Biomarkers in Contrast-Induced Nephropathy: Advances in Early Detection, Risk Assessment, and Prevention Strategies
Abstract
:1. Introduction
2. Prevalence, Pathophysiology, and Risk Factors of CIN
3. Contrast Media and Kidney Function
4. Contrast Media and Biomarkers: Interplay in Kidney Disease
4.1. Traditional Markers of Kidney Function
4.1.1. Serum Creatinine (sCr)
4.1.2. Glomerular Filtration Rate (GFR)
4.1.3. Urinary Output (UO)
4.1.4. Proteinuria and Microalbuminuria
4.2. Glomerular Filtration and Tubular Dysfunction Biomarkers
4.2.1. Cystatin C (CysC)
4.2.2. Beta-2 Microglobulin (β2M)
4.2.3. Retinol-Binding Protein (RBP)
4.2.4. Vitamin D Binding Protein (VDBP)
4.3. Tubular Injury Biomarkers
4.3.1. Kidney Injury Molecule-1 (KIM-1)
4.3.2. Neutrophil Gelatinase-Associated Lipocalin (NGAL)
4.3.3. N-Acetyl-β-D-Glucosaminidase (NAG)
4.3.4. Liver Fatty Acid-Binding Protein (L-FABP)
4.3.5. α-Glutathione S-Transferase/π-Glutathione S-Transferase (α-GST/π-GST)
4.3.6. Clusterin
4.4. Inflammatory and Oxidative Stress Biomarkers
4.4.1. Interleukin-18 (IL-18)
4.4.2. C-Reactive Protein (CRP) and High-Sensitivity CRP (hs-CRP)
4.4.3. Neutrophil-to-Lymphocyte Ratio (NLR)
4.4.4. Red Cell Distribution Width (RDW)
4.5. Cell Stress and Apoptosis Biomarkers
4.5.1. G1 Cell Cycle Arrest Proteins—Insulin-like Growth Factor-Binding Protein 7 (IGFBP-7) and Tissue Inhibitor of Metalloproteinases-2 (TIMP-2)
4.5.2. Dickkopf-3 (DKK3)
4.5.3. Growth Differentiation Factor-15 (GDF-15)
4.6. Vascular and Endothelial Dysfunction Biomarkers
4.6.1. Vascular Endothelial Growth Factor (VEGF)
4.6.2. Osteopontin
4.6.3. Hepcidin
4.6.4. Midkine
4.7. Fibrosis and Long-Term Kidney Damage Biomarkers
4.7.1. Connective Tissue Growth Factor (CTGF)
4.7.2. Uromodulin
4.8. Biomarkers Related to Metabolic and Systemic Risk Factors
4.8.1. Uric Acid (UA)
4.8.2. Contrast Media Volume to Creatinine Clearance Ratio (V/CrCl)
4.8.3. Pre-Procedural Hyperglycemia
4.8.4. Hypoalbuminemia
4.9. Emerging Biomarkers with Potential in CIN
4.9.1. Renalase
4.9.2. Brain Natriuretic Peptide (BNP)
4.9.3. Gamma-Glutamyl Transferase (GGT)
4.9.4. MicroRNAs (miRNAs)
5. Evolving Strategies and Challenges in CIN Prevention and Management
6. Future Directions and Emerging Innovations in CIN Management
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Latif, O.S.; Hendyatama, T.H. Nephrotoxicity Related to Iodinated-Based Contrast Media: From Pathophysiology to Management. Indian J. Forensic Med. Toxicol. 2022, 16, 349–356. [Google Scholar]
- Pistolesi, V.; Regolisti, G.; Morabito, S.; Gandolfini, I.; Corrado, S.; Piotti, G.; Fiaccadori, E. Contrast medium induced acute kidney injury: A narrative review. J. Nephrol. 2018, 31, 797–812. [Google Scholar] [CrossRef] [PubMed]
- van der Molen, A.J.; Reimer, P.; Dekkers, I.A.; Bongartz, G.; Bellin, M.F.; Bertolotto, M.; Clement, O.; Heinz-Peer, G.; Stacul, F.; Webb, J.A.W.; et al. Post-contrast acute kidney injury—Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 2018, 28, 2845–2855. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J. Contrast-induced acute kidney injury: A review of definition, pathogenesis, risk factors, prevention and treatment. BMC Nephrol. 2024, 25, 140. [Google Scholar] [CrossRef]
- Di Serafino, M.; Severino, R.; Scavone, C.; Gioioso, M.; Coppola, V.; Brigida, R.; Lisanti, F.; Rocca, R.; Scarano, E. Prevention Strategies of Contrast Medium Induced Nephropathy (CIN): A Review of the Current Literature. Open J. Nephrol. 2016, 6, 98–110. [Google Scholar]
- Andreucci, M.; Faga, T.; Pisani, A.; Sabbatini, M.; Michael, A. Pathogenesis of Acute Renal Failure Induced by Iodinated Radiographic Contrast Media. Austin J. Nephrol. Hypertens. 2014, 1, 1005. [Google Scholar]
- Deek, H.; Newton, P.; Sheerin, N.; Noureddine, S.; Davidson, P.M. Contrast media induced nephropathy: A literature review of the available evidence and recommendations for practice. Aust. Crit. Care 2014, 27, 166–171. [Google Scholar] [CrossRef]
- Ronco, C.; Stacul, F.; McCullough, P.A. Subclinical acute kidney injury (AKI) due to iodine-based contrast media. Eur. Radiol. 2013, 23, 319–323. [Google Scholar] [CrossRef]
- Bansal, S.; Patel, R.N. Pathophysiology of Contrast-Induced Acute Kidney Injury. Interv. Cardiol. Clin. 2020, 9, 293–298. [Google Scholar] [CrossRef]
- Fujigaki, Y. Contrast-Induced Acute Kidney Injury. In Acute Kidney Injury and Regenerative Medicine; Terada, Y., Wada, T., Doi, K., Eds.; Springer Nature: Berlin, Germany, 2020; pp. 85–98. [Google Scholar]
- Pierzchała, J.R.; Bednarz, K.; Banaś, P.; Sobańska, N.; Banasiak, A.P.; Teichman, R.; Kasprowicz, J.; Abram, K.; Adamus, J.; Hyjek, M. Contrast-induced nephropathy (CIN)- epidemiology, risk factors and prevention. J. Educ. Health Sport. 2022, 12, 259–264. [Google Scholar]
- Gonzalez-Nicolas, M.A.; Gonzalez-Guerrero, C.; Goicoechea, M.; Bosca, L.; Valino-Rivas, L.; Lazaro, A. Biomarkers in Contrast-Induced Acute Kidney Injury: Towards A New Perspective. Int. J. Mol. Sci. 2024, 25, 3438. [Google Scholar] [CrossRef] [PubMed]
- Andreucci, M.; Solomon, R.; Tasanarong, A. Side effects of radiographic contrast media: Pathogenesis, risk factors, and prevention. BioMed Res. Int. 2014, 2014, 741018. [Google Scholar] [CrossRef]
- Mehran, R.; Nikolsky, E. Contrast-induced nephropathy: Definition, epidemiology, and patients at risk. Kidney Int. Suppl. 2006, 69, S11–S15. [Google Scholar] [CrossRef]
- Shams, E.; Mayrovitz, H.N. Contrast-Induced Nephropathy: A Review of Mechanisms and Risks. Cureus 2021, 13, e14842. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.S.; Li, X. The Potential Biotherapeutic Targets of Contrast-Induced Acute Kidney Injury. Int. J. Mol. Sci. 2023, 24, 8254. [Google Scholar] [CrossRef]
- Fars, Y.Y.; Moghadasi, R.; Shayanpour, S. Contrast-induced nephropathy; an update on pathophysiology. J. Ren. Endocrinol. 2023, 9, e25099. [Google Scholar]
- Chaudhari, H.; Mahendrakar, S.; Baskin, S.E.; Reddi, A.S. Contrast-Induced Acute Kidney Injury: Evidence in Support of Its Existence and a Review of Its Pathogenesis and Management. Int. J. Nephrol. Renov. Dis. 2022, 15, 253–266. [Google Scholar] [CrossRef]
- Georgiadis, G.; Docea, A.O.; Calina, D.; Tsatsakis, A.; Mamoulakis, C. Contrast-Induced Nephropathy (CIN) and Biomarkers. In Biomarkers in Toxicology; Biomarkers in Disease: Methods, Discoveries and Applications; Patel, V.B., Preedy, V.R., Rajendram, R., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Thomsen, H.S. Guidelines for contrast media from the European Society of Urogenital Radiology. AJR Am. J. Roentgenol. 2003, 181, 1463–1471. [Google Scholar] [CrossRef]
- Kusirisin, P.; Apaijai, N.; Noppakun, K.; Kuanprasert, S.; Chattipakorn, S.C.; Chattipakorn, N. Circulating mitochondrial dysfunction as an early biomarker for contrast media-induced acute kidney injury in chronic kidney disease patients. J. Cell. Mol. Med. 2023, 27, 2059–2070. [Google Scholar] [CrossRef]
- Wasung, M.E.; Chawla, L.S.; Madero, M. Biomarkers of renal function, which and when? Clin. Chim. Acta 2015, 438, 350–357. [Google Scholar] [CrossRef]
- Mahapatro, A.; Nobakht, S.; Mukesh, S.; Daryagasht, A.A.; Korsapati, A.R.; Jain, S.M.; Soltani Moghadam, S.; Moosavi, R.; Javid, M.; Hassanipour, S.; et al. Evaluating biomarkers for contrast-induced nephropathy following coronary interventions: An umbrella review on meta-analyses. Eur. J. Med. Res. 2024, 29, 210. [Google Scholar] [CrossRef]
- Nie, Y.; Fan, L.; Song, Q.; Wu, F. Contrast Media Volume to Creatinine Clearance Ratio in Predicting Nephropathy in Patients Undergoing Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. Angiology 2023, 74, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Solomon, R.; Goldstein, S. Real-time measurement of glomerular filtration rate. Curr. Opin. Crit. Care 2017, 23, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.K.; Goel, P.K.; Khanna, R.; Kumar, S.; Kapoor, A.; Tewari, S.; Garg, N. Neutrophil Gelatinase-Associated Lipocalin as a Marker for Contrast-Induced Nephropathy in Patients Undergoing Percutaneous Coronary Intervention: A Prospective Observational Analysis. Indian J. Nephrol. 2022, 32, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.A.; McCullough, P.A.; Tobin, K.J.; Speck, J.P.; Westveer, D.C.; Guido-Allen, D.A.; Timmis, G.C.; O’Neill, W.W. A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy: Results of the P.R.I.N.C.E. Study. Prevention of Radiocontrast Induced Nephropathy Clinical Evaluation. J. Am. Coll. Cardiol. 1999, 33, 403–411. [Google Scholar] [CrossRef]
- Parr, S.K.; Matheny, M.E.; Abdel-Kader, K.; Greevy, R.A., Jr.; Bian, A.; Fly, J.; Chen, G.; Speroff, T.; Hung, A.M.; Ikizler, T.A.; et al. Acute kidney injury is a risk factor for subsequent proteinuria. Kidney Int. 2018, 93, 460–469. [Google Scholar] [CrossRef]
- Piskinpasa, S.; Altun, B.; Akoglu, H.; Yildirim, T.; Agbaht, K.; Yilmaz, R.; Peynircioglu, B.; Cil, B.; Aytemir, K.; Turgan, C. An uninvestigated risk factor for contrast-induced nephropathy in chronic kidney disease: Proteinuria. Ren. Fail. 2013, 35, 62–65. [Google Scholar] [CrossRef]
- Parikh, C.R.; Devarajan, P. New biomarkers of acute kidney injury. Crit. Care Med. 2008, 36, S159–S165. [Google Scholar] [CrossRef]
- Haider, M.Z.; Aslam, A. Proteinuria. Available online: https://www.ncbi.nlm.nih.gov/books/NBK564390/ (accessed on 20 January 2025).
- Sudarsky, D.; Nikolsky, E. Contrast-induced nephropathy in interventional cardiology. Int. J. Nephrol. Renov. Dis. 2011, 4, 85–99. [Google Scholar] [CrossRef]
- Andreucci, M.; Faga, T.; Riccio, E.; Sabbatini, M.; Pisani, A.; Michael, A. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int. J. Nephrol. Renov. Dis. 2016, 9, 205–221. [Google Scholar] [CrossRef]
- Slocum, J.L.; Heung, M.; Pennathur, S. Marking renal injury: Can we move beyond serum creatinine? Transl. Res. 2012, 159, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, L.; Ye, H.; Chi, R.; Wang, L.; Hu, L.; Ouyang, X.; Hou, Y.; Deng, Y.; Long, Y.; et al. Impact of thyroid function on cystatin C in detecting acute kidney injury: A prospective, observational study. BMC Nephrol. 2019, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.C.; Potok, O.A.; Rifkin, D.; Estrella, M.M. Advantages, Limitations, and Clinical Considerations in Using Cystatin C to Estimate GFR. Kidney360 2022, 3, 1807–1814. [Google Scholar] [CrossRef]
- Zhai, J.L.; Ge, N.; Zhen, Y.; Zhao, Q.; Liu, C. Corticosteroids Significantly Increase Serum Cystatin C Concentration without Affecting Renal Function in Symptomatic Heart Failure. Clin. Lab. 2016, 62, 203–207. [Google Scholar] [CrossRef]
- Peng, L.; Wong, K.; Chio, S.; Tam, K.; Hun, W.; Tao, T.; Xiao, H. Diagnostic value of cystatin C in contrast-induced acute kidney injury after percutaneous coronary intervention. Zhonghua Nei Ke Za Zhi 2015, 54, 188–192. [Google Scholar]
- Banda, J.; Duarte, R.; Dix-Peek, T.; Dickens, C.; Manga, P.; Naicker, S. Biomarkers for Diagnosis and Prediction of Outcomes in Contrast-Induced Nephropathy. Int. J. Nephrol. 2020, 2020, 8568139. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, Z.; Tang, X.; Peng, L.; Luo, Y.; Dong, R.; Zhao, Y.; Liu, J. Preprocedure and Postprocedure Predictive Values of Serum beta2-Microglobulin for Contrast-Induced Nephropathy in Patients Undergoing Coronary Computed Tomography Angiography: A Comparison With Creatinine-Based Parameters and Cystatin C. J. Comput. Assist. Tomogr. 2015, 39, 969–974. [Google Scholar] [CrossRef]
- Nozue, T.; Michishita, I.; Mizuguchi, I. Predictive value of serum cystatin C, β2-microglobulin, and urinary liver-type fatty acid-binding protein on the development of contrast-induced nephropathy. Cardiovasc. Interv. Ther. 2010, 25, 85–90. [Google Scholar] [CrossRef]
- Kohl, K.; Herzog, E.; Dickneite, G.; Pestel, S. Evaluation of urinary biomarkers for early detection of acute kidney injury in a rat nephropathy model. J. Pharmacol. Toxicol. Methods 2020, 105, 106901. [Google Scholar] [CrossRef]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front. Med. (Lausanne) 2017, 4, 73. [Google Scholar] [CrossRef]
- Ratajczyk, K.; Konieczny, A.; Czekaj, A.; Piotrow, P.; Fiutowski, M.; Krakowska, K.; Kowal, P.; Witkiewicz, W.; Marek-Bukowiec, K. The Clinical Significance of Urinary Retinol-Binding Protein 4: A Review. Int. J. Environ. Res. Public Health 2022, 19, 9878. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Huang, Y.; Jiang, Y.; Zhu, M. The Association between Serum Retinol-Binding Protein 4 Levels and Cardiovascular Events in Patients with Chronic Kidney Disease. Lab. Med. 2020, 51, 491–497. [Google Scholar] [CrossRef]
- Sadat, U.; Walsh, S.R.; Norden, A.G.; Gillard, J.H.; Boyle, J.R. Does oral N-acetylcysteine reduce contrast-induced renal injury in patients with peripheral arterial disease undergoing peripheral angiography? A randomized-controlled study. Angiology 2011, 62, 225–230. [Google Scholar] [CrossRef]
- Wu, J.; Wan, X.; Zhang, H.; Li, W.; Ma, M.; Pan, B.; Liang, X.; Cao, C. Retinoic acid attenuates contrast-induced acute kidney injury in a miniature pig model. Biochem. Biophys. Res. Commun. 2019, 512, 163–169. [Google Scholar] [CrossRef]
- Bouillon, R.; Schuit, F.; Antonio, L.; Rastinejad, F. Vitamin D Binding Protein: A Historic Overview. Front. Endocrinol. 2019, 10, 910. [Google Scholar] [CrossRef]
- Speeckaert, M.M.; Speeckaert, R.; van Geel, N.; Delanghe, J.R. Vitamin D binding protein: A multifunctional protein of clinical importance. Adv. Clin. Chem. 2014, 63, 1–57. [Google Scholar] [CrossRef] [PubMed]
- Chaykovska, L.; Heunisch, F.; von Einem, G.; Alter, M.L.; Hocher, C.F.; Tsuprykov, O.; Dschietzig, T.; Kretschmer, A.; Hocher, B. Urinary Vitamin D Binding Protein and KIM-1 Are Potent New Biomarkers of Major Adverse Renal Events in Patients Undergoing Coronary Angiography. PLoS ONE 2016, 11, e0145723. [Google Scholar] [CrossRef]
- Diaz-Riera, E.; Garcia-Arguinzonis, M.; Lopez, L.; Garcia-Moll, X.; Badimon, L.; Padro, T. Vitamin D Binding Protein and Renal Injury in Acute Decompensated Heart Failure. Front. Cardiovasc. Med. 2022, 9, 829490. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.; Dai, Q.; Zhang, H.; Liu, Y. Correlation between urine vitamin D-binding protein and early-stage renal damage in Type 2 diabetes. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2023, 48, 40–48. [Google Scholar]
- Holthoff, J.H.; Alge, J.L.; Arthur, J.M.; Ayub, F.; Bin Homam, W.; Janech, M.G.; Ravula, S.; Karakala, N. Urinary Complement C3 and Vitamin D-Binding Protein Predict Adverse Outcomes in Patients with Acute Kidney Injury after Cardiac Surgery. Nephron 2025, 149, 66–76. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Vaidya, V.S.; Liu, J.; Waalkes, M.P.; Edwards, J.R.; Lamar, P.C.; Bernard, A.M.; Dumont, X.; Bonventre, J.V. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int. 2007, 72, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef]
- Akdeniz, D.; Celik, H.T.; Kazanci, F.; Yilmaz, H.; Yalcin, S.; Bilgic, M.A.; Ruzgaresen, N.; Akcay, A.; Eryonucu, B. Is Kidney Injury Molecule 1 a Valuable Tool for the Early Diagnosis of Contrast-Induced Nephropathy? J. Investig. Med. 2015, 63, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Wybraniec, M.T.; Chudek, J.; Bozentowicz-Wikarek, M.; Mizia-Stec, K. Prediction of contrast-induced acute kidney injury by early post-procedural analysis of urinary biomarkers and intra-renal Doppler flow indices in patients undergoing coronary angiography. J. Interv. Cardiol. 2017, 30, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa, I.; Montoliu, C.; Urios, A.; Andres-Costa, M.J.; Gimenez-Garzo, C.; Juan, I.; Puchades, M.J.; Blasco, M.L.; Carratala, A.; Sanjuan, R.; et al. Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography. Heart Vessel. 2015, 30, 703–711. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Y.; Shang, W.; Zhang, Y.; Liu, Y.; Xu, G. The Predictive Value of Urinary Kidney Injury Molecular 1 for the Diagnosis of Contrast-Induced Acute Kidney Injury after Cardiac Catheterization: A Meta-Analysis. J. Interv. Cardiol. 2020, 2020, 4982987. [Google Scholar] [CrossRef]
- Mishra, J.; Ma, Q.; Prada, A.; Mitsnefes, M.; Zahedi, K.; Yang, J.; Barasch, J.; Devarajan, P. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 2003, 14, 2534–2543. [Google Scholar] [CrossRef]
- Mishra, J.; Mori, K.; Ma, Q.; Kelly, C.; Barasch, J.; Devarajan, P. Neutrophil gelatinase-associated lipocalin: A novel early urinary biomarker for cisplatin nephrotoxicity. Am. J. Nephrol. 2004, 24, 307–315. [Google Scholar] [CrossRef]
- Hirsch, R.; Dent, C.; Pfriem, H.; Allen, J.; Beekman, R.H., 3rd; Ma, Q.; Dastrala, S.; Bennett, M.; Mitsnefes, M.; Devarajan, P. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr. Nephrol. 2007, 22, 2089–2095. [Google Scholar] [CrossRef]
- Abbas, A.; Hilal, K.; Rasool, A.A.; Zahidi, U.F.; Shamim, M.S.; Abbas, Q. Low-field magnetic resonance imaging in a boy with intracranial bolt after severe traumatic brain injury: Illustrative case. J. Neurosurg. Case Lessons 2023, 6, CASE23225. [Google Scholar] [CrossRef]
- Liangos, O.; Perianayagam, M.C.; Vaidya, V.S.; Han, W.K.; Wald, R.; Tighiouart, H.; MacKinnon, R.W.; Li, L.; Balakrishnan, V.S.; Pereira, B.J.; et al. Urinary N-acetyl-β-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J. Am. Soc. Nephrol. 2007, 18, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Bazzi, C.; Petrini, C.; Rizza, V.; Arrigo, G.; Napodano, P.; Paparella, M.; D’Amico, G. Urinary N-acetyl-beta-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol. Dial. Transpl. 2002, 17, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, B.; Chinchole, S.; Lobo, V.; Gang, S.; Rajapurkar, M. Enzymuria pattern in early post renal transplant period: Diagnostic usefulness in graft dysfunction. Indian J. Clin. Biochem. 2004, 19, 14–19. [Google Scholar] [CrossRef]
- Arakawa, Y.; Tamura, M.; Sakuyama, T.; Aiba, K.; Eto, S.; Yuda, M.; Tanaka, Y.; Matsumoto, A.; Nishikawa, K. Early measurement of urinary N-acetyl-β-glucosaminidase helps predict severe hyponatremia associated with cisplatin-containing chemotherapy. J. Infect. Chemother. 2015, 21, 502–506. [Google Scholar] [CrossRef]
- Ren, L.; Ji, J.; Fang, Y.; Jiang, S.H.; Lin, Y.M.; Bo, J.; Qian, J.Y.; Xu, X.H.; Ding, X.Q. Assessment of urinary N-acetyl-β-glucosaminidase as an early marker of contrast-induced nephropathy. J. Int. Med. Res. 2011, 39, 647–653. [Google Scholar] [CrossRef]
- Bachorzewska-Gajewska, H.; Poniatowski, B.; Dobrzycki, S. NGAL (neutrophil gelatinase-associated lipocalin) and L-FABP after percutaneous coronary interventions due to unstable angina in patients with normal serum creatinine. Adv. Med. Sci. 2009, 54, 221–224. [Google Scholar] [CrossRef]
- Malyszko, J.; Bachorzewska-Gajewska, H.; Poniatowski, B.; Malyszko, J.S.; Dobrzycki, S. Urinary and serum biomarkers after cardiac catheterization in diabetic patients with stable angina and without severe chronic kidney disease. Ren. Fail. 2009, 31, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Higashiyama, A.; Marumo, M.; Konishi, M.; Yamashita, Y.; Okamura, T.; Miyamoto, Y.; Wakabayashi, I. Relationship of urinary liver-type fatty acid-binding protein with cardiovascular risk factors in the Japanese population without chronic kidney disease: Sasayama study. BMC Nephrol. 2021, 22, 189. [Google Scholar] [CrossRef]
- Nakamura, T.; Sugaya, T.; Node, K.; Ueda, Y.; Koide, H. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy. Am. J. Kidney Dis. 2006, 47, 439–444. [Google Scholar] [CrossRef]
- McMahon, B.A.; Murray, P.T. Urinary liver fatty acid-binding protein: Another novel biomarker of acute kidney injury. Kidney Int. 2010, 77, 657–659. [Google Scholar] [CrossRef]
- Seabra, V.F.; Perianayagam, M.C.; Tighiouart, H.; Liangos, O.; dos Santos, O.F.; Jaber, B.L. Urinary α-GST and π-GST for prediction of dialysis requirement or in-hospital death in established acute kidney injury. Biomarkers 2011, 16, 709–717. [Google Scholar] [CrossRef]
- Rouse, R.L.; Stewart, S.R.; Thompson, K.L.; Zhang, J. Kidney injury biomarkers in hypertensive, diabetic, and nephropathy rat models treated with contrast media. Toxicol. Pathol. 2013, 41, 662–680. [Google Scholar] [CrossRef]
- Musiał, K.; Augustynowicz, M.; Miśkiewicz-Migoń, I.; Kałwak, K.; Ussowicz, M.; Zwolińska, D. Clusterin as a New Marker of Kidney Injury in Children Undergoing Allogeneic Hematopoietic Stem Cell Transplantation—A Pilot Study. J. Clin. Med. 2020, 9, 2599. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Dijkstra, K.L.; Bakker, K.; Bus, P.; Bruijn, J.A.; Scharpfenecker, M.; Baelde, H.J. Glomerular clusterin expression is increased in diabetic nephropathy and protects against oxidative stress-induced apoptosis in podocytes. Sci. Rep. 2020, 10, 14888. [Google Scholar] [CrossRef]
- Kim, S.Y.; Moon, A. Drug-induced nephrotoxicity and its biomarkers. Biomol. Ther. 2012, 20, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Dieterle, F.; Perentes, E.; Cordier, A.; Roth, D.R.; Verdes, P.; Grenet, O.; Pantano, S.; Moulin, P.; Wahl, D.; Mahl, A.; et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotechnol. 2010, 28, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Vinken, P.; Starckx, S.; Barale-Thomas, E.; Looszova, A.; Sonee, M.; Goeminne, N.; Versmissen, L.; Buyens, K.; Lampo, A. Tissue Kim-1 and urinary clusterin as early indicators of cisplatin-induced acute kidney injury in rats. Toxicol. Pathol. 2012, 40, 1049–1062. [Google Scholar] [CrossRef]
- Nguan, C.Y.; Guan, Q.; Gleave, M.E.; Du, C. Promotion of cell proliferation by clusterin in the renal tissue repair phase after ischemia-reperfusion injury. Am. J. Physiol. Ren. Physiol. 2014, 306, F724–F733. [Google Scholar] [CrossRef]
- Guo, J.; Guan, Q.; Liu, X.; Wang, H.; Gleave, M.E.; Nguan, C.Y.; Du, C. Relationship of clusterin with renal inflammation and fibrosis after the recovery phase of ischemia-reperfusion injury. BMC Nephrol. 2016, 17, 133. [Google Scholar] [CrossRef]
- Deng, Y.H.; Wang, X.F.; Wu, X.; Yan, P.; Liu, Q.; Wu, T.; Duan, S.B. Differential renal proteomics analysis in a novel rat model of iodinated contrast-induced acute kidney injury. Ren. Fail. 2023, 45, 2178821. [Google Scholar] [CrossRef]
- Da, Y.; Akalya, K.; Murali, T.; Vathsala, A.; Tan, C.S.; Low, S.; Lim, H.N.; Teo, B.W.; Lau, T.; Ong, L.; et al. Serial Quantification of Urinary Protein Biomarkers to Predict Drug-induced Acute Kidney Injury. Curr. Drug Metab. 2019, 20, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Sultana, P.; Novotny, J. Clusterin: A double-edged sword in cancer and neurological disorders. EXCLI J. 2024, 23, 912–936. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rivera, C.; Garcia, M.M.; Molina-Alvarez, M.; Gonzalez-Martin, C.; Goicoechea, C. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed. Pharmacother. 2021, 134, 111174. [Google Scholar] [CrossRef]
- Gross, C.; Guerin, L.P.; Socol, B.G.; Germain, L.; Guerin, S.L. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int. J. Mol. Sci. 2023, 24, 13182. [Google Scholar] [CrossRef]
- Ling, W.; Zhaohui, N.; Ben, H.; Leyi, G.; Jianping, L.; Huili, D.; Jiaqi, Q. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin. Pr. 2008, 108, c176–c181. [Google Scholar] [CrossRef]
- Zdziechowska, M.; Gluba-Brzozka, A.; Poliwczak, A.R.; Franczyk, B.; Kidawa, M.; Zielinska, M.; Rysz, J. Serum NGAL, KIM-1, IL-18, L-FABP: New biomarkers in the diagnostics of acute kidney injury (AKI) following invasive cardiology procedures. Int. Urol. Nephrol. 2020, 52, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Pozzoli, S.; Simonini, M.; Manunta, P. Predicting acute kidney injury: Current status and future challenges. J. Nephrol. 2018, 31, 209–223. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, W.; Zhang, J.; Xu, C.; Yu, S.; Mao, Z.; Wu, J.; Ye, C.; Mei, C.; Dai, B. Urinary interleukin 18 for detection of acute kidney injury: A meta-analysis. Am. J. Kidney Dis. 2013, 62, 1058–1067. [Google Scholar] [CrossRef]
- He, H.; Li, W.; Qian, W.; Zhao, X.; Wang, L.; Yu, Y.; Liu, J.; Cheng, J. Urinary interleukin-18 as an early indicator to predict contrast-induced nephropathy in patients undergoing percutaneous coronary intervention. Exp. Ther. Med. 2014, 8, 1263–1266. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, X.R.; Lv, J.; Chung, A.C.; Zhang, Y.; Chen, J.Z.; Szalai, A.J.; Xu, A.; Lan, H.Y. C-reactive protein promotes acute kidney injury by impairing G1/S-dependent tubular epithelium cell regeneration. Clin. Sci. 2014, 126, 645–659. [Google Scholar] [CrossRef]
- Lai, W.; Tang, Y.; Huang, X.R.; Ming-Kuen Tang, P.; Xu, A.; Szalai, A.J.; Lou, T.Q.; Lan, H.Y. C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E. Kidney Int. 2016, 90, 610–626. [Google Scholar] [CrossRef]
- Wang, Y.; You, Y.K.; Guo, J.; Wang, J.; Shao, B.; Li, H.; Meng, X.; Lan, H.Y.; Chen, H. C-reactive protein promotes diabetic kidney disease via Smad3-mediated NLRP3 inflammasome activation. Mol. Ther. 2025, 33, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhou, Y.J.; Zhu, X.; Wang, Z.J.; Yang, S.W.; Shen, H. C-reactive protein and the risk of contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention. Am. J. Nephrol. 2011, 34, 203–210. [Google Scholar] [CrossRef]
- Lazaros, G.; Zografos, T.; Oikonomou, E.; Siasos, G.; Georgiopoulos, G.; Vavuranakis, M.; Antonopoulos, A.; Kalogeras, K.; Tsalamandris, S.; Tousoulis, D. Usefulness of C-Reactive Protein as a Predictor of Contrast-Induced Nephropathy After Percutaneous Coronary Interventions in Patients With Acute Myocardial Infarction and Presentation of a New Risk Score (Athens CIN Score). Am. J. Cardiol. 2016, 118, 1329–1333. [Google Scholar] [CrossRef]
- Kim, H.; Jo, K. Laboratory Predictors of Contrast-Induced Nephropathy After Neurointervention: A Prospective 3-Year Observational Study. World Neurosurg. 2020, 135, e77–e82. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Parikh, V.; Patel, N.; Patel, N.; Badheka, A.; Deshmukh, A.; Rathod, A.; Lafferty, J. Neutrophil lymphocyte ratio significantly improves the Framingham risk score in prediction of coronary heart disease mortality: Insights from the National Health and Nutrition Examination Survey-III. Int. J. Cardiol. 2014, 171, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.; Kaya, Y.; Topcu, S.; Gunaydin, Z.Y.; Kurt, M.; Tanboga, I.H.; Kalkan, K.; Aksakal, E. Neutrophil-to-lymphocyte ratio predicts contrast-induced nephropathy in patients undergoing primary percutaneous coronary intervention. Angiology 2014, 65, 51–56. [Google Scholar] [CrossRef]
- Tanik, V.O.; Cinar, T.; Velibey, Y.; Oz, A.; Kalenderoglu, K.; Gumusdag, A.; Arugaslan, E.; Keskin, M.; Eren, M. Neutrophil-to-Lymphocyte Ratio Predicts Contrast-Induced Acute Kidney Injury in Patients with ST-Elevation Myocardial Infarction Treated with Primary Percutaneous Coronary Intervention. J. Tehran Heart Cent. 2019, 14, 59–66. [Google Scholar]
- Kurtul, A.; Yarlioglues, M.; Duran, M.; Murat, S.N. Association of Neutrophil-to-lymphocyte Ratio with Contrast-induced Nephropathy in Patients with Non-ST-elevation Acute Coronary Syndrome Treated with Percutaneous Coronary Intervention. Heart Lung Circ. 2016, 25, 683–690. [Google Scholar] [CrossRef]
- Sun, X.P.; Li, J.; Zhu, W.W.; Li, D.B.; Chen, H.; Li, H.W.; Chen, W.M.; Hua, Q. Platelet to Lymphocyte Ratio Predicts Contrast-Induced Nephropathy in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Angiology 2018, 69, 71–78. [Google Scholar] [CrossRef]
- Vuruskan, E.; Saracoglu, E. Bilirubin Levels are Associated with Contrast-Induced Nephropathy in Peripheral Artery Disease. Angiology 2017, 68, 728–733. [Google Scholar] [CrossRef]
- He, T.; Mohammadpour, B.; Willman, M.; Yaghoobpoor, S.; Willman, J.; Lucke-Wold, B.; Aminizadeh, S.; Khanzadeh, S.; Bazrgar, A.; Ghaedi, A. Prognostic Role of Neutrophil to Lymphocyte Ratio in Contrast-Induced Nephropathy: A Systematic Review and Meta-analysis. Angiology 2024, 33197241238512. [Google Scholar] [CrossRef]
- Zhou, F.; Lu, Y.; Xu, Y.; Li, J.; Zhang, S.; Lin, Y.; Luo, Q. Correlation between neutrophil-to-lymphocyte ratio and contrast-induced acute kidney injury and the establishment of machine-learning-based predictive models. Ren. Fail. 2023, 45, 2258983. [Google Scholar] [CrossRef]
- Argan, O.; Ural, D.; Kozdag, G.; Sahin, T.; Bozyel, S.; Aktas, M.; Karauzum, K.; Yilmaz, I.; Dervis, E.; Agir, A. Associations Between Neutrophil Gelatinase Associated Lipocalin, Neutrophil-to-Lymphocyte Ratio, Atrial Fibrillation and Renal Dysfunction in Chronic Heart Failure. Med. Sci. Monit. 2016, 22, 4765–4772. [Google Scholar] [CrossRef] [PubMed]
- Azab, B.; Daoud, J.; Naeem, F.B.; Nasr, R.; Ross, J.; Ghimire, P.; Siddiqui, A.; Azzi, N.; Rihana, N.; Abdallah, M.; et al. Neutrophil-to-lymphocyte ratio as a predictor of worsening renal function in diabetic patients (3-year follow-up study). Ren. Fail. 2012, 34, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Zhuang, Y.; Liu, L.; Shen, B.; Xu, J.; Jiang, W.; Luo, Z.; Teng, J.; Wang, C.; Ding, X. Role of elevated red cell distribution width on acute kidney injury patients after cardiac surgery. BMC Cardiovasc. Disord. 2018, 18, 166. [Google Scholar] [CrossRef] [PubMed]
- Kurtul, A.; Yarlioglues, M.; Murat, S.N.; Demircelik, M.B.; Acikgoz, S.K.; Ergun, G.; Duran, M.; Cetin, M.; Ornek, E. Red cell distribution width predicts contrast-induced nephropathy in patients undergoing percutaneous coronary intervention for acute coronary syndrome. Angiology 2015, 66, 433–440. [Google Scholar] [CrossRef]
- Akkoyun, D.C.; Akyuz, A.; Kurt, O.; Bilir, B.; Alpsoy, S.; Guler, N. Relationship between red cell distribution width and contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Turk Kardiyol. Dern. Ars. 2015, 43, 613–620. [Google Scholar] [CrossRef]
- Sun, X.; Fan, Z.; Liu, Z.; Li, J.; Hua, Q. Red blood cell distribution width-to-albumin ratio: A new inflammatory biomarker to predict contrast-induced nephropathy after emergency percutaneous coronary intervention. Int. Urol. Nephrol. 2022, 54, 3283–3290. [Google Scholar] [CrossRef]
- Mizuno, A.; Ohde, S.; Nishizaki, Y.; Komatsu, Y.; Niwa, K. Additional value of the red blood cell distribution width to the Mehran risk score for predicting contrast-induced acute kidney injury in patients with ST-elevation acute myocardial infarction. J. Cardiol. 2015, 66, 41–45. [Google Scholar] [CrossRef]
- Li, Y.Q.; Shi, Y.; Deng, W.F.; Xiao, S.; Hu, W.; Huang, C.; Tang, X.; Zhang, J. A novel risk factor of contrast associated acute kidney injury in patients after enhanced computed tomography: A retrospective study. PeerJ 2022, 10, e14224. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, A.; Faubel, S.; Askenazi, D.J.; Cerda, J.; Fissell, W.H.; Heung, M.; Humphreys, B.D.; Koyner, J.L.; Liu, K.D.; Mour, G.; et al. Clinical Use of the Urine Biomarker [TIMP-2] x [IGFBP7] for Acute Kidney Injury Risk Assessment. Am. J. Kidney Dis. 2016, 68, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Ankawi, G.; Yang, B.; Garzotto, F.; Passannante, A.; Breglia, A.; Digvijay, K.; Ferrari, F.; Brendolan, A.; Raffaele, B.; et al. Tissue inhibitor metalloproteinase-2 (TIMP-2) · IGF-binding protein-7 (IGFBP7) levels are associated with adverse outcomes in patients in the intensive care unit with acute kidney injury. Kidney Int. 2019, 95, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Meersch, M.; Schmidt, C.; Van Aken, H.; Martens, S.; Rossaint, J.; Singbartl, K.; Gorlich, D.; Kellum, J.A.; Zarbock, A. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS ONE 2014, 9, e93460. [Google Scholar] [CrossRef]
- Dahmer-Heath, M.; Gerss, J.; Fliser, D.; Liebau, M.C.; Speer, T.; Telgmann, A.K.; Burgmaier, K.; Pennekamp, P.; Pape, L.; Schaefer, F.; et al. Urinary Dickkopf-3 Reflects Disease Severity and Predicts Short-Term Kidney Function Decline in Renal Ciliopathies. Kidney Int. Rep. 2025, 10, 197–208. [Google Scholar] [CrossRef]
- Seibert, F.S.; Heringhaus, A.; Pagonas, N.; Rohn, B.; Bauer, F.; Trappe, H.J.; Landmesser, U.; Babel, N.; Westhoff, T.H. Dickkopf-3 in the prediction of contrast media induced acute kidney injury. J. Nephrol. 2021, 34, 821–828. [Google Scholar] [CrossRef]
- Roscigno, G.; Quintavalle, C.; Biondi-Zoccai, G.; De Micco, F.; Frati, G.; Affinito, A.; Nuzzo, S.; Condorelli, G.; Briguori, C. Urinary Dickkopf-3 and Contrast-Associated Kidney Damage. J. Am. Coll. Cardiol. 2021, 77, 2667–2676. [Google Scholar] [CrossRef]
- Schunk, S.J.; Zarbock, A.; Meersch, M.; Kullmar, M.; Kellum, J.A.; Schmit, D.; Wagner, M.; Triem, S.; Wagenpfeil, S.; Grone, H.J.; et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: An observational cohort study. Lancet 2019, 394, 488–496. [Google Scholar] [CrossRef]
- Gurm, H.S. Will Urinary Dickkopf-3 Disrupt the Field of Contrast-Induced Acute Kidney Injury? J. Am. Coll. Cardiol. 2021, 77, 2677–2679. [Google Scholar] [CrossRef]
- Delrue, C.; Speeckaert, R.; Delanghe, J.R.; Speeckaert, M.M. Growth differentiation factor 15 (GDF-15) in kidney diseases. Adv. Clin. Chem. 2023, 114, 1–46. [Google Scholar] [CrossRef]
- Kobayashi, S.; Yamazaki, H.; Imamura, T.; Fujioka, H.; Kakeshita, K.; Koike, T.; Kinugawa, K. Implication of serum growth differentiation factor-15 level in patients with renal diseases. Int. Urol. Nephrol. 2023, 55, 2935–2941. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Xu, B.; Borne, Y.; Orho-Melander, M.; Melander, O.; Nilsson, J.; Christensson, A.; Engstrom, G. Growth differentiation factor-15 and incident chronic kidney disease: A population-based cohort study. BMC Nephrol. 2021, 22, 351. [Google Scholar] [CrossRef]
