Chronic Inflammatory Diseases and Cardiovascular Risk: Current Insights and Future Strategies for Optimal Management
Abstract
:1. Introduction
2. Overview of Chronic Inflammatory Diseases
2.1. Inflammatory Bowel Diseases
2.2. Rheumatoid Arthritis
2.3. Systemic Lupus Erythematosus
3. Pathophysiology of Inflammation and Cardiovascular Disease
Key Inflammatory Markers
4. Clinical Trials on Cardiovascular Risk and Chronic Inflammatory Diseases
4.1. Biologic and Targeted Synthetic Disease-Modifying Therapies: Cardiovascular Benefits and Risks
4.2. Targeting Inflammatory Pathways for Cardiovascular Risk Reduction
4.3. Lipid-Lowering Strategies: The Role of Statins in Inflammatory Diseases
4.4. Alternative and Complementary Approaches to Cardiovascular Risk Reduction
4.5. Treat-to-Target Strategies for Cardiovascular Risk Management
4.6. Lessons Learned and Perspectives
5. Management Strategies
5.1. Regular Screening and Cardiovascular Risk Stratification
5.2. The Role of Cardiovascular Imaging in Chronic Inflammatory Diseases
5.3. Patient Empowerment in Cardiovascular Risk Management
5.4. Accounting for CIDs as Risk Modifiers in Cardiovascular Risk Estimation
5.5. Lipid-Lowering Strategies: Beyond LDL Reduction
5.6. Lifestyle Modifications: The Foundation of Cardiovascular Prevention
5.7. The Role of Physical Activity Across All Ages
5.8. Vaccination and Cardiovascular Risk Reduction in Chronic Inflammatory Diseases
5.9. Interdisciplinary Collaboration for Comprehensive Cardiovascular Risk Management in Chronic Inflammatory Diseases
6. Gaps in Knowledge, Emerging Research, and Future Directions
6.1. Improving Cardiovascular Risk Prediction in Chronic Inflammatory Diseases
6.2. Role of Chronic Inflammation in Primary vs. Secondary Prevention
6.3. The Future of Cardiovascular Imaging in Chronic Inflammatory Diseases
6.4. Integrating AI and Big Data into Clinical Practice
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Crowson, C.S.; Liao, K.P.; Davis, J.M., 3rd; Solomon, D.H.; Matteson, E.L.; Knutson, K.L.; Hlatky, M.A.; Gabriel, S.E. Rheumatoid arthritis and cardiovascular disease. Am. Heart. J. 2013, 166, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Hak, A.E.; Karlson, E.W.; Feskanich, D.; Stampfer, M.J.; Costenbader, K.H. Systemic lupus erythematosus and the risk of cardiovascular disease: Results from the nurses’ health study. Arthritis Rheum. 2009, 61, 1396–1402. [Google Scholar] [CrossRef]
- Hintenberger, R.; Affenzeller, B.; Vladychuk, V.; Pieringer, H. Cardiovascular risk in axial spondyloarthritis-a systematic review. Clin. Rheumatol. 2023, 42, 2621–2633. [Google Scholar] [CrossRef] [PubMed]
- Kamperidis, N.; Kamperidis, V.; Zegkos, T.; Kostourou, I.; Nikolaidou, O.; Arebi, N.; Karvounis, H. Atherosclerosis and Inflammatory Bowel Disease-Shared Pathogenesis and Implications for Treatment. Angiology 2021, 72, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Magder, L.S.; Petri, M. Incidence of and risk factors for adverse cardiovascular events among patients with systemic lupus erythematosus. Am. J. Epidemiol. 2012, 176, 708–719. [Google Scholar] [CrossRef]
- Solomon, D.H.; Goodson, N.J.; Katz, J.N.; Weinblatt, M.E.; Avorn, J.; Setoguchi, S.; Canning, C.; Schneeweiss, S. Patterns of cardiovascular risk in rheumatoid arthritis. Ann. Rheum. Dis. 2006, 65, 1608–1612. [Google Scholar] [CrossRef]
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal. Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef]
- Sottero, B.; Rossin, D.; Poli, G.; Biasi, F. Lipid Oxidation Products in the Pathogenesis of Inflammation-related Gut Diseases. Curr. Med. Chem. 2018, 25, 1311–1326. [Google Scholar] [CrossRef]
- Zhong, S.; Li, L.; Shen, X.; Li, Q.; Xu, W.; Wang, X.; Tao, Y.; Yin, H. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic. Biol. Med. 2019, 144, 266–278. [Google Scholar] [CrossRef]
- Tousoulis, D.; Oikonomou, E.; Economou, E.K.; Crea, F.; Kaski, J.C. Inflammatory cytokines in atherosclerosis: Current therapeutic approaches. Eur. Heart J. 2016, 37, 1723–1732. [Google Scholar] [CrossRef]
- Sun, J.; Yao, J.; Olen, O.; Halfvarson, J.; Bergman, D.; Ebrahimi, F.; Rosengren, A.; Sundstrom, J.; Ludvigsson, J.F. Risk of heart failure in inflammatory bowel disease: A Swedish population-based study. Eur. Heart J. 2024, 45, 2493–2504. [Google Scholar] [CrossRef] [PubMed]
- Mattay, S.S.; Zamani, M.; Saturno, D.; Loftus, E.V., Jr.; Ciorba, M.A.; Yarur, A.; Singh, S.; Deepak, P. Risk of Major Adverse Cardiovascular Events in Immune-Mediated Inflammatory Disorders on Biologics and Small Molecules: Network Meta-Analysis. Clin. Gastroenterol. Hepatol. 2024, 22, 961–970. [Google Scholar] [CrossRef]
- Ali, A.M.; Yakupoglu, H.Y.; Fuchs, T.A.; Larsen, T.H.; Aukrust, P.; Gunnarsson, R.; Saeed, S. Cardiac Involvement in Systemic and Local Vasculitides: The Value of Noninvasive Multimodality Imaging. Curr. Probl. Cardiol. 2023, 48, 101718. [Google Scholar] [CrossRef]
- Sairenji, T.; Collins, K.L.; Evans, D.V. An Update on Inflammatory Bowel Disease. Prim Care 2017, 44, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Boland, B.S.; Jess, T.; Moore, A.A. Management of inflammatory bowel diseases in older adults. Lancet Gastroenterol. Hepatol. 2023, 8, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.T. Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 2020, 383, 2652–2664. [Google Scholar] [CrossRef]
- Wu, H.; Hu, T.; Hao, H.; Hill, M.A.; Xu, C.; Liu, Z. Inflammatory bowel disease and cardiovascular diseases: A concise review. Eur. Heart J. Open 2022, 2, oeab029. [Google Scholar] [CrossRef]
- Nesci, A.; Carnuccio, C.; Ruggieri, V.; D’Alessandro, A.; Di Giorgio, A.; Santoro, L.; Gasbarrini, A.; Santoliquido, A.; Ponziani, F.R. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int. J. Mol. Sci. 2023, 24, 9087. [Google Scholar] [CrossRef]
- Luo, C.; Liu, L.; Zhu, D.; Ge, Z.; Chen, Y.; Chen, F. Risk of stroke in patients with inflammatory bowel disease: A systematic review and meta-analysis. BMC Gastroenterol. 2025, 25, 114. [Google Scholar] [CrossRef]
- Zaka, A.; Mridha, N.; Subhaharan, D.; Jones, M.; Niranjan, S.; Mohsen, W.; Ramaswamy, P.K. Inflammatory bowel disease patients have an increased risk of acute coronary syndrome: A systematic review and meta-analysis. Open Heart 2023, 10, e002483. [Google Scholar] [CrossRef]
- Fumery, M.; Xiaocang, C.; Dauchet, L.; Gower-Rousseau, C.; Peyrin-Biroulet, L.; Colombel, J.F. Thromboembolic events and cardiovascular mortality in inflammatory bowel diseases: A meta-analysis of observational studies. J. Crohns Colitis 2014, 8, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Szekely, H.; Toth, L.M.; Rancz, A.; Walter, A.; Farkas, N.; Sarkozi, M.D.; Vancsa, S.; Eross, B.; Hegyi, P.; Miheller, P. Anti-tumor Necrosis Factor Alpha Versus Corticosteroids: A 3-fold Difference in the Occurrence of Venous Thromboembolism in Inflammatory Bowel Disease—A Systematic Review and Meta-analysis. J. Crohns Colitis 2024, 18, 773–783. [Google Scholar] [CrossRef]
- Yang, H.; An, T.; Zhao, Y.; Shi, X.; Wang, B.; Zhang, Q. Cardiovascular safety of Janus kinase inhibitors in inflammatory bowel disease: A systematic review and network meta-analysis. Ann. Med. 2025, 57, 2455536. [Google Scholar] [CrossRef]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohns Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef]
