The Therapeutic Use and Potential of MSCs: Advances in Regenerative Medicine
Abstract
:1. Introduction
Highlights from the Specialized Literature Regarding the Therapeutic Use and Potential of MSCs
2. Therapeutic Use of MSCs in Acute Graft Rejection
3. Therapeutic Use of MSCs in Bone and Cartilage Diseases
4. Therapeutic Use of MSCs in Liver Diseases
5. Therapeutic Use of MSCs in Autoimmune Diseases
Study | Study Type | Therapy | Targeted Condition | Mechanism of Action | Main Findings |
---|---|---|---|---|---|
Islam et al., 2023 [62] | Meta- analysis | MSC therapy for multiple sclerosis | Multiple Sclerosis | Neuroprotection, reducing relapses and disability | Meta-analysis confirms MSCs’ potential in reducing relapses and disability in MS patients. |
Vaheb et al., 2024 [63] | Meta- analysis | MSCs’ neurological efficacy in MS | Multiple Sclerosis | Enhancing neurological function, reducing progression | Updated review highlights the safety and efficacy of MSCs in progressive MS therapy. |
Terstappen et al., 2021 [64] | Review | Therapeutics across the blood–brain barrier | Blood–Brain Barrier | Improving MSC delivery for CNS repair | Discusses methods to improve MSC delivery to CNS via blood–brain barrier crossing. |
Harris et al., 2012 [65] | Preclinical study | Autologous MSC-derived neural progenitors | Multiple Sclerosis | Using MSC-derived neural progenitors for CNS regeneration | Demonstrates feasibility of MSC-derived neural progenitors for CNS applications. |
Huang and Dreyfus, 2016 [67] | Review | Growth factors for demyelinating diseases | Demyelinating Diseases | Using growth factors to support remyelination | Growth factors like IGF and FGF can support MSC-based therapies in demyelinating diseases. |
Petrou et al., 2020 [68] | Clinical trial | MSC transplantation for progressive MS | Progressive Multiple Sclerosis | Autologous MSC transplantation for neurological repair | Clinical benefits observed in MS patients post MSC transplantation, improving neurological function. |
Harris et al., 2020 [69] | Clinical trial | MSC-derived neural progenitors for MS | Progressive Multiple Sclerosis | Long-term benefits of MSC-derived neural progenitors | Phase I study indicates long-term benefits of MSC-derived progenitors in progressive MS. |
Zhang et al., 2019 [71] | Preclinical study | Different MSCs for rheumatoid arthritis | Rheumatoid Arthritis | Comparison of MSC types for immune regulation | Comparison of different MSC sources shows varying efficacy in RA models. |
Hwang et al., 2021 [72] | Review | Clinical applications of MSCs in RA and OA | Rheumatoid Arthritis and Osteoarthritis | Reduction of inflammation and joint damage | Recent trials confirm the effectiveness of MSCs in reducing inflammation in RA and OA. |
Wang et al., 2013 [11] | Clinical trial (Phase II) | Umbilical cord MSCs for rheumatoid arthritis | Rheumatoid Arthritis | Umbilical cord MSCs modulating immune response | Human umbilical cord MSCs show good safety and efficacy profile for RA patients. |
Park et al., 2018 [73] | Clinical trial (Phase I) | Intravenous MSCs for RA (Phase 1 trial) | Rheumatoid Arthritis | MSC infusion reducing symptoms in RA patients | Phase 1 clinical trial supports intravenous MSC administration as a viable RA treatment. |
Ghoryani et al., 2020 [74] | Clinical trial | Immunoregulatory effects of MSCs in RA | Rheumatoid Arthritis | Enhancing regulatory T cells for immune suppression | MSC therapy modulates immune response, increasing regulatory T cells in refractory RA. |
6. Therapeutic Use of MSCs in Neoplastic Diseases
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Merimi, M.; El-Majzoub, R.; Lagneaux, L.; Moussa Agha, D.; Bouhtit, F.; Meuleman, N.; Fahmi, H.; Lewalle, P.; Fayyad-Kazan, M.; Najar, M. The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Front. Cell Dev. Biol. 2021, 9, 661532. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Rahman, H.S.; Markov, A.; Endjun, J.J.; Zekiy, A.O.; Chartrand, M.S.; Beheshtkhoo, N.; Kouhbanani, M.A.J.; Marofi, F.; Nikoo, M.; et al. Mesenchymal Stem/Stromal Cell-Derived Exosomes in Regenerative Medicine and Cancer; Overview of Development, Challenges, and Opportunities. Stem Cell Res. Ther. 2021, 12, 297. [Google Scholar] [CrossRef]
- Haliga, R.; Zugun-Eloae, F.; Oboroceanu, T.; Pînzariu, A.; Mocanu, V. Vitamin D and tissular expression of vitamin D receptor in obesity. Rev. Med. Chir. Soc. Med. Nat. Iasi 2016, 120, 404–408. [Google Scholar] [PubMed]
- Hristov, I.; Mocanu, V.; Zugun-Eloae, F.; Labusca, L.; Cretu-Silivestru, I.; Oboroceanu, T.; Tiron, C.; Tiron, A.; Burlacu, A.; Pinