [65] |
1 day | Free radical processes | [65] | |||
1 µg/mouse, everyday | 5 days | Gene expression in heart | [74] | ||
0.1 µg/mouse, everyday | 5 days | Gene expression in brain | [75] | ||
5 days | Antioxidant properties, superoxide dismutase activity | [11] | |||
HER-2/neu | Subcutaneous injection | 1 µg/mouse, 5 times a week | Until natural death | Longevity of mice and incidence and count of new breast tumors | [66,68,72] |
Tumor parameters, HER-2/neu mRNA expression | [67,68] | ||||
Β-actin expression in mammary tumors | [67] | ||||
Stressor influence | [72] | ||||
1 µg/mouse, 5 consecutive days every month | Life span, stressor influence, longevity of mice, incidence, and count of new breast tumors | [72] | |||
C3H/He | Subcutaneous injection | 0.1 µg/mouse, 5 times a week | 6.5 months | Incidence, localization, and type of tumors | [71] |
No data/no strain | Subcutaneous injection | 5 µg/kg | Single dose | Anomalies in sperm heads, presence of micronuclei in erythrocytes of peripheral blood, and hair color dependence | [73] |
Strain | Route of Administration | Dose | Period of Administration | Parameter Investigated | Reference |
---|---|---|---|---|---|
Wistar | Subcutaneous injection | 0.5 µg/rat | 30 days and 42 days | Three gastric endocrine occurrence after pinealectomy | [78] |
10 days | Functional spleen morphology of post pinealectomy rats | [10] | |||
5 µg/rat | Pineal gland morphology after γ-irritation | [87] | |||
Intraperitoneal injection | 0.5 µg/rat | 5 days | Splenic lymphocytes apoptosis after γ-irritation | [86] | |
5 µg/kg | Post γ-irritation morphology, proliferative activity, and immunohistochemical investigation of spleen, thymus, and duodenum | [79] | |||
2.5 µg/kg | Lipid peroxidation in brain and serum | [1] | |||
4 µg/kg | 4 days | Noradrenaline and dopamine in proestrus regulation | [99] | ||
Intramuscular injection | 2 µg/rat | Single dose | Number and optical density of IL-2-positive cells in hypothalamic structures | [97] | |
Intranasal | 2 µg/rat | ||||
0.5 µg/rat | Every 12 h (2 days) | C-Fos protein content in pineal gland | [89] | ||
20 ng/rat | Single dose | Cortical neuron activity | [100] | ||
C-Fos and IL-2 content in hypothalamic structures | [90] | ||||
Orally | 100 mg/rat | 14 days | Body weight and activities of membrane-bound digestive enzymes | [92] | |
100 µg/rat | 1 month | Body weight and activities of subepithelial membrane-bound digestive enzymes | [93] | ||
Microinjection into the intercellular medium of neocortex | 0.5 µL of 10−11 M | Single dose | Cortical neuron activity | [100] | |
No data | 2 µg/kg | 4 days | Influence on premature aging of reproductive functions | [98] | |
LIO | Subcutaneous injection | 0.1 µg/rat; 5 times a week | Until natural death | Influence on tumor occurrence and lifespan in different light exposure schemes | [84,85] |
1 µg/rat (0.1 mL) | 5 days a week, until natural death | Age-related changes in the estrous cycle in different lighting conditions | [98] | ||
5 days a week, 6 months | Colon cancer treatment and apoptosis index | [81] | |||
Chemically induced colon carcinogenesis incidence | [80] | ||||
Campbell | Parabulbar injection (both eyes) | 1 µg/rat (0.2 mL) | 72 days (starting from birth) | Retina morphology and electroretinogram measurements | [18] |
0.2 µg/rat (0.2 mL) | [20] | ||||
Intraperitoneal injection | (1, 3) 1 µg/rat (2) 0.5 µg/rat | (1) 3 weeks before mating and during pregnancy; (2) days 5–35 of life; and (3) day 35–81 of life | Retina morphology and electroretinogram measurements | [19] | |
Sprauge Dawley | Intramuscular injection | 10 µg/kg | Single dose | IL-2 mRNA gene expression in hypothalamus | [96] |
Intranasal | 1.5 or 10 µL of 10 ng/µl | ||||
No data/no strain/albino | Orally | 100 µg/rat | 1 month | Body weight, length of small intestine, and passive and active glucose and glycine transport | [13] |
Intraperitoneal injection | 7 µg/rat | 10 days | Morphology and functionality of kidneys | ||
Subcutaneous injection | 0.1 µg/rat; 5 times a week | 2, 8, or 14 months | Pepsin activity and total proteolytic activity | [82] | |
Intramuscular injection | 7 μg/kg | 7 days | Kidney enzyme activity | [102] | |
Intraperitoneal injection | 7 μg/kg | 7 days | Kidney functionality after cis-platin-induced kidney failure | [103] |
Receptor Protein | PDB ID | ICM-Score |
---|---|---|
LAT1-4F2hc | 6IRT | −32.93 |
LAT2-4F2hc | 7CMH | −23.62 |
Apo HsPepT1 (PEPT1) | 7PN1 | −18.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araj, S.K.; Brzezik, J.; Mądra-Gackowska, K.; Szeleszczuk, Ł. Overview of Epitalon—Highly Bioactive Pineal Tetrapeptide with Promising Properties. Int. J. Mol. Sci. 2025, 26, 2691. https://doi.org/10.3390/ijms26062691
Araj SK, Brzezik J, Mądra-Gackowska K, Szeleszczuk Ł. Overview of Epitalon—Highly Bioactive Pineal Tetrapeptide with Promising Properties. International Journal of Molecular Sciences. 2025; 26(6):2691. https://doi.org/10.3390/ijms26062691
Chicago/Turabian StyleAraj, Szymon Kamil, Jakub Brzezik, Katarzyna Mądra-Gackowska, and Łukasz Szeleszczuk. 2025. "Overview of Epitalon—Highly Bioactive Pineal Tetrapeptide with Promising Properties" International Journal of Molecular Sciences 26, no. 6: 2691. https://doi.org/10.3390/ijms26062691
APA StyleAraj, S. K., Brzezik, J., Mądra-Gackowska, K., & Szeleszczuk, Ł. (2025). Overview of Epitalon—Highly Bioactive Pineal Tetrapeptide with Promising Properties. International Journal of Molecular Sciences, 26(6), 2691. https://doi.org/10.3390/ijms26062691