- Gordon, H.; Minozzi, S.; Kopylov, U.; Verstockt, B.; Chaparro, M.; Buskens, C.; Warusavitarne, J.; Agrawal, M.; Allocca, M.; Atreya, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis 2024, 18, 1531–1555. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, A.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Surgical Treatment. J. Crohns Colitis 2022, 16, 179–189. [Google Scholar] [CrossRef]
- Adamina, M.; Minozzi, S.; Warusavitarne, J.; Buskens, C.J.; Chaparro, M.; Verstockt, B.; Kopylov, U.; Yanai, H.; Vavricka, S.R.; Sigall-Boneh, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Surgical Treatment. J. Crohns Colitis 2024, 18, 1556–1582. [Google Scholar] [CrossRef]
- Gravallese, E.M.; Firestein, G.S. Rheumatoid Arthritis—Common Origins, Divergent Mechanisms. N. Engl. J. Med. 2023, 388, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Cronstein, B.N.; Aune, T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 2020, 16, 145–154. [Google Scholar] [CrossRef]
- Kerschbaumer, A.; Sepriano, A.; Bergstra, S.A.; Smolen, J.S.; van der Heijde, D.; Caporali, R.; Edwards, C.J.; Verschueren, P.; de Souza, S.; Pope, J.E.; et al. Efficacy of synthetic and biological DMARDs: A systematic literature review informing the 2022 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2023, 82, 95–106. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewe, R.B.M.; Bergstra, S.A.; Kerschbaumer, A.; Sepriano, A.; Aletaha, D.; Caporali, R.; Edwards, C.J.; Hyrich, K.L.; Pope, J.E.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 2023, 82, 3–18. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Andersen, J.; Aringer, M.; Arnaud, L.; Bae, S.C.; Boletis, J.; Bruce, I.N.; Cervera, R.; Doria, A.; et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 2024, 83, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Manzi, S.; Meilahn, E.N.; Rairie, J.E.; Conte, C.G.; Medsger, T.A., Jr.; Jansen-McWilliams, L.; D’Agostino, R.B.; Kuller, L.H. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: Comparison with the Framingham Study. Am. J. Epidemiol. 1997, 145, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, Y.; Zhang, J.; Pu, D.; Hu, N.; Luo, J.; An, Q.; He, L. Patients with systemic lupus erythematosus face a high risk of cardiovascular disease: A systematic review and Meta-analysis. Int. Immunopharmacol. 2021, 94, 107466. [Google Scholar] [CrossRef]
- Terrell, M.; Morel, L. The Intersection of Cellular and Systemic Metabolism: Metabolic Syndrome in Systemic Lupus Erythematosus. Endocrinology 2022, 163, bqac067. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Spadafora, L.; Andaloro, S.; Piscitelli, A.; Fornaci, G.; Intonti, C.; Fratta, A.E.; Hsu, C.E.; Kazirod-Wolski, K.; Metsovitis, T.; et al. Management of Cardiovascular Complications in Antiphospholipid Syndrome: A Narrative Review with a Focus on Older Adults. J. Clin. Med. 2024, 13, 3064. [Google Scholar] [CrossRef]
- Grimaldi, L.; Duchemin, T.; Hamon, Y.; Buchard, A.; Benichou, J.; Abenhaim, L.; Costedoat-Chalumeau, N.; Moride, Y. Hydroxychloroquine and Cardiovascular Events in Patients with Systemic Lupus Erythematosus. JAMA Netw. Open 2024, 7, e2432190. [Google Scholar] [CrossRef]
- Bertsias, G.; Askanase, A.; Doria, A.; Saxena, A.; Vital, E.M. A path to Glucocorticoid Stewardship: A critical review of clinical recommendations for the treatment of systemic lupus erythematosus. Rheumatology 2024, 63, 1837–1849. [Google Scholar] [CrossRef]
- Casey, K.A.; Smith, M.A.; Sinibaldi, D.; Seto, N.L.; Playford, M.P.; Wang, X.; Carlucci, P.M.; Wang, L.; Illei, G.; Yu, B.; et al. Modulation of Cardiometabolic Disease Markers by Type I Interferon Inhibition in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2021, 73, 459–471. [Google Scholar] [CrossRef]
- Wallace, D.J.; Ginzler, E.M.; Merrill, J.T.; Furie, R.A.; Stohl, W.; Chatham, W.W.; Weinstein, A.; McKay, J.D.; McCune, W.J.; Petri, M.; et al. Safety and Efficacy of Belimumab Plus Standard Therapy for Up to Thirteen Years in Patients with Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1125–1134. [Google Scholar] [CrossRef]
- Liu, P.; Zhou, B.; Gu, D.; Zhang, L.; Han, Z. Endothelial progenitor cell therapy in atherosclerosis: A double-edged sword? Ageing Res. Rev. 2009, 8, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Alebna, P.L.; Han, C.Y.; Ambrosio, M.; Kong, G.; Cyrus, J.W.; Harley, K.; Kang, L.; Small, A.M.; Chevli, P.; Bhatia, H.; et al. Association of Lipoprotein(a) With Major Adverse Cardiovascular Events Across hs-CRP: A Systematic Review and Meta-Analysis. JACC Adv. 2024, 3, 101409. [Google Scholar] [CrossRef] [PubMed]
- Burger, P.M.; Pradhan, A.D.; Dorresteijn, J.A.N.; Koudstaal, S.; Teraa, M.; de Borst, G.J.; van der Meer, M.G.; Mosterd, A.; Ridker, P.M.; Visseren, F.L.J.; et al. C-Reactive Protein and Risk of Cardiovascular Events and Mortality in Patients with Various Cardiovascular Disease Locations. Am. J. Cardiol. 2023, 197, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zhao, G.; Liu, X. Blood fibrinogen level as a biomarker of adverse outcomes in patients with coronary artery disease: A systematic review and meta-analysis. Medicine (Baltimore) 2022, 101, e30117. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, J.; Wu, X.; Zhao, K.; Guo, Y.; Yang, M.; Du, X. Clinical Significance of Plasma D-Dimer and Fibrinogen in Outcomes after Stroke: A Systematic Review and Meta-Analysis. Cerebrovasc. Dis. 2023, 52, 318–343. [Google Scholar] [CrossRef]
- Li, H.; Liu, W.; Xie, J. Circulating interleukin-6 levels and cardiovascular and all-cause mortality in the elderly population: A meta-analysis. Arch. Gerontol. Geriatr. 2017, 73, 257–262. [Google Scholar] [CrossRef]
- Khan, M.S.; Talha, K.M.; Maqsood, M.H.; Rymer, J.A.; Borlaug, B.A.; Docherty, K.F.; Pandey, A.; Kahles, F.; Cikes, M.; Lam, C.S.P.; et al. Interleukin-6 and Cardiovascular Events in Healthy Adults: MESA. JACC Adv. 2024, 3, 101063. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Glynn, R.J.; Koenig, W.; Libby, P.; Everett, B.M.; Lefkowitz, M.; Thuren, T.; Cornel, J.H. Inhibition of Interleukin-1beta by Canakinumab and Cardiovascular Outcomes in Patients with Chronic Kidney Disease. J. Am. Coll. Cardiol. 2018, 71, 2405–2414. [Google Scholar] [CrossRef]
- Ridker, P.M.; Devalaraja, M.; Baeres, F.M.M.; Engelmann, M.D.M.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2021, 397, 2060–2069. [Google Scholar] [CrossRef]
- Elyasi, A.; Voloshyna, I.; Ahmed, S.; Kasselman, L.J.; Behbodikhah, J.; De Leon, J.; Reiss, A.B. The role of interferon-gamma in cardiovascular disease: An update. Inflamm. Res. 2020, 69, 975–988. [Google Scholar] [CrossRef]
- Yu, X.H.; Zhang, J.; Zheng, X.L.; Yang, Y.H.; Tang, C.K. Interferon-gamma in foam cell formation and progression of atherosclerosis. Clin. Chim. Acta 2015, 441, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Nijst, P.; Kiefer, K.; Tang, W.H. Endothelial Glycocalyx as Biomarker for Cardiovascular Diseases: Mechanistic and Clinical Implications. Curr. Heart Fail. Rep. 2017, 14, 117–126. [Google Scholar] [CrossRef]
- Colling, M.E.; Tourdot, B.E.; Kanthi, Y. Inflammation, Infection and Venous Thromboembolism. Circ. Res. 2021, 128, 2017–2036. [Google Scholar] [CrossRef]
- Yau, J.W.; Teoh, H.; Verma, S. Endothelial cell control of thrombosis. BMC Cardiovasc. Disord. 2015, 15, 130. [Google Scholar] [CrossRef]
- Tucker, B.; Goonetilleke, N.; Patel, S.; Keech, A. Colchicine in atherosclerotic cardiovascular disease. Heart 2024, 110, 618–625. [Google Scholar] [CrossRef]
- Cervantes, M.; Miles, B.; Sills, M. The potential effects of methotrexate on cardiovascular outcomes in rheumatoid arthritis patients: A multi-institutional analysis. Eur. Heart J. 2024, 45, ehae666.3044. [Google Scholar] [CrossRef]
- Hoxha, M.; Lewis-Mikhael, A.M.; Bueno-Cavanillas, A. Potential role of leukotriene receptor antagonists in reducing cardiovascular and cerbrovascular risk: A systematic review of human clinical trials and in vivo animal studies. Biomed. Pharmacother. 2018, 106, 956–965. [Google Scholar] [CrossRef]
- Burggraaf, B.; van Breukelen-van der Stoep, D.F.; de Vries, M.A.; Klop, B.; van Zeben, J.; van de Geijn, G.M.; van der Meulen, N.; Birnie, E.; Prinzen, L.; Castro Cabezas, M. Progression of subclinical atherosclerosis in subjects with rheumatoid arthritis and the metabolic syndrome. Atherosclerosis 2018, 271, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Burggraaf, B.; van Breukelen-van der Stoep, D.F.; de Vries, M.A.; Klop, B.; Liem, A.H.; van de Geijn, G.M.; van der Meulen, N.; Birnie, E.; van der Zwan, E.M.; van Zeben, J.; et al. Effect of a treat-to-target intervention of cardiovascular risk factors on subclinical and clinical atherosclerosis in rheumatoid arthritis: A randomised clinical trial. Ann. Rheum. Dis. 2019, 78, 335–341. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Gugiu, G.B.; Ge, H.; Shahbazian, A.; Lee, Y.Y.; Wang, X.; Furst, D.E.; Ranganath, V.K.; Maldonado, M.; Lee, T.; et al. Remodeling of the HDL proteome with treatment response to abatacept or adalimumab in the AMPLE trial of patients with rheumatoid arthritis. Atherosclerosis 2018, 275, 107–114. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Khanna, D.; Furst, D.E.; McMahon, M.; Reddy, S.T.; Fogelman, A.M.; Paulus, H.E.; Park, G.S.; Gong, T.; Ansell, B.J. Effects of high-dose atorvastatin on antiinflammatory properties of high density lipoprotein in patients with rheumatoid arthritis: A pilot study. J. Rheumatol. 2007, 34, 1459–1464. [Google Scholar] [PubMed]
- Deyab, G.; Reine, T.M.; Vuong, T.T.; Jenssen, T.; Hjeltnes, G.; Agewall, S.; Mikkelsen, K.; Førre, Ø.; Fagerland, M.W.; Kolset, S.O.; et al. Antirheumatic treatment is associated with reduced serum Syndecan-1 in Rheumatoid Arthritis. PLoS ONE 2021, 16, e0253247. [Google Scholar] [CrossRef]
- Genovese, M.C.; Kremer, J.; Zamani, O.; Ludivico, C.; Krogulec, M.; Xie, L.; Beattie, S.D.; Koch, A.E.; Cardillo, T.E.; Rooney, T.P.; et al. Baricitinib in Patients with Refractory Rheumatoid Arthritis. N. Engl. J. Med. 2016, 374, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.T.; Sattar, N.; Gabriel, S.; Ridker, P.M.; Gay, S.; Warne, C.; Musselman, D.; Brockwell, L.; Shittu, E.; Klearman, M.; et al. Cardiovascular Safety of Tocilizumab Versus Etanercept in Rheumatoid Arthritis: A Randomized Controlled Trial. Arthritis Rheumatol. 2020, 72, 31–40. [Google Scholar] [CrossRef]
- Gonzalez-Juanatey, C.; Llorca, J.; Garcia-Porrua, C.; Martin, J.; Gonzalez-Gay, M.A. Effect of anti-tumor necrosis factor alpha therapy on the progression of subclinical atherosclerosis in severe rheumatoid arthritis. Arthritis Care Res. 2006, 55, 150–153. [Google Scholar] [CrossRef]
- Haglo, H.; Wang, E.; Berg, O.K.; Hoff, J.; Helgerud, J. Smartphone-Assisted High-Intensity Interval Training in Inflammatory Rheumatic Disease Patients: Randomized Controlled Trial. JMIR Mhealth Uhealth 2021, 9, e28124. [Google Scholar] [CrossRef]
- Ikdahl, E.; Hisdal, J.; Rollefstad, S.; Olsen, I.C.; Kvien, T.K.; Pedersen, T.R.; Semb, A.G. Rosuvastatin improves endothelial function in patients with inflammatory joint diseases, longitudinal associations with atherosclerosis and arteriosclerosis: Results from the RORA-AS statin intervention study. Arthritis Res. Ther. 2015, 17, 279. [Google Scholar] [CrossRef] [PubMed]
- Ikdahl, E.; Rollefstad, S.; Hisdal, J.; Olsen, I.C.; Pedersen, T.R.; Kvien, T.K.; Semb, A.G. Sustained Improvement of Arterial Stiffness and Blood Pressure after Long-Term Rosuvastatin Treatment in Patients with Inflammatory Joint Diseases: Results from the RORA-AS Study. PLoS ONE 2016, 11, e0153440. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Tzortzis, S.; Lekakis, J.; Paraskevaidis, I.; Dasou, P.; Parissis, J.; Nikolaou, M.; Markantonis, S.L.; Katsimbri, P.; Skarantavos, G.; et al. Association of soluble apoptotic markers with impaired left ventricular deformation in patients with rheumatoid arthritis. Effects of inhibition of interleukin-1 activity by anakinra. Thromb. Haemost. 2011, 106, 959–967. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Pavlidis, G.; Katsimbri, P.; Andreadou, I.; Triantafyllidi, H.; Tsoumani, M.; Varoudi, M.; Vlastos, D.; Makavos, G.; Kostelli, G.; et al. Differential effects of inhibition of interleukin 1 and 6 on myocardial, coronary and vascular function. Clin. Res. Cardiol. 2019, 108, 1093–1101. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, M.J.; Lee, C.K.; Hong, Y.H. Effects of Methotrexate on Carotid Intima-media Thickness in Patients with Rheumatoid Arthritis. J. Korean Med. Sci. 2015, 30, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Kitas, G.D.; Nightingale, P.; Armitage, J.; Sattar, N.; Belch, J.J.F.; Symmons, D.P.M. A Multicenter, Randomized, Placebo-Controlled Trial of Atorvastatin for the Primary Prevention of Cardiovascular Events in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2019, 71, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.E.; Danese, S.; Yndestad, A.; Wang, C.; Nagy, E.; Modesto, I.; Rivas, J.; Benda, B. Identification of two tofacitinib subpopulations with different relative risk versus TNF inhibitors: An analysis of the open label, randomised controlled study ORAL Surveillance. Ann. Rheum. Dis. 2023, 82, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Plein, S.; Erhayiem, B.; Fent, G.; Horton, S.; Dumitru, R.B.; Andrews, J.; Greenwood, J.P.; Emery, P.; Hensor, E.M.; Baxter, P.; et al. Cardiovascular effects of biological versus conventional synthetic disease-modifying antirheumatic drug therapy in treatment-naïve, early rheumatoid arthritis. Ann. Rheum. Dis. 2020, 79, 1414–1422. [Google Scholar] [CrossRef]
- Rubbert-Roth, A.; Enejosa, J.; Pangan, A.L.; Haraoui, B.; Rischmueller, M.; Khan, N.; Zhang, Y.; Martin, N.; Xavier, R.M. Trial of Upadacitinib or Abatacept in Rheumatoid Arthritis. N. Engl. J. Med. 2020, 383, 1511–1521. [Google Scholar] [CrossRef]
- Smolen, J.S.; Pangan, A.L.; Emery, P.; Rigby, W.; Tanaka, Y.; Vargas, J.I.; Zhang, Y.; Damjanov, N.; Friedman, A.; Othman, A.A.; et al. Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT-MONOTHERAPY): A randomised, placebo-controlled, double-blind phase 3 study. Lancet 2019, 393, 2303–2311. [Google Scholar] [CrossRef]
- Tam, L.S.; Li, E.K.; Shang, Q.; Tomlinson, B.; Lee, V.W.; Lee, K.K.; Li, M.; Kuan, W.P.; Li, T.K.; Tseung, L.; et al. Effects of rosuvastatin on subclinical atherosclerosis and arterial stiffness in rheumatoid arthritis: A randomized controlled pilot trial. Scand. J. Rheumatol. 2011, 40, 411–421. [Google Scholar] [CrossRef]
- Welsh, P.; Tuckwell, K.; McInnes, I.B.; Sattar, N. Effect of IL-6 receptor blockade on high-sensitivity troponin T and NT-proBNP in rheumatoid arthritis. Atherosclerosis 2016, 254, 167–171. [Google Scholar] [CrossRef]
- Yang, M.; Luo, Y.; Liu, T.; Zhong, X.; Yan, J.; Huang, Q.; Tao, J.; He, Q.; Guo, M.; Hu, Y. The Effect of Puerarin on Carotid Intima-media Thickness in Patients With Active Rheumatoid Arthritis: ARandomized Controlled Trial. Clin. Ther. 2018, 40, 1752–1764. [Google Scholar] [CrossRef] [PubMed]
- Askanase, A.D.; D’Cruz, D.; Kalunian, K.; Merrill, J.T.; Navarra, S.V.; Cahuzac, C.; Cornelisse, P.; Murphy, M.J.; Strasser, D.S.; Trokan, L.; et al. Cenerimod, a sphingosine-1-phosphate receptor modulator, versus placebo in patients with moderate-to-severe systemic lupus erythematosus (CARE): An international, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Rheumatol. 2025, 7, E21–E32. [Google Scholar] [CrossRef]
- Carlucci, P.M.; Purmalek, M.M.; Dey, A.K.; Temesgen-Oyelakin, Y.; Sakhardande, S.; Joshi, A.A.; Lerman, J.B.; Fike, A.; Davis, M.; Chung, J.H.; et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight 2018, 3, e99276. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, A.; Moosavi, M.; Sayedbonakdar, Z.; Farajzadegan, Z.; Kazemi, M.; Smiley, A. Atorvastatin effect on systemic lupus erythematosus disease activity: A double-blind randomized clinical trial. Clin. Rheumatol. 2014, 33, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Hasni, S.A.; Gupta, S.; Davis, M.; Poncio, E.; Temesgen-Oyelakin, Y.; Carlucci, P.M.; Wang, X.; Naqi, M.; Playford, M.P.; Goel, R.R.; et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 2021, 12, 3391. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C.; Wong, C.K.; To, C.H.; Lai, J.P.; Lam, C.S. Effects of rosuvastatin on vascular biomarkers and carotid atherosclerosis in lupus: A randomized, double-blind, placebo-controlled trial. Arthritis Care Res. 2011, 63, 875–883. [Google Scholar] [CrossRef]
- Plazak, W.; Gryga, K.; Dziedzic, H.; Tomkiewicz-Pajak, L.; Konieczynska, M.; Podolec, P.; Musial, J. Influence of atorvastatin on coronary calcifications and myocardial perfusion defects in systemic lupus erythematosus patients: A prospective, randomized, double-masked, placebo-controlled study. Arthritis Res. Ther. 2011, 13, R117. [Google Scholar] [CrossRef]
- Afif, W.; Arasaradnam, R.P.; Abreu, M.T.; Danese, S.; Sandborn, W.J.; Miao, Y.; Zhang, H.; Panaccione, R.; Hisamatsu, T.; Scherl, E.J.; et al. Efficacy and Safety of Ustekinumab for Ulcerative Colitis Through 4 Years: Final Results of the UNIFI Long-Term Maintenance Study. Am. J. Gastroenterol. 2024, 119, 910–921. [Google Scholar] [CrossRef]
- Armuzzi, A.; Cross, R.K.; Lichtenstein, G.R.; Hou, J.; Deepak, P.; Regueiro, M.; Wolf, D.C.; Akukwe, L.; Ahmad, H.A.; Jain, A.; et al. Cardiovascular Safety of Ozanimod in Patients With Ulcerative Colitis: True North and Open-Label Extension Analyses. Clin. Gastroenterol. Hepatol. 2024, 22, 1067–1076. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Rutgeerts, P.; Gasink, C.; Jacobstein, D.; Zou, B.; Johanns, J.; Sands, B.E.; Hanauer, S.B.; Targan, S.; Ghosh, S.; et al. Long-term efficacy and safety of ustekinumab for Crohn’s disease through the second year of therapy. Aliment. Pharmacol. Ther. 2018, 48, 65–77. [Google Scholar] [CrossRef]
- Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
- Li, J.; Meng, X.; Shi, F.D.; Jing, J.; Gu, H.Q.; Jin, A.; Jiang, Y.; Li, H.; Johnston, S.C.; Hankey, G.J.; et al. Colchicine in patients with acute ischaemic stroke or transient ischaemic attack (CHANCE-3): Multicentre, double blind, randomised, placebo controlled trial. BMJ 2024, 385, e079061. [Google Scholar] [CrossRef] [PubMed]
- Jolly, S.S.; d’Entremont, M.A.; Lee, S.F.; Mian, R.; Tyrwhitt, J.; Kedev, S.; Montalescot, G.; Cornel, J.H.; Stankovic, G.; Moreno, R.; et al. Colchicine in Acute Myocardial Infarction. N. Engl. J. Med. 2025, 392, 633–642. [Google Scholar] [CrossRef]
- Colaco, K.; Ocampo, V.; Ayala, A.P.; Harvey, P.; Gladman, D.D.; Piguet, V.; Eder, L. Predictive Utility of Cardiovascular Risk Prediction Algorithms in Inflammatory Rheumatic Diseases: A Systematic Review. J. Rheumatol. 2020, 47, 928–938. [Google Scholar] [CrossRef]
- Ridker, P.M.; Buring, J.E.; Rifai, N.; Cook, N.R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: The Reynolds Risk Score. JAMA 2007, 297, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Coupland, C.; Vinogradova, Y.; Robson, J.; May, M.; Brindle, P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: Prospective open cohort study. BMJ 2007, 335, 136. [Google Scholar] [CrossRef]
- Garcia-Gomez, C.; Martin-Martinez, M.A.; Castaneda, S.; Sanchez-Alonso, F.; Uriarte-Ecenarro, M.; Gonzalez-Juanatey, C.; Romera-Baures, M.; Santos-Rey, J.; Pinto-Tasende, J.A.; Quesada-Masachs, E.; et al. Lipoprotein(a) concentrations in rheumatoid arthritis on biologic therapy: Results from the CARdiovascular in rheuMAtology study project. J. Clin. Lipidol. 2017, 11, 749–756. [Google Scholar] [CrossRef]
- Perone, F.; Bernardi, M.; Redheuil, A.; Mafrica, D.; Conte, E.; Spadafora, L.; Ecarnot, F.; Tokgozoglu, L.; Santos-Gallego, C.G.; Kaiser, S.E.; et al. Role of Cardiovascular Imaging in Risk Assessment: Recent Advances, Gaps in Evidence, and Future Directions. J. Clin. Med. 2023, 12, 5563. [Google Scholar] [CrossRef]
- Solomon, D.H.; Reed, G.W.; Kremer, J.M.; Curtis, J.R.; Farkouh, M.E.; Harrold, L.R.; Hochberg, M.C.; Tsao, P.; Greenberg, J.D. Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheumatol. 2015, 67, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, S.; Spadafora, L.; Bernardi, M.; Galli, M.; Betti, M.; Perone, F.; Nicolaio, G.; Marzetti, E.; Martone, A.M.; Landi, F.; et al. Management of Coronary Artery Disease in Older Adults: Recent Advances and Gaps in Evidence. J. Clin. Med. 2023, 12, 5233. [Google Scholar] [CrossRef]
- Wilkins, J.T.; Ning, H.; Allen, N.B.; Zheutlin, A.; Shah, N.S.; Feinstein, M.J.; Perak, A.M.; Khan, S.S.; Bhatt, A.S.; Shah, R.; et al. Prediction of Cumulative Exposure to Atherogenic Lipids During Early Adulthood. J. Am. Coll. Cardiol. 2024, 84, 961–973. [Google Scholar] [CrossRef]
- Galarza-Delgado, D.A.; Azpiri-Lopez, J.R.; Guajardo-Jauregui, N.; Cardenas-de la Garza, J.A.; Garza-Cisneros, A.N.; Garcia-Heredia, A.; Balderas-Palacios, M.A.; Colunga-Pedraza, I.J. Carotid atherosclerosis in the first five years since rheumatoid arthritis diagnosis: A cross sectional study. Adv. Rheumatol. 2023, 63, 36. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Camba, A.; Carrillo-Palau, M.; Ramos, L.; Hernandez Alvarez-Buylla, N.; Alonso-Abreu, I.; Hernandez-Perez, A.; Vela, M.; Arranz, L.; Hernandez-Guerra, M.; Gonzalez-Gay, M.A.; et al. Carotid Plaque Assessment Reclassifies Patients with Inflammatory Bowel Disease into Very-High Cardiovascular Risk. J. Clin. Med. 2021, 10, 1671. [Google Scholar] [CrossRef] [PubMed]
- Naami, R.; Tashtish, N.; Neeland, I.J.; Katz, J.; Sinh, P.; Nasir, K.; Chittajallu, V.; Mansoor, E.; Rajagopalan, S.; Al-Kindi, S. Coronary artery calcium scoring for cardiovascular risk assessment in patients with inflammatory bowel disease. Am. Heart J. 2023, 266, 120–127. [Google Scholar] [CrossRef]
- Nagy, S.; Ditchek, J.; Kesselman, M.M. Coronary Artery Calcification in Rheumatoid Arthritis Patients: A Systematic Review. Cureus 2024, 16, e70517. [Google Scholar] [CrossRef]
- Martinez-Ceballos, M.A.; Sinning Rey, J.C.; Alzate-Granados, J.P.; Mendoza-Pinto, C.; Garcia-Carrasco, M.; Montes-Zabala, L.; Vargas-Vergara, D.; Munguia-Realpozo, P.; Etchegaray-Morales, I.; Rojas-Villarraga, A. Coronary calcium in autoimmune diseases: A systematic literature review and meta-analysis. Atherosclerosis 2021, 335, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.R.; Feineis, M.; Abdulla, J. Rheumatoid arthritis patients have higher prevalence and burden of asymptomatic coronary artery disease assessed by coronary computed tomography: A systematic literature review and meta-analysis. Eur. J. Intern. Med. 2019, 62, 72–79. [Google Scholar] [CrossRef]
- Ayoub, M.; Shah, H.; Nguyen, B.C.; Mehdi, M.; Nagavally, S.; Dawson, A.; Al-Kindi, S.; Virani, S.; Mohananey, D.; Sharma, A.; et al. Coronary Artery Plaque Assessment by CT Angiogram in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2023, 29, e22–e24. [Google Scholar] [CrossRef]
- Sandfort, V.; Persson, M.; Pourmorteza, A.; Noel, P.B.; Fleischmann, D.; Willemink, M.J. Spectral photon-counting CT in cardiovascular imaging. J. Cardiovasc. Comput. Tomogr. 2021, 15, 218–225. [Google Scholar] [CrossRef]
- Shami, A.; Sun, J.; Gialeli, C.; Markstad, H.; Edsfeldt, A.; Aurumskjold, M.L.; Goncalves, I. Atherosclerotic plaque features relevant to rupture-risk detected by clinical photon-counting CT ex vivo: A proof-of-concept study. Eur. Radiol. Exp. 2024, 8, 14. [Google Scholar] [CrossRef]
- Cau, R.; Saba, L.; Balestrieri, A.; Meloni, A.; Mannelli, L.; La Grutta, L.; Bossone, E.; Mantini, C.; Politi, C.; Suri, J.S.; et al. Photon-Counting Computed Tomography in Atherosclerotic Plaque Characterization. Diagnostics 2024, 14, 1065. [Google Scholar] [CrossRef]
- Sharma, A.; Cerdas, M.G.; Reza-Soltani, S.; Rustagi, V.; Guntipalli, M.; Rojas Torres, D.S.; Bhandari, M.; Kandel, S.; Teja Rayaprolu, D.; Hussain, M. A Review of Photon-Counting Computed Tomography (PCCT) in the Diagnosis of Cardiovascular Diseases. Cureus 2024, 16, e73119. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Maron, D.J.; Shirai, T.; Weyand, C.M. Accelerated atherosclerosis in patients with chronic inflammatory rheumatologic conditions. Int. J. Clin. Rheumatol. 2015, 10, 365–381. [Google Scholar] [CrossRef]
- Wang, M.; Hua, Y.; Liu, X.; Chen, Y.; Xiao, T.; Su, X.; Shao, P.; Ni, C.; Yang, S. Effects of an empowerment-based intervention on health-related knowledge and resilience in patients with coronary artery stent implantation. Patient. Educ. Couns. 2021, 104, 375–380. [Google Scholar] [CrossRef]
- Denysyuk, H.V.; Pires, I.M.; Garcia, N.M. A roadmap for empowering cardiovascular disease patients: A 5P-Medicine approach and technological integration. PeerJ 2024, 12, e17895. [Google Scholar] [CrossRef]
- Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Taba, M.Y.; Banach, M.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Anti-inflammatory Action of Statins in Cardiovascular Disease: The Role of Inflammasome and Toll-Like Receptor Pathways. Clin. Rev. Allergy Immunol. 2021, 60, 175–199. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Le Goff, W.; Santos, R.D.; Fichtner, I.; Carugo, S.; Corsini, A.; Sirtori, C.; Ruscica, M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur. J. Clin. Investig. 2025, 55, e14326. [Google Scholar] [CrossRef]
- Schade, D.S.; Duro, T.; Eaton, R.P. Optimal Prescribing of Statins to Reduce Cardiovascular Disease. Am. J. Med. 2023, 136, 1133–1135. [Google Scholar] [CrossRef]
- van ’t Klooster, C.C.; van der Graaf, Y.; Ridker, P.M.; Westerink, J.; Hjortnaes, J.; Sluijs, I.; Asselbergs, F.W.; Bots, M.L.; Kappelle, L.J.; Visseren, F.L.J.; et al. The relation between healthy lifestyle changes and decrease in systemic inflammation in patients with stable cardiovascular disease. Atherosclerosis 2020, 301, 37–43. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Ecarnot, F.; Maggi, S. The impact of the Mediterranean diet on immune function in older adults. Aging Clin. Exp. Res. 2024, 36, 117. [Google Scholar] [CrossRef]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients with Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, S.; Calvani, R.; Marzetti, E.; Coelho-Junior, H.J.; Picca, A.; Fratta, A.E.; Esposito, I.; Tosato, M.; Landi, F. Predictive values of relative fat mass and body mass index on cardiovascular health in community-dwelling older adults: Results from the Longevity Check-up (Lookup) 7. Maturitas 2024, 185, 108011. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Despres, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Mundell, A.; Amarnani, R.; Ainsworth, K.; Chiwah, F.; Hadjidemetriou, M.; Katti, S.; Mundell, N.; Lester, C.; Metsios, G.S. The Effects of Exercise and Physical Activity in Inflammatory Rheumatic Diseases—A Narrative Review. J. Sci. Sport Exerc. 2024. [Google Scholar] [CrossRef]
- Izquierdo, M.; de Souto Barreto, P.; Arai, H.; Bischoff-Ferrari, H.A.; Cadore, E.L.; Cesari, M.; Chen, L.K.; Coen, P.M.; Courneya, K.S.; Duque, G.; et al. Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR). J. Nutr. Health Aging 2025, 29, 100401. [Google Scholar] [CrossRef]
- Behrouzi, B.; Bhatt, D.L.; Cannon, C.P.; Vardeny, O.; Lee, D.S.; Solomon, S.D.; Udell, J.A. Association of Influenza Vaccination With Cardiovascular Risk: A Meta-analysis. JAMA Netw. Open 2022, 5, e228873. [Google Scholar] [CrossRef]
- Furer, V.; Rondaan, C.; Heijstek, M.W.; Agmon-Levin, N.; van Assen, S.; Bijl, M.; Breedveld, F.C.; D’Amelio, R.; Dougados, M.; Kapetanovic, M.C.; et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2020, 79, 39–52. [Google Scholar] [CrossRef]
- Kucharzik, T.; Ellul, P.; Greuter, T.; Rahier, J.F.; Verstockt, B.; Abreu, C.; Albuquerque, A.; Allocca, M.; Esteve, M.; Farraye, F.A.; et al. ECCO Guidelines on the Prevention, Diagnosis, and Management of Infections in Inflammatory Bowel Disease. J. Crohns Colitis 2021, 15, 879–913. [Google Scholar] [CrossRef]
- Gosselin Boucher, V.; Colmegna, I.; Gemme, C.; Labbe, S.; Pelaez, S.; Lavoie, K.L. Interventions to improve vaccine acceptance among rheumatoid arthritis patients: A systematic review. Clin. Rheumatol. 2019, 38, 1537–1544. [Google Scholar] [CrossRef]
- Neusser, S.; Neumann, A.; Zur Nieden, P.; Speckemeier, C.; Schlierenkamp, S.; Walendzik, A.; Karbach, U.; Andreica, I.; Vaupel, K.; Baraliakos, X.; et al. Facilitators and barriers of vaccine uptake in patients with autoimune inflammatory rheumatic disease: A scoping review. RMD Open 2022, 8, e002562. [Google Scholar] [CrossRef]
- Balzarini, F.; Frascella, B.; Oradini-Alacreu, A.; Gaetti, G.; Lopalco, P.L.; Edelstein, M.; Azzopardi-Muscat, N.; Signorelli, C.; Odone, A. Does the use of personal electronic health records increase vaccine uptake? A systematic review. Vaccine 2020, 38, 5966–5978. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Garshick, M.; Liao, K.P.; Di Carli, M. Sore, Hot, and at Risk: The Emerging Specialty of Cardio-Rheumatology. J. Am. Heart Assoc. 2023, 12, e027846. [Google Scholar] [CrossRef]
- Luchetti, M.M.; Benfaremo, D.; Bendia, E.; Bolognini, L.; Fava, G.; Marini, F.; Di Sario, A.; Ciferri, M.; Di Nicola, F.; Marconi, V.; et al. Clinical and patient reported outcomes of the multidisciplinary management in patients with inflammatory bowel disease-associated spondyloarthritis. Eur. J. Intern. Med. 2019, 64, 76–84. [Google Scholar] [CrossRef]
- Lahiri, M.; Cheung, P.P.M.; Dhanasekaran, P.; Wong, S.R.; Yap, A.; Tan, D.S.H.; Chong, S.H.; Tan, C.H.; Santosa, A.; Phan, P. Evaluation of a multidisciplinary care model to improve quality of life in rheumatoid arthritis: A randomised controlled trial. Qual. Life Res. 2022, 31, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.; Jiang, X.; Pennells, L.; Xu, Y.; Coffey, C.; Liu, Y.; Surendran, P.; Karthikeyan, S.; Lambert, S.; Danesh, J.; et al. Cardiovascular risk prediction using metabolomic biomarkers and polygenic risk scores: A cohort study and modelling analyses. Eur. Heart J. 2024, 45, ehae666.2674. [Google Scholar] [CrossRef]
- Castro-Santos, P.; Laborde, C.M.; Diaz-Pena, R. Genomics, proteomics and metabolomics: Their emerging roles in the discovery and validation of rheumatoid arthritis biomarkers. Clin. Exp. Rheumatol. 2015, 33, 279–286. [Google Scholar]