- Oshita, T.; Watanabe, S.; Toyohara, T.; Kujirai, R.; Kikuchi, K.; Suzuki, T.; Suzuki, C.; Matsumoto, Y.; Wada, J.; Tomioka, Y.; et al. Urinary growth differentiation factor 15 predicts renal function decline in diabetic kidney disease. Sci. Rep. 2023, 13, 12508. [Google Scholar] [CrossRef]
- Adela, R.; Banerjee, S.K. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J. Diabetes Res. 2015, 2015, 490842. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, X.; Jiang, J.; Zang, X.; Chen, X.; Li, H.; Cao, H.; Wang, Q. Growth differentiation factor-15 levels and the risk of contrast induced nephropathy in patients with acute myocardial infarction undergoing percutaneous coronary intervention: A retrospective observation study. PLoS ONE 2018, 13, e0197609. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chen, H.H.; Zheng, L.L.; Sun, L.P.; Shi, L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Schrijvers, B.F.; Flyvbjerg, A.; De Vriese, A.S. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004, 65, 2003–2017. [Google Scholar] [CrossRef]
- Ari, E.; Kedrah, A.E.; Alahdab, Y.; Bulut, G.; Eren, Z.; Baytekin, O.; Odabasi, D. Antioxidant and renoprotective effects of paricalcitol on experimental contrast-induced nephropathy model. Br. J. Radiol. 2012, 85, 1038–1043. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Wang, B.; Xie, Y.; Wang, Y.; Jiang, X.; Wang, R.; Ren, K. Evaluation of Renal Pathophysiological Processes Induced by an Iodinated Contrast Agent in a Diabetic Rabbit Model Using Intravoxel Incoherent Motion and Blood Oxygenation Level-Dependent Magnetic Resonance Imaging. Korean J. Radiol. 2019, 20, 830–843. [Google Scholar] [CrossRef]
- Sinha, S.K.; Mellody, M.; Carpio, M.B.; Damoiseaux, R.; Nicholas, S.B. Osteopontin as a Biomarker in Chronic Kidney Disease. Biomedicines 2023, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.I.; Leu, H.B.; Wu, C.C.; Yin, W.H.; Wang, J.H.; Lin, T.H.; Tseng, W.K.; Chang, K.C.; Chu, S.H.; Yeh, H.I.; et al. The clinical significance of osteopontin on the cardiovascular outcomes in patients with stable coronary artery disease. J. Formos. Med. Assoc. 2023, 122, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Vianello, E.; Kalousova, M.; Dozio, E.; Tacchini, L.; Zima, T.; Corsi Romanelli, M.M. Osteopontin: The Molecular Bridge between Fat and Cardiac-Renal Disorders. Int. J. Mol. Sci. 2020, 21, 5568. [Google Scholar] [CrossRef]
- Mohebi, R.; van Kimmenade, R.; McCarthy, C.; Gaggin, H.; Mehran, R.; Dangas, G.; Januzzi, J.L., Jr. A Biomarker-Enhanced Model for Prediction of Acute Kidney Injury and Cardiovascular Risk Following Angiographic Procedures: CASABLANCA AKI Prediction Substudy. J. Am. Heart Assoc. 2022, 11, e025729. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.E.; McCarthy, C.P.; Shrestha, S.; Gaggin, H.K.; Mukai, R.; Magaret, C.A.; Rhyne, R.F.; Januzzi, J.L., Jr. A clinical, proteomics, and artificial intelligence-driven model to predict acute kidney injury in patients undergoing coronary angiography. Clin. Cardiol. 2019, 42, 292–298. [Google Scholar] [CrossRef]
- Beitland, S.; Nakstad, E.R.; Berg, J.P.; Troseid, A.S.; Brusletto, B.S.; Brunborg, C.; Lundqvist, C.; Sunde, K. Urine β-2-Microglobulin, Osteopontin, and Trefoil Factor 3 May Early Predict Acute Kidney Injury and Outcome after Cardiac Arrest. Crit. Care Res. Pr. 2019, 2019, 4384796. [Google Scholar] [CrossRef]
- Ostermann, M.; Philips, B.J.; Forni, L.G. Clinical review: Biomarkers of acute kidney injury: Where are we now? Crit. Care 2012, 16, 233. [Google Scholar] [CrossRef]
- Prowle, J.R.; Ostland, V.; Calzavacca, P.; Licari, E.; Ligabo, E.V.; Echeverri, J.E.; Bagshaw, S.M.; Haase-Fielitz, A.; Haase, M.; Westerman, M.; et al. Greater increase in urinary hepcidin predicts protection from acute kidney injury after cardiopulmonary bypass. Nephrol. Dial. Transpl. 2012, 27, 595–602. [Google Scholar] [CrossRef]
- Prowle, J.R.; Westerman, M.; Bellomo, R. Urinary hepcidin: An inverse biomarker of acute kidney injury after cardiopulmonary bypass? Curr. Opin. Crit. Care 2010, 16, 540–544. [Google Scholar] [CrossRef]
- Leaf, D.E.; Rajapurkar, M.; Lele, S.S.; Mukhopadhyay, B.; Boerger, E.A.S.; Mc Causland, F.R.; Eisenga, M.F.; Singh, K.; Babitt, J.L.; Kellum, J.A.; et al. Iron, Hepcidin, and Death in Human AKI. J. Am. Soc. Nephrol. 2019, 30, 493–504. [Google Scholar] [CrossRef]
- Olinder, J.; Stjernqvist, M.J.; Linden, A.; Salomonsson, E.T.; Annborn, M.; Herwald, H.; Ryden, C. Hepcidin, in contrast to heparin binding protein, does not portend acute kidney injury in patients with community acquired septic shock. PLoS ONE 2024, 19, e0299257. [Google Scholar] [CrossRef]
- Malyszko, J.; Bachorzewska-Gajewska, H.; Malyszko, J.S.; Koc-Zorawska, E.; Matuszkiewicz-Rowinska, J.; Dobrzycki, S. Hepcidin—Potential biomarker of contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions. Adv. Med. Sci. 2019, 64, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Campbell, V.K.; Anstey, C.M.; Gately, R.P.; Comeau, D.C.; Clark, C.J.; Noble, E.P.; Mahadevan, K.; Hollett, P.R.; Pollock, A.J.; Hall, S.T.; et al. Urine and serum midkine levels in an Australian chronic kidney disease clinic population: An observational study. BMJ Open 2017, 7, e014615. [Google Scholar] [CrossRef]
- Kosugi, T.; Sato, W. Midkine and the kidney: Health and diseases. Nephrol. Dial. Transpl. 2012, 27, 16–21. [Google Scholar] [CrossRef]
- Sato, W.; Sato, Y. Midkine in nephrogenesis, hypertension and kidney diseases. Br. J. Pharmacol. 2014, 171, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Malyszko, J.; Bachorzewska-Gajewska, H.; Koc-Zorawska, E.; Malyszko, J.S.; Kobus, G.; Dobrzycki, S. Midkine: A novel and early biomarker of contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions. BioMed Res. Int. 2015, 2015, 879509. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Ibrahim, G.H.; Adel, M.; Ismail, A.; Almaghraby, A.; Abdelnabi, M. Midkine as an Early Biomarker of Contrastinduced Acute Kidney Injury in Chronic Kidney Disease Patients Undergoing Percutaneous Coronary Intervention for Acute Coronary Syndrome: A Single-center Prospective Study. Maced. J. Med. Sci. 2021, 9, 983–989. [Google Scholar]
- Reiss, A.B.; Jacob, B.; Zubair, A.; Srivastava, A.; Johnson, M.; De Leon, J. Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets. J. Clin. Med. 2024, 13, 1881. [Google Scholar] [CrossRef]
- Zheng, H.; Ji, J.; Zhao, T.; Wang, E.; Zhang, A. Exosome-encapsulated miR-26a attenuates aldosterone-induced tubulointerstitial fibrosis by inhibiting the CTGF/SMAD3 signaling pathway. Int. J. Mol. Med. 2023, 51, 11. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, S.I.; Choi, M.E. Therapeutic targets for treating fibrotic kidney diseases. Transl. Res. 2015, 165, 512–530. [Google Scholar] [CrossRef]
- Gerritsen, K.G.; Leeuwis, J.W.; Koeners, M.P.; Bakker, S.J.; van Oeveren, W.; Aten, J.; Tarnow, L.; Rossing, P.; Wetzels, J.F.; Joles, J.A.; et al. Elevated Urinary Connective Tissue Growth Factor in Diabetic Nephropathy Is Caused by Local Production and Tubular Dysfunction. J. Diabetes Res. 2015, 2015, 539787. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Isomoto, H. The Versatile Role of Uromodulin in Renal Homeostasis and Its Relevance in Chronic Kidney Disease. Intern. Med. 2024, 63, 17–23. [Google Scholar] [CrossRef]
- Nanamatsu, A.; de Araujo, L.; LaFavers, K.A.; El-Achkar, T.M. Advances in uromodulin biology and potential clinical applications. Nat. Rev. Nephrol. 2024, 20, 806–821. [Google Scholar] [CrossRef]
- Thielemans, R.; Speeckaert, R.; Delrue, C.; De Bruyne, S.; Oyaert, M.; Speeckaert, M.M. Unveiling the Hidden Power of Uromodulin: A Promising Potential Biomarker for Kidney Diseases. Diagnostics 2023, 13, 3077. [Google Scholar] [CrossRef]
- Scherberich, J.E.; Gruber, R.; Nockher, W.A.; Christensen, E.I.; Schmitt, H.; Herbst, V.; Block, M.; Kaden, J.; Schlumberger, W. Serum uromodulin—A marker of kidney function and renal parenchymal integrity. Nephrol. Dial. Transpl. 2018, 33, 284–295. [Google Scholar] [CrossRef]
- Çankaya, E.; Karaman, A.; DOĞAN, H.; Uyanık, A.; Sevinç, C.; Albayrak, B.; Güler, M.A.; Altunok, M. Serum and Urine Uromodulin Levels in Patients Who Had Computed Tomography with Iodized Contrast Agent. Available online: https://www.researchsquare.com/article/rs-1249647/v1 (accessed on 20 January 2025). [CrossRef]
- Pelliccia, F.; Pasceri, V.; Patti, G.; Marazzi, G.; De Luca, G.; Tanzilli, G.; Viceconte, N.; Speciale, G.; Mangieri, E.; Gaudio, C. Uric acid and contrast-induced nephropathy: An updated review and meta-regression analysis. Postep. Kardiol. Interwencyjnej 2018, 14, 399–412. [Google Scholar] [CrossRef]
- Barbieri, L.; Verdoia, M.; Schaffer, A.; Cassetti, E.; Marino, P.; Suryapranata, H.; De Luca, G.; Novara Atherosclerosis Study Group. Uric acid levels and the risk of Contrast Induced Nephropathy in patients undergoing coronary angiography or PCI. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Mandurino-Mirizzi, A.; Kajana, V.; Cornara, S.; Somaschini, A.; Demarchi, A.; Galazzi, M.; Crimi, G.; Ferlini, M.; Camporotondo, R.; Gnecchi, M.; et al. Elevated serum uric acid is a predictor of contrast associated acute kidney injury in patient with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2140–2143. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Chen, H.; Li, Z.; Xu, S.; Yan, G.; Tang, C.; Liu, H. Association between uric acid level and contrast-induced acute kidney injury in patients with type 2 diabetes mellitus after coronary angiography: A retrospective cohort study. BMC Nephrol. 2022, 23, 399. [Google Scholar] [CrossRef]
- Saylik, F.; Cinar, T.; Akbulut, T.; Selcuk, M. Serum Uric Acid to Albumin Ratio Can Predict Contrast-Induced Nephropathy in ST-Elevation Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention. Angiology 2023, 74, 70–78. [Google Scholar] [CrossRef]
- Zuo, T.; Jiang, L.; Mao, S.; Liu, X.; Yin, X.; Guo, L. Hyperuricemia and contrast-induced acute kidney injury: A systematic review and meta-analysis. Int. J. Cardiol. 2016, 224, 286–294. [Google Scholar] [CrossRef]
- Tan, N.; Liu, Y.; Zhou, Y.L.; He, P.C.; Yang, J.Q.; Luo, J.F.; Chen, J.Y. Contrast medium volume to creatinine clearance ratio: A predictor of contrast-induced nephropathy in the first 72 hours following percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2012, 79, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, J.Y.; Tan, N.; Zhou, Y.L.; Yu, D.Q.; Chen, Z.J.; He, Y.T.; Liu, Y.H.; Luo, J.F.; Huang, W.H.; et al. Safe limits of contrast vary with hydration volume for prevention of contrast-induced nephropathy after coronary angiography among patients with a relatively low risk of contrast-induced nephropathy. Circ. Cardiovasc. Interv. 2015, 8, e001859. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Liu, Y.; Wang, C.; Sun, G.; Chen, G.; Lu, Z. Safe Limits of Contrast Media for Contrast-Induced Nephropathy: A Multicenter Prospective Cohort Study. Front. Med. (Lausanne) 2021, 8, 701062. [Google Scholar] [CrossRef]
- Laskey, W.K.; Jenkins, C.; Selzer, F.; Marroquin, O.C.; Wilensky, R.L.; Glaser, R.; Cohen, H.A.; Holmes, D.R., Jr.; Investigators, N.D.R. Volume-to-creatinine clearance ratio: A pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J. Am. Coll. Cardiol. 2007, 50, 584–590. [Google Scholar] [CrossRef]
- Kewcharoen, J.; Yi, R.; Trongtorsak, A.; Prasitlumkum, N.; Mekraksakit, P.; Vutthikraivit, W.; Kanjanauthai, S. Pre-Procedural Hyperglycemia Increases the Risk of Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography: A Systematic Review and Meta-Analysis. Cardiovasc. Revasc. Med. 2020, 21, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Stolker, J.M.; McCullough, P.A.; Rao, S.; Inzucchi, S.E.; Spertus, J.A.; Maddox, T.M.; Masoudi, F.A.; Xiao, L.; Kosiborod, M. Pre-procedural glucose levels and the risk for contrast-induced acute kidney injury in patients undergoing coronary angiography. J. Am. Coll. Cardiol. 2010, 55, 1433–1440. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, H.; Fu, X.; Zhang, J.; Zhang, P.; Yang, S.; Zeng, Z.; Fu, N.; Guo, Z. Glycosylated hemoglobin levels and the risk for contrast-induced nephropathy in diabetic patients undergoing coronary arteriography/percutaneous coronary intervention. BMC Nephrol. 2021, 22, 206. [Google Scholar] [CrossRef]
- Lin, K.Y.; Shang, X.L.; Guo, Y.S.; Zhu, P.L.; Wu, Z.Y.; Jiang, H.; Ruan, J.M.; Zheng, W.P.; You, Z.B.; Lin, C.J. Association of Preprocedural Hyperglycemia with Contrast-Induced Acute Kidney Injury and Poor Outcomes After Emergency Percutaneous Coronary Intervention. Angiology 2018, 69, 770–778. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Liu, W.; Deng, J.; Liu, J.; Zhou, Y.; Feng, L.; Chen, J. The impact of the stress hyperglycemia ratio on the risk of contrast-associated acute kidney injury in patients undergoing coronary angiography: A large real-world cohort study. Diabetol. Metab. Syndr. 2024, 16, 107. [Google Scholar] [CrossRef]
- Shan, Y.; Lin, M.; Gu, F.; Ying, S.; Bao, X.; Zhu, Q.; Tao, Y.; Chen, Z.; Li, D.; Zhang, W.; et al. Association between fasting stress hyperglycemia ratio and contrast-induced acute kidney injury in coronary angiography patients: A cross-sectional study. Front. Endocrinol. 2023, 14, 1300373. [Google Scholar] [CrossRef]
- Wang, D.; Yan, G.; Qiao, Y.; Sun, R. The relationship between perioperative serum albumin and contrast-induced acute kidney injury in patients after percutaneous coronary intervention. BMC Nephrol. 2024, 25, 173. [Google Scholar] [CrossRef]
- Liu, L.; Lun, Z.; Wang, B.; Lei, L.; Sun, G.; Liu, J.; Guo, Z.; He, Y.; Song, F.; Liu, B.; et al. Predictive Value of Hypoalbuminemia for Contrast-Associated Acute Kidney Injury: A Systematic Review and Meta-Analysis. Angiology 2021, 72, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Baek, S.H.; Chin, J.H.; Choi, D.K.; Son, H.J.; Kim, W.J.; Hahm, K.D.; Sim, J.Y.; Choi, I.C. Preoperative hypoalbuminemia is a major risk factor for acute kidney injury following off-pump coronary artery bypass surgery. Intensiv. Care Med. 2012, 38, 1478–1486. [Google Scholar] [CrossRef]
- Borekci, A.; Gur, M.; Turkoglu, C.; Cayli, M.; Selek, S.; Kaypakli, O.; Ucar, H.; Coskun, M.; Seker, T.; Koc, M.; et al. Oxidative stress and paraoxonase 1 activity predict contrast-induced nephropathy in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Angiology 2015, 66, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Kurtul, A.; Ocek, A.H.; Murat, S.N.; Yarlioglues, M.; Demircelik, M.B.; Duran, M.; Ergun, G.; Cay, S. Serum albumin levels on admission are associated with angiographic no-reflow after primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Angiology 2015, 66, 278–285. [Google Scholar] [CrossRef]
- Oduncu, V.; Erkol, A.; Kurt, M.; Tanboga, I.H.; Karabay, C.Y.; Sengul, C.; Bulut, M.; Ozveren, O.; Fotbolcu, H.; Akgun, T.; et al. The prognostic value of very low admission LDL-cholesterol levels in ST-segment elevation myocardial infarction compared in statin-pretreated and statin-naive patients undergoing primary percutaneous coronary intervention. Int. J. Cardiol. 2013, 167, 458–463. [Google Scholar] [CrossRef]
- Hinson, J.S.; Ehmann, M.R.; Fine, D.M.; Fishman, E.K.; Toerper, M.F.; Rothman, R.E.; Klein, E.Y. Risk of Acute Kidney Injury After Intravenous Contrast Media Administration. Ann. Emerg. Med. 2017, 69, 577–586.E4. [Google Scholar] [CrossRef]
- Sang, B.H.; Bang, J.Y.; Song, J.G.; Hwang, G.S. Hypoalbuminemia Within Two Postoperative Days Is an Independent Risk Factor for Acute Kidney Injury Following Living Donor Liver Transplantation: A Propensity Score Analysis of 998 Consecutive Patients. Crit. Care Med. 2015, 43, 2552–2561. [Google Scholar] [CrossRef]
- Rodriguez, E.; Soler, M.J.; Rap, O.; Barrios, C.; Orfila, M.A.; Pascual, J. Risk factors for acute kidney injury in severe rhabdomyolysis. PLoS ONE 2013, 8, e82992. [Google Scholar] [CrossRef]