- Schunkert, H.; Di Angelantonio, E.; Inouye, M.; Patel, R.S.; Ripatti, S.; Widen, E.; Sanderson, S.C.; Kaski, J.P.; McEvoy, J.W.; Vardas, P.; et al. Clinical utility and implementation of polygenic risk scores for predicting cardiovascular disease. Eur. Heart J. 2025, ehae649. [Google Scholar] [CrossRef]
- Lau, E.S.; Paniagua, S.M.; Guseh, J.S.; Bhambhani, V.; Zanni, M.V.; Courchesne, P.; Lyass, A.; Larson, M.G.; Levy, D.; Ho, J.E. Sex Differences in Circulating Biomarkers of Cardiovascular Disease. J. Am. Coll. Cardiol. 2019, 74, 1543–1553. [Google Scholar] [CrossRef]
- Kazi, S.; Chong, J.J.H.; Chow, C.K. Inflammation: The next target for secondary prevention in coronary artery disease. Med. J. Aust. 2024, 220, 115–120. [Google Scholar] [CrossRef]
- Cao, Y.; Dai, Y.; Zhang, L.; Wang, D.; Hu, W.; Yu, Q.; Wang, X.; Yu, P.; Liu, W.; Ping, Y.; et al. Combined Use of Fecal Biomarkers in Inflammatory Bowel Diseases: Oncostatin M and Calprotectin. J. Inflamm. Res. 2021, 14, 6409–6419. [Google Scholar] [CrossRef]
- West, N.R.; Hegazy, A.N.; Owens, B.M.J.; Bullers, S.J.; Linggi, B.; Buonocore, S.; Coccia, M.; Gortz, D.; This, S.; Stockenhuber, K.; et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 2017, 23, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kumar, A.; Khanna, N.N.; Laird, J.R.; Nicolaides, A.; Faa, G.; Johri, A.M.; Mantella, L.E.; Fernandes, J.F.E.; Teji, J.S.; et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: A scoping review. EClinicalMedicine 2024, 73, 102660. [Google Scholar] [CrossRef] [PubMed]
- Prelaj, A.; Miskovic, V.; Zanitti, M.; Trovo, F.; Genova, C.; Viscardi, G.; Rebuzzi, S.E.; Mazzeo, L.; Provenzano, L.; Kosta, S.; et al. Artificial intelligence for predictive biomarker discovery in immuno-oncology: A systematic review. Ann. Oncol. 2024, 35, 29–65. [Google Scholar] [CrossRef] [PubMed]
- Khanna, N.N.; Singh, M.; Maindarkar, M.; Kumar, A.; Johri, A.M.; Mentella, L.; Laird, J.R.; Paraskevas, K.I.; Ruzsa, Z.; Singh, N.; et al. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J. Korean Med. Sci. 2023, 38, e395. [Google Scholar] [CrossRef]
Author, Year | Country | Target Disease | Sample Characteristics | Objective | Main Findings | Comment |
---|---|---|---|---|---|---|
Burggraaf B. et al., 2018 [58] | The Netherlands | RA | 212 RA patients without CVD/diabetes, randomized to treat-to-target vs. usual care | Evaluate the impact of cardiovascular treat-to-target intervention on CIMT progression. | CIMT progression was lower in the treat-to-target group, but only in RA patients without metabolic syndrome. | Findings support targeted CVD risk reduction in RA patients without metabolic syndrome. |
Burggraaf B. et al., 2019 [59] | The Netherlands | RA | 320 RA patients randomized; 219 completed 5-year follow-up | Evaluate treat-to-target approach for cardiovascular risk management in RA. | Treat-to-target group had lower carotid intima–media thickness progression and fewer cardiovascular events. | Supports aggressive cardiovascular risk management in RA. |
Charles-Schoeman C. et al., 2018 [60] | USA | RA | 30 RA patients from the AMPLE trial randomized to abatacept or adalimumab | Assess changes in HDL proteome and function with abatacept vs. adalimumab treatment. | Both drugs improved HDL function; adalimumab increased PON1 activity and reduced HDL-associated SAA-I more than abatacept. | Highlights differential cardiovascular effects of biologic DMARDs on lipid metabolism. |
Christina Charles-Schoeman et al., 2007 [61] | USA | RA | 20 RA patients randomized to atorvastatin 80 mg vs. placebo for 12 weeks | Evaluate impact of atorvastatin on HDL inflammatory properties and RA disease activity. | Atorvastatin improved HDL anti-inflammatory properties but had no significant effect on RA disease activity. | Supports potential cardiovascular benefits of atorvastatin in RA despite limited impact on inflammation. |
Deyab G. et al., 2021 [62] | Norway | RA | 39 RA patients starting methotrexate or TNFi + methotrexate | Examine effects of DMARDs on syndecan-1, MMP-9, and TIMP-1 in RA. | Syndecan-1 levels decreased after six weeks of treatment, indicating a potential cardioprotective role. | Suggests endothelial glycocalyx-preserving effects of DMARDs may contribute to cardiovascular benefits. |
Genovese M.C. et al., 2016 [63] | USA, Europe | RA | 527 RA patients with inadequate response to TNFi or biologic DMARDs | Assess efficacy of baricitinib vs. placebo in refractory RA. | Baricitinib (4 mg) significantly improved ACR20 response and HAQ-DI scores; increased risk of infections and cardiovascular events. | Supports baricitinib as an option for refractory RA but highlights potential cardiovascular risks. |
Giles J.T. et al., 2020 [64] | Multiple | RA | 3080 RA patients with cardiovascular risk factors, followed for 3.2 years | Compare cardiovascular risk of tocilizumab vs. etanercept. | No significant difference in major cardiovascular events; increased lipid levels with tocilizumab. | Findings suggest tocilizumab does not increase cardiovascular risk despite lipid changes. |
Gonzalez-Juanatey C. et al., 2006 [65] | Spain | RA | 8 RA patients receiving infliximab vs. 15 RA patients on conventional therapy | Assess impact of infliximab on CIMT. | Infliximab slowed CIMT progression compared to conventional therapy. | Supports TNF inhibition for reducing cardiovascular risk in severe RA. |
Haglo H. et al., 2021 [66] | Norway, USA | RA, SpA, SLE | 40 patients (33 female, 7 male, mean age 48 years) with RA, SpA, or SLE | Evaluate self-administered smartphone-guided HIIT vs. supervised HIIT. | VO2max and HRQoL improved similarly in both groups, suggesting smartphone guidance is an effective alternative to supervised training. | Supports mobile app-guided HIIT as a cost-effective exercise intervention for inflammatory rheumatological disease patients. |
Ikdahl E. et al., 2015 [67] | Norway | Inflammatory joint diseases (RA, AS, PsA) | 85 statin-naïve patients with ultrasound-verified carotid plaques | Assess long-term effects of rosuvastatin on endothelial function and atherosclerosis. | Rosuvastatin improved endothelial function, reduced arterial stiffness, and carotid plaque height. | Supports statin therapy in inflammatory joint disease patients with established atherosclerotic disease. |
Ikdahl E. et al., 2016 [68] | Norway | Inflammatory joint diseases (RA, AS, PsA) | 89 patients with carotid plaques receiving rosuvastatin for 18 months | Evaluate long-term effects of rosuvastatin on arterial stiffness and blood pressure. | Rosuvastatin significantly reduced arterial stiffness and blood pressure over 18 months. | Supports intensive lipid-lowering for cardiovascular prevention in inflammatory joint diseases. |
Ikonomidis I. et al., 2011 [69] | Greece | RA | 46 RA patients, 23 treated with anakinra vs. 23 with prednisolone | Assess effects of anakinra on apoptotic markers and left ventricular function. | Anakinra reduced apoptotic markers, improved left ventricular performance. | Suggests IL-1 inhibition benefits myocardial function in RA. |
Ikonomidis I. et al., 2019 [70] | Greece | RA | 120 RA patients randomized to anakinra, tocilizumab, or prednisolone | Compare effects of IL-1 and IL-6 inhibition on myocardial and vascular function. | Anakinra improved myocardial function, while tocilizumab improved vascular function. | Findings highlight differential effects of IL-1 and IL-6 blockade in RA-associated cardiovascular risk. |