- Xu, J.; Li, G.; Wang, P.; Velazquez, H.; Yao, X.; Li, Y.; Wu, Y.; Peixoto, A.; Crowley, S.; Desir, G.V. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Investig. 2005, 115, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, A.; Mahapatra, N.R. Renalase: A novel regulator of cardiometabolic and renal diseases. Hypertens. Res. 2022, 45, 1582–1598. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, Q.; Li, J.; Xing, T.; Wang, F.; Wang, N. Renalase protects against contrast-induced nephropathy in Sprague-Dawley rats. PLoS ONE 2015, 10, e0116583. [Google Scholar] [CrossRef]
- Wang, F.; Yin, J.; Lu, Z.; Zhang, G.; Li, J.; Xing, T.; Zhuang, S.; Wang, N. Limb ischemic preconditioning protects against contrast-induced nephropathy via renalase. EBioMedicine 2016, 9, 356–365. [Google Scholar] [CrossRef]
- Liu, J.; Xie, Y.; He, F.; Gao, Z.; Hao, Y.; Zu, X.; Chang, L.; Li, Y. Recombinant Brain Natriuretic Peptide for the Prevention of Contrast-Induced Nephropathy in Patients with Chronic Kidney Disease Undergoing Nonemergent Percutaneous Coronary Intervention or Coronary Angiography: A Randomized Controlled Trial. BioMed Res. Int. 2016, 2016, 5985327. [Google Scholar] [CrossRef]
- Liu, J.M.; Xie, Y.N.; Gao, Z.H.; Zu, X.G.; Li, Y.J.; Hao, Y.M.; Chang, L. Brain natriuretic peptide for prevention of contrast-induced nephropathy after percutaneous coronary intervention or coronary angiography. Can. J. Cardiol. 2014, 30, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, X.; Xu, Z.; Li, J. Brain natriuretic peptide as a biomarker for predicting contrast-induced nephropathy in patients undergoing coronary angiography/intervention: A systematic review and meta-analysis. Medicine 2022, 101, e32432. [Google Scholar] [CrossRef]
- Jarai, R.; Dangas, G.; Huber, K.; Xu, K.; Brodie, B.R.; Witzenbichler, B.; Metzger, D.C.; Radke, P.W.; Yu, J.; Claessen, B.E.; et al. B-type natriuretic peptide and risk of contrast-induced acute kidney injury in acute ST-segment-elevation myocardial infarction: A substudy from the HORIZONS-AMI trial. Circ. Cardiovasc. Interv. 2012, 5, 813–820. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Mao, Z.; Qi, S.; Song, R.; Zhou, F. Brain Natriuretic Peptide for Predicting Contrast-Induced Acute Kidney Injury in Patients with Acute Coronary Syndrome Undergoing Coronary Angiography: A Systematic Review and Meta-Analysis. J. Interv. Cardiol. 2020, 2020, 1035089. [Google Scholar] [CrossRef]
- Barbuto, S.; Hu, L.; Abenavoli, C.; Picotti, M.; Manna, G.; Nicola, L.; Genovesi, S.; Provenzano, M. Coronary Artery Disease in Patients Undergoing Hemodialysis: A Problem that Sounds the Alarm. Rev. Cardiovasc. Med. 2024, 25, 200. [Google Scholar] [CrossRef]
- Vaskova, J.; Kocan, L.; Vasko, L.; Perjesi, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, J.B. Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci. 2001, 38, 263–355. [Google Scholar] [CrossRef]
- Donadio, C.; Tramonti, G.; Lucchesi, A.; Giordani, R.; Lucchetti, A.; Bianchi, C. Gamma-glutamyltransferase is a reliable marker for tubular effects of contrast media. Ren. Fail. 1998, 20, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Oksuz, F.; Yarlioglues, M.; Cay, S.; Celik, I.E.; Mendi, M.A.; Kurtul, A.; Cankurt, T.; Kuyumcu, S.; Canpolat, U.; Turak, O. Predictive Value of Gamma-Glutamyl Transferase Levels for Contrast-Induced Nephropathy in Patients With ST-Segment Elevation Myocardial Infarction Who Underwent Primary Percutaneous Coronary Intervention. Am. J. Cardiol. 2015, 116, 711–716. [Google Scholar] [CrossRef]
- Jones, T.F.; Bekele, S.; O’Dwyer, M.J.; Prowle, J.R. MicroRNAs in Acute Kidney Injury. Nephron 2018, 140, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Aomatsu, A.; Kaneko, S.; Yanai, K.; Ishii, H.; Ito, K.; Hirai, K.; Ookawara, S.; Kobayashi, Y.; Sanui, M.; Morishita, Y. MicroRNA expression profiling in acute kidney injury. Transl. Res. 2022, 244, 1–31. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Zhu, X.; Jiang, C. MicroRNA as an early diagnostic biomarker for contrast-induced acute kidney injury. Drug Chem. Toxicol. 2022, 45, 1552–1557. [Google Scholar] [CrossRef]
- Sun, S.Q.; Zhang, T.; Ding, D.; Zhang, W.F.; Wang, X.L.; Sun, Z.; Hu, L.H.; Qin, S.Y.; Shen, L.H.; He, B. Circulating MicroRNA-188, -30a, and -30e as Early Biomarkers for Contrast-Induced Acute Kidney Injury. J. Am. Heart Assoc. 2016, 5, e004138. [Google Scholar] [CrossRef]
- Li, Y.F.; Jing, Y.; Hao, J.; Frankfort, N.C.; Zhou, X.; Shen, B.; Liu, X.; Wang, L.; Li, R. MicroRNA-21 in the pathogenesis of acute kidney injury. Protein Cell 2013, 4, 813–819. [Google Scholar] [CrossRef]
- Du, J.; Cao, X.; Zou, L.; Chen, Y.; Guo, J.; Chen, Z.; Hu, S.; Zheng, Z. MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery. PLoS ONE 2013, 8, e63390. [Google Scholar] [CrossRef]
- Saini, V.M.; Liu, K.R.; Surve, A.S.; Gupta, S.; Gupta, A. MicroRNAs as biomarkers for monitoring cardiovascular changes in Type II Diabetes Mellitus (T2DM) and exercise. J. Diabetes Metab. Disord. 2022, 21, 1819–1832. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, S.M.; Hosseini, S.M. Inflammation-related miRNAs in obesity, CVD, and NAFLD. Cytokine 2024, 182, 156724. [Google Scholar] [CrossRef] [PubMed]
- Legnazzi, M.; Agnello, F.; Capodanno, D. Prevention of contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention. Kardiol. Pol. 2020, 78, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, C.M.; Camargo, M.; Coca, S.G. Prophylactic hydration to prevent contrast-induced nephropathy: Much ado about nothing? Kidney Int. 2017, 92, 4–6. [Google Scholar] [CrossRef]
- Hess, L.M.; Michael, D.; Krein, P.M.; Marquart, T.; Sireci, A.N. Costs of biomarker testing among patients with metastatic lung or thyroid cancer in the USA: A real-world commercial claims database study. J. Med. Econ. 2023, 26, 43–50. [Google Scholar] [CrossRef]
- Zheng, Y.; Vioix, H.; Liu, F.X.; Singh, B.; Sharma, S.; Sharda, D. Diagnostic and economic value of biomarker testing for targetable mutations in non-small-cell lung cancer: A literature review. Future Oncol. 2022, 18, 505–518. [Google Scholar] [CrossRef]
- Modi, K.; Padala, S.A.; Gupta, M. Contrast-Induced Nephropathy. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448066/ (accessed on 10 January 2025).
- Su, I.H.; Chu, S.Y.; Chen, C.M.; Hsu, M.Y.; Pan, K.T.; Tseng, J.H.; Yeow, K.M.; Hung, C.F.; Shie, R.F. Acute Adverse Reactions of Three Intravenous Iodinated Contrast Media in Computed Tomography under Routine Clinical Monitoring: Iothalamate meglumine, Iopromide and Iohexol. J. Radiol. Sci. 2014, 39, 29–34. [Google Scholar]
- Wu, T.L.; Chang, T.Y.; Su, T.C.; Teng, M.M.H.; Hsu, H.C. Acute Adverse Reactions and Extravasation of Iodinated Contrast Media during Computerized Tomography Scans: A 7-year Experience in a Local Teaching Hospital. J. Radiol. Sci. 2023, 48, e00011. [Google Scholar]
- Forbes-Amrhein, M.M.; Chow, J.S.; Horst, K.K.; Kim, H.H.; Krishnamurthy, R.; Maloney, E.; McDonald, R.J.; Scheller, L.G.; Stein, D.; Callahan, M.J. Contrast Media in Children: Ten Important Concepts on Administration, Applications, Complications, and Environmental Considerations, From the AJR Special Series on Contrast Media. AJR Am. J. Roentgenol. 2024. [Google Scholar] [CrossRef]
- Chew, F.Y. Editorial Comment: Are Children Just Small Adults? Exploring the Unique Concepts and Application of Contrast Media in Pediatrics. AJR Am. J. Roentgenol. 2024. [Google Scholar] [CrossRef]
- Lin, Y.; Qian, F.; Shen, L.; Chen, F.; Chen, J.; Shen, B. Computer-aided biomarker discovery for precision medicine: Data resources, models and applications. Brief. Bioinform. 2019, 20, 952–975. [Google Scholar] [CrossRef] [PubMed]
- Ledesma, D.; Symes, S.; Richards, S. Advancements within Modern Machine Learning Methodology: Impacts and Prospects in Biomarker Discovery. Curr. Med. Chem. 2021, 28, 6512–6531. [Google Scholar] [CrossRef] [PubMed]
- Azencott, C.A. Machine Learning Tools for Biomarker Discovery. Available online: https://hal.archives-ouvertes.fr/tel-02354924v2 (accessed on 11 January 2025).