Kim H.J. et al., 2015 [71] | Korea | RA | 44 RA patients and 22 healthy controls, all female | Assess the impact of methotrexate CIMT. | RA patients had higher CIMT than controls; methotrexate use was associated with lower CIMT. | Supports methotrexate’s potential protective role against CVD in RA. |
Kitas G.D. et al., 2019 [72] | UK | RA | 3002 RA patients, mean age 61 years, 74% female | Assess whether atorvastatin reduces cardiovascular events in RA patients. | 34% reduction in cardiovascular event risk with atorvastatin; significantly reduced LDL and CRP levels. | Supports atorvastatin use for primary prevention of cardiovascular events in RA. |
Kristensen L.E. et al., 2023 [73] | Multiple | RA | 4362 patients aged ≥50 years with RA and ≥1 cardiovascular risk factor | Identify high-risk vs. low-risk populations for tofacitinib vs. TNFi. | High risk for cardiovascular events and malignancies in older patients and smokers; no increased risk in younger non-smokers. | Findings support individualized risk assessment for tofacitinib use. |
Plein S. et al., 2020 [74] | UK | RA | 81 treatment-naïve RA patients randomized to etanercept + methotrexate or methotrexate alone; 30 matched controls | Assess cardiovascular impact of DMARD therapy using cardiac magnetic resonance imaging. | RA patients had impaired vascular stiffness, left ventricular mass, and myocardial fibrosis; DMARD therapy improved vascular stiffness, with no difference between treatment arms. | Supports early DMARD therapy for improving cardiovascular parameters in RA. |
Rubbert-Roth A. et al., 2020 [75] | USA, Europe, Australia, Brazil | RA | 612 RA patients refractory to biologic DMARDs | Compare upadacitinib vs. abatacept in RA refractory to biologic DMARDs. | Upadacitinib led to greater reductions in DAS28-CRP and higher remission rates vs. abatacept but had more adverse events. | Suggests upadacitinib as a more effective option for RA but with higher risk of serious adverse effects. |
Smolen J.S. et al., 2019 [76] | Multiple (24 countries) | RA | 648 patients with active RA and inadequate response to methotrexate | Assess efficacy and safety of upadacitinib monotherapy vs. methotrexate. | Upadacitinib significantly improved clinical outcomes compared to methotrexate. | Supports upadacitinib monotherapy as an option for RA. |
Tam L.S. et al., 2011 [77] | Hong Kong | RA | 50 RA patients randomized to rosuvastatin 10 mg or placebo for 12 months | Assess effects of rosuvastatin on carotid atherosclerosis and arterial stiffness. | Rosuvastatin improved subendocardial viability ratio but had no effect on IMT or augmentation index. | Suggests potential vascular benefits of statins in RA, but no clear effect on atherosclerosis progression. |
Welsh P. et al., 2016 [78] | UK | RA | 357 RA patients receiving tocilizumab or placebo | Assess IL-6 inhibition effects on NT-proBNP and hsTnT as cardiovascular biomarkers. | No significant effect of tocilizumab on NT-proBNP; hsTnT increased in treated patients. | Suggests no rapid cardiovascular biomarker benefit from IL-6 blockade despite RA disease control. |
Yang M. et al., 2018 [79] | China | RA | 119 active RA patients randomized to puerarin 400 mg IV or control for 24 weeks | Evaluate the effect of puerarin on CIMT and insulin resistance in RA. | Puerarin significantly reduced CIMT and improved insulin resistance without major side effects. | Suggests potential cardiovascular protective effects of puerarin in RA, but further trials needed. |
Askanase A.D. et al., 2025 [80] | Multiple (22 countries) | SLE | 427 SLE patients, 95% female, median age 42 years | Evaluate efficacy and safety of cenerimod in SLE. | Primary endpoint not met, but 4 mg dose showed some improvement in disease activity; well tolerated. | Further phase 3 trials are ongoing to assess efficacy in SLE. |
Carlucci P.M. et al., 2018 [81] | USA | SLE | 64 SLE patients and 35 healthy controls | Assess the role of SLE proinflammatory neutrophils in cardiovascular risk. | Increased vascular inflammation, arterial stiffness, and coronary plaque burden in SLE; strong association with neutrophil gene signature. | Supports role of immune dysregulation in lupus-associated cardiovascular risk. |
Casey K.A. et al., 2020 [39] | USA | SLE | 305 SLE patients, 99 received anifrolumab, 102 placebo | Evaluate effects of type I IFN inhibition on cardiometabolic markers. | Anifrolumab reduced neutrophil extracellular traps complexes and inflammatory markers, improved cholesterol efflux capacity. | Suggests IFN inhibition may reduce cardiovascular risk in SLE. |
Fatemi et al., 2014 [82] | Iran | SLE | 90 patients, randomized to atorvastatin 20 mg/day vs. placebo for 3 months | To evaluate the effect of atorvastatin on disease activity and inflammatory markers in SLE | No significant effect on disease activity, but CRP decreased and lipid profile improved in the statin group. | Cardiovascular risk markers improved, but short follow-up and no cardiovascular events reported. |
Hasni S.A. et al., 2021 [83] | USA | SLE | 30 SLE patients randomized to tofacitinib or placebo | Assess safety and immunological effects of tofacitinib in SLE. | Tofacitinib improved cholesterol profiles, arterial stiffness, and reduced type I IFN gene signature. | Supports further research on JAK inhibition for cardiovascular risk in SLE. |
Mok et al., 2011 [84] | Hong Kong | SLE | 72 SLE patients with subclinical atherosclerosis, no prior CVD | Examine the effect of rosuvastatin ± aspirin on endothelial markers and carotid atherosclerosis progression | Rosuvastatin reduced homocysteine and endothelial activation markers but had limited effect on CIMT progression over 24 months | No clinical cardiovascular endpoints; short duration and limited sample size hinder conclusions |
Plazak et al., 2011 [85] | Poland | SLE | 60 SLE patients, randomized to atorvastatin vs. placebo for 12 months | To evaluate atorvastatin effect on progression of coronary calcifications and myocardial perfusion. | Atorvastatin halted progression of atherosclerosis seen on multi-detector computed tomography; placebo group showed significant increase in plaque volume and calcium score. | First to demonstrate imaging-based atherosclerosis benefit of statin in SLE; small sample size but robust cardiovascular imaging endpoints. |
Wallace et al., 2019 [40] | USA | SLE | 298 SLE patients, autoantibody-positive, long-term follow-up up to 13 years | To assess long-term safety and efficacy of IV belimumab + standard of care in SLE patients | Long-term belimumab was well tolerated and maintained disease control. Cardiovascular deaths were reported (1 cardiac arrest, 1 coronary artery disease), but not a primary endpoint. | Focused on overall safety and SLE disease control. Cardiovascular outcomes not a primary focus but reported incidentally. |
Afif et al., 2024 [86] | Multinational | UC | 348 UC patients continuing subcutaneous ustekinumab for 4 years | To assess long-term efficacy and safety of ustekinumab in UC | No major adverse cardiovascular events reported through 4 years. Clinical remission and endoscopic improvement maintained. | While cardiovascular safety appears favorable, the study was not designed to assess cardiovascular outcomes specifically. |
Armuzzi A. et al., 2024 [87] | Multiple (USA, Italy, etc.) | UC | 796 patients with moderately to severely active UC in True North; 823 in open-label extension | Evaluate cardiovascular safety of ozanimod | No new cardiovascular safety signals, minimal changes in heart rate and blood pressure, well-tolerated cardiovascular safety profile | Supports safe use of ozanimod in UC patients per label instructions |