- Santoshi, S.; Sengupta, D. Artificial Intelligence in Precision Medicine: A Perspective in Biomarker and Drug Discovery. In Artificial Intelligence and Machine Learning in Healthcare; Saxena, A., Chandra, S., Eds.; Springer: Singapore, 2021; pp. 71–88. [Google Scholar]
- Jeong, H.; Jeong, Y.W.; Park, Y.; Kim, K.; Park, J.; Kang, D.R. Applications of deep learning methods in digital biomarker research using noninvasive sensing data. Digit. Health 2022, 8, 20552076221136642. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Location | Sample (Blood/Urine) | Type of Marker | Advantages | Disadvantages | Cutoff for CI-AKI Prediction | Detection Methods | Other Considerations |
---|---|---|---|---|---|---|---|---|
Traditional Markers of Kidney Function | ||||||||
Serum Creatinine (sCr) | Glomerulus | Blood | Diagnostic | Widely used, standardized | Late indicator of injury | ≥0.5 mg/dL or ≥25% increase from baseline within 48–72 h | Enzymatic assay, colorimetric assay | Influenced by muscle mass, hydration |
Glomerular Filtration Rate (GFR) | Glomerulus (flow of plasma from the glomerulus into Bowman’s space) | Blood | Diagnostic | Reflects kidney function | Indirect measurement | eGFR < 60 mL/min/1.73 m2 | MDRD, CKD-EPI equation | Requires age, sex, and race adjustments |
Urinary Output (UO) | Tubules | Urine | Diagnostic | Easy to monitor | Requires catheterization | <0.5 mL/kg/h for >6 h | Urine collection | Variable due to hydration status |
Proteinuria and Microalbuminuria | Glomerulus and tubules | Urine | Diagnostic | Early marker of kidney stress | Nonspecific | Urine protein > 150 mg/day | Dipstick, spot urine test, 24 h urine collection | Can be influenced by hypertension, diabetes |
Glomerular Filtration and Tubular Dysfunction Biomarkers | ||||||||
Cystatin C (CysC) | Glomerulus | Blood | Predictive | Early detection, less influenced by muscle mass | Affected by inflammation | >15% increase within 24–48 h | Immunoassay, nephelometry, turbidimetry | Thyroid dysfunction, inflammation, or corticosteroid use might increase its levels |
Beta-2 Microglobulin (β2M) | Glomerulus proximal tubules | Blood, urine | Diagnostic | Sensitive to tubular dysfunction | Influenced by systemic diseases | Increased urinary β2M, with >1.26 mg/L at baseline | Immunoassay, ELISA | Elevated in multiple myeloma, infections |
Retinol-Binding Protein (RBP) | Glomerulus proximal tubules | Blood, urine | Predictive | Early marker of tubular injury | Affected by liver function | Not available | ELISA, nephelometry | Not specific to CIN, can be elevated in other conditions such as diabetes, obesity, coronavirus disease, and malnutrition |
Vitamin D Binding Protein (VDBP) | Glomerulus proximal tubules | Urine | Predictive | Predicts long-term kidney damage | Expensive testing | Urine VDBP > 613 ng/mL | ELISA | Linked to CKD progression, potential to serve as a predictor of dialysis use |
Tubular Injury Biomarkers | ||||||||
Kidney Injury Molecule-1 (KIM-1) | Proximal tubules | Blood, urine | Diagnostic | Highly specific for tubular injury | Limited routine use | Urine KIM-1 > 3× baseline; ranging from >0.048 to 6.33 ng/mL | ELISA, immunoassay | Useful for early CIN detection |
Neutrophil Gelatinase-Associated Lipocalin (NGAL) | Glomerulus proximal and distal tubules | Blood, urine | Predictive | Early detection within hours | Nonspecific (also elevated in sepsis) | Plasma/urine NGAL > 150 ng/mL | ELISA, point-of-care tests | Increases within 2–6 h post-exposure |
N-Acetyl-β-D-Glucosaminidase (NAG) | Proximal tubules | Urine | Predictive | Sensitive to tubular damage | Not CIN-specific | Increased NAG activity | ELISA, enzymatic assay, fluorometry | Elevated in diabetes, hypertension, and other clinical conditions |
Liver Fatty Acid-Binding Protein (L-FABP) | Proximal tubules | Urine | Predictive | Early tubular hypoxia marker | Limited specificity | Peak at 12 h post-contrast ≥24.5 μg/g | ELISA | Also elevated in CKD, CVD, and various non-CIN conditions |
α-GST/π-GST | Proximal and distal tubules | Urine | Predictive | Site-specific renal injury | Limited clinical adoption | Increased levels of α-GST indicate proximal injury, while π-GST indicates distal injury | ELISA | Used in AKI prognosis; α-GST: proximal injury, π-GST: distal injury |
Clusterin | Proximal and distal tubules | Urine | Predictive | Early nephrotoxicity marker | Lacks specificity and less studied in CIN | Early rise post-contrast | ELISA, Western blot | Linked to tissue repair |
Inflammatory and Oxidative Stress Biomarkers | ||||||||
Interleukin-18 (IL-18) | Proximal and distal tubules | Urine | Predictive | Early AKI marker | Affected by systemic inflammation | Urine IL-18 > 25% at 24 h | ELISA, Bioplex | Peaks at 24 h, declines at 72 h |
C-Reactive Protein (CRP) and high-sensitivity C-Reactive Protein (hs-CRP) | Systemic inflammation | Blood | Predictive | Readily available | Nonspecific | CRP levels > 3.0 mg/L and hs-CRP levels > 5 mg/d exhibited a significantly elevated risk of CIN | Immunoassay | Unspecific inflammatory biomarkers |
Neutrophil-to-Lymphocyte Ratio (NLR) | Systemic | Blood | Predictive | Inexpensive inflammatory marker | Not kidney-specific | Increased in CIN | CBC count | Emerging biomarker for systemic inflammation, might provide prognostic significance in cardiovascular diseases and renal dysfunction |
Red Cell Distribution Width (RDW) | Systemic | Blood | Predictive | Predicts CIN risk | Affected by anemia, nutrition | Elevated in CIN patients | CBC count | Emerging biomarker |
Cell Stress and Apoptosis Biomarkers | ||||||||
IGFBP-7 and TIMP-2 | Renal epithelial cells Proximal tubules | Urine | Predictive | Predicts AKI risk | Expensive assay | >0.3 (ng/mL)2/1000 for the [IGFBP-7] × [TIMP-2] product | NephroCheck® | Detects subclinical AKI |
Dickkopf-3 (DKK3) | Renal epithelial cells | Urine | Predictive | Early fibrosis predictor | Under investigation | Increased in CKD patients | ELISA | Linked to CKD progression |
Growth Differentiation Factor-15 (GDF-15) | Tubules | Blood | Predictive | Potential prognostic marker | Limited studies | Elevated in CIN | ELISA | Associated with CKD progression |
Vascular and Endothelial Dysfunction Biomarkers | ||||||||
Vascular Endothelial Growth Factor (VEGF) | Endothelium | Blood, urine | Predictive | Role in vascular repair | Lacks specificity and insufficient current clinical data on CIN | Increased in CIN | ELISA | Target for nephroprotection |
Osteopontin (OPN) | Proximal and distal tubules Loop of Henle | Blood, urine | Predictive | Predicts renal inflammation | Affected by CKD, diabetes | Elevated in CIN | ELISA, Western blot | Part of multi-marker models Limited study about CIN |
Hepcidin | Tubules | Blood, urine | Predictive | Iron regulation and kidney injury marker | Limited clinical use | Post-contrast Serum ↓, urine ↑ hepcidin | ELISA | Potential predictive biomarker |
Midkine (MK) | Proximal and distal tubules | Blood, urine | Predictive | Early ischemia marker | Needs more validation | Early rise about 2 h post-contrast | ELISA | Related to oxidative stress |
Fibrosis and Long-Term Kidney Damage Biomarkers | ||||||||
Connective Tissue Growth Factor (CTGF) | Tubules | Blood, urine | Predictive | Chronic injury marker | Late-stage marker | Increased in CIN | ELISA, IHC | Linked to fibrosis progression |
Uromodulin | Renal tubular cells in the thick ascending limb of the loop of Henle | Blood, urine | Predictive | Protective biomarker | Not CIN-specific | Post-contrast serum ↓, urine ↑ uromodulin | ELISA, Western blot | May predict nephrotoxicity |
Biomarkers Related to Metabolic and Systemic Risk Factors | ||||||||
Uric Acid (UA) | Glomerulus | Blood | Predictive | Associated with CKD progression | Affected by diet, hydration | sUA levels of ≥7 mg/dL may increase risk of developing CIN | Uric acid test (enzymatic) | High levels linked to oxidative stress |
Contrast media volume to creatinine clearance ratio (V/CrCl) | Systemic | Blood | Predictive | Predicts CIN risk pre-procedure | Requires creatinine clearance calculation | V/CrCl > 3.7 as high risk | Mathematical calculation | Affected by hydration status |
Pre-procedural hyperglycemia | Systemic | Blood | Predictive | Predicts CIN in diabetic patients | Not kidney-specific | >180 mg/dL linked to CIN | Blood glucose test | Linked to oxidative stress and inflammation |
Hypoalbuminemia | Systemic | Blood | Predictive | Marker of malnutrition and inflammation | Affected by liver disease, critical illness | <3.5 g/dL linked to CIN | Serum albumin test | Low levels indicate poor prognosis |
Emerging Biomarkers with Potential in CIN | ||||||||
Renalase | Proximal tubules | Blood, urine | Predictive | Cardiovascular–renal link | Lacks standardization | Lower in CIN | ELISA, mass spectrometry | Potential therapeutic target |
Brain Natriuretic Peptide (BNP) | Systemic | Blood | Predictive | Predicts CIN risk | Affected by heart failure | BNP > 100 pg/mL | Immunoassay | Used in volume status assessment |
Gamma-Glutamyl Transferase (GGT) | Systemic | Blood | Predictive | Oxidative stress marker | Affected by liver disease | >26.5 U/L for predicting CIN | Enzymatic assay | Linked to CKD progression |
MicroRNAs (miRNAs) | Tubular cells | Blood, urine | Predictive | Early molecular marker | Expensive, requires expertise | miR-30a, miR-21 elevated in CIN | qPCR, NGS | Promising in precision medicine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.-H.; Huang, S.M.; Tsai, Y.-C.; Wang, Y.-T.; Chew, F.Y. Biomarkers in Contrast-Induced Nephropathy: Advances in Early Detection, Risk Assessment, and Prevention Strategies. Int. J. Mol. Sci. 2025, 26, 2869. https://doi.org/10.3390/ijms26072869
Lee P-H, Huang SM, Tsai Y-C, Wang Y-T, Chew FY. Biomarkers in Contrast-Induced Nephropathy: Advances in Early Detection, Risk Assessment, and Prevention Strategies. International Journal of Molecular Sciences. 2025; 26(7):2869. https://doi.org/10.3390/ijms26072869
Chicago/Turabian StyleLee, Pei-Hua, Shao Min Huang, Yi-Ching Tsai, Yu-Ting Wang, and Fatt Yang Chew. 2025. "Biomarkers in Contrast-Induced Nephropathy: Advances in Early Detection, Risk Assessment, and Prevention Strategies" International Journal of Molecular Sciences 26, no. 7: 2869. https://doi.org/10.3390/ijms26072869
APA StyleLee, P.-H., Huang, S. M., Tsai, Y.-C., Wang, Y.-T., & Chew, F. Y. (2025). Biomarkers in Contrast-Induced Nephropathy: Advances in Early Detection, Risk Assessment, and Prevention Strategies. International Journal of Molecular Sciences, 26(7), 2869. https://doi.org/10.3390/ijms26072869