Sandborn et al., 2018 [88] | Multi-national | Crohn’s disease | 718 patients (randomized and non-randomized extension of UNITI trials) | Long-term efficacy and safety of ustekinumab | Remission maintained through 92 weeks; clinical remission ~74%, low incidence of serious adverse events and infections | No cardiovascular endpoints reported, but data support long-term inflammation control without increase in cardiovascular risk |
Strategy | Rationale | Potential Benefits |
---|---|---|
Risk Assessment | ||
Incorporation of inflammatory markers (CRP, IL-6, fibrinogen, PAI-1) into cardiovascular risk models | Inflammatory markers contribute to atherosclerosis and cardiovascular events. | Better prediction of cardiovascular risk in CID populations. |
Use of non-invasive vascular imaging (carotid ultrasound, coronary artery calcium scoring, photon-counting computed tomography) for early detection | Early detection of vascular changes can guide preventive interventions. | Earlier intervention can reduce cardiovascular morbidity and mortality. |
AI-driven risk stratification integrating clinical, genetic, and biomarker data | AI-driven models improve risk prediction by integrating multi-dimensional data. | Enhanced precision in identifying high-risk individuals. |
Refinement of cardiovascular risk scores to include chronic inflammation and autoimmune diseases | Current risk scores do not fully account for the impact of chronic inflammation. | Improved accuracy in cardiovascular risk stratification. |
Optimization | ||
Early screening and monitoring for subclinical atherosclerosis in CID patients | Subclinical atherosclerosis progresses even with normal LDL-c levels in CID patients. | Prevention of cardiovascular complications in seemingly low-risk patients. |
Routine assessment of disease activity and systemic inflammation | Monitoring inflammation levels helps adjust treatment strategies to reduce risk. | Allows for dynamic treatment adjustments to mitigate cardiovascular risk. |
Personalized medicine approach using multi-omics data (genomics, proteomics, metabolomics) | Multi-omics approaches provide personalized insights into disease progression. | Tailored interventions to reduce inflammation-driven cardiovascular events. |
Regular cardiovascular follow-ups for high-risk patients, especially older individuals | Older CID patients have a cumulative risk of cardiovascular complications. | Focused monitoring reduces the likelihood of undetected cardiovascular disease. |
Management | ||
Lifestyle interventions: dietary control, weight management, smoking cessation, physical activity | Lifestyle factors significantly contribute to cardiovascular risk modulation. | Long-term cardiovascular protection through lifestyle modification. |
Vaccination against preventable infections (influenza, pneumococcus, COVID-19, hepatitis B, herpes zoster, HPV) | Preventable infections can trigger systemic inflammation and cardiovascular events. | Reduced infection-related inflammation and lower cardiovascular risk in CID patients. |
Aggressive lipid-lowering therapy (statins with anti-inflammatory effects) | Statins have both lipid-lowering and anti-inflammatory properties. | Dual benefit of lipid reduction and inflammation control. |
Hypertension and diabetes management tailored to inflammatory disease burden | Inflammation can worsen hypertension and diabetes outcomes, requiring tailored management. | Optimized control of metabolic comorbidities improves overall prognosis. |
Microbiome modulation strategies (probiotics, dietary interventions, gut-targeted therapies) | Gut microbiota plays a role in systemic inflammation and metabolic health. | Potential reduction in systemic inflammation through gut-targeted therapies. |
Use of SGLT2 inhibitors and GLP-1 receptor agonists for metabolic and cardiovascular protection if appropriate | These agents provide cardiometabolic benefits, including improved glucose control, weight loss, and vascular health. | Reduction in cardiovascular events and improved metabolic profile in CID patients with diabetes or obesity. |
Stress management and psychological support | Chronic stress and depression contribute to systemic inflammation and cardiovascular risk. | Improved cardiovascular and psychological well-being through stress reduction technique. |
Dietary sodium reduction and increased potassium intake | Excess sodium intake exacerbates hypertension and cardiovascular risk. | Lowered blood pressure and reduced cardiovascular disease burden. |
Routine anemia screening and iron management | Anemia is common in CID and is associated with increased cardiovascular risk. | Improved oxygen delivery and reduced cardiovascular strain. |
Research Area | Key Questions | Potential Impact |
---|---|---|
Risk prediction models | How can inflammatory biomarkers, PRS, and multi-omics improve cardiovascular risk assessment? | Personalized, CID-specific cardiovascular risk scores |
Primary vs. secondary prevention | Does chronic inflammation drive first-time CVD events as aggressively as recurrent events? | Refined preventive treatment thresholds |
Anti-inflammatory therapies | What are the long-term cardiovascular effects of TNF, IL-6, and IL-1 blockers? | Optimized therapeutic strategies for CID patients |
Gut microbiome and CVD | Can microbiota-targeted interventions reduce systemic inflammation and atherosclerosis? | Novel dietary and therapeutic interventions |
Advanced imaging | How can PCCT and CAC scoring be integrated into CID cardiovascular risk models? | Improved early detection and intervention |
Artificial Intelligence | Can AI predict cardiovascular complications in CID patients? | Precision medicine and real-time risk assessment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciatore, S.; Andaloro, S.; Bernardi, M.; Oterino Manzanas, A.; Spadafora, L.; Figliozzi, S.; Asher, E.; Rana, J.S.; Ecarnot, F.; Gragnano, F.; et al. Chronic Inflammatory Diseases and Cardiovascular Risk: Current Insights and Future Strategies for Optimal Management. Int. J. Mol. Sci. 2025, 26, 3071. https://doi.org/10.3390/ijms26073071
Cacciatore S, Andaloro S, Bernardi M, Oterino Manzanas A, Spadafora L, Figliozzi S, Asher E, Rana JS, Ecarnot F, Gragnano F, et al. Chronic Inflammatory Diseases and Cardiovascular Risk: Current Insights and Future Strategies for Optimal Management. International Journal of Molecular Sciences. 2025; 26(7):3071. https://doi.org/10.3390/ijms26073071
Chicago/Turabian StyleCacciatore, Stefano, Silvia Andaloro, Marco Bernardi, Armando Oterino Manzanas, Luigi Spadafora, Stefano Figliozzi, Elad Asher, Jamal S. Rana, Fiona Ecarnot, Felice Gragnano, and et al. 2025. "Chronic Inflammatory Diseases and Cardiovascular Risk: Current Insights and Future Strategies for Optimal Management" International Journal of Molecular Sciences 26, no. 7: 3071. https://doi.org/10.3390/ijms26073071
APA StyleCacciatore, S., Andaloro, S., Bernardi, M., Oterino Manzanas, A., Spadafora, L., Figliozzi, S., Asher, E., Rana, J. S., Ecarnot, F., Gragnano, F., Calabrò, P., Gallo, A., Andò, G., Manzo-Silberman, S., Roeters van Lennep, J., Tosato, M., Landi, F., Biondi-Zoccai, G., Marzetti, E., & Sabouret, P. (2025). Chronic Inflammatory Diseases and Cardiovascular Risk: Current Insights and Future Strategies for Optimal Management. International Journal of Molecular Sciences, 26(7), 3071. https://doi.org/10.3390/ijms26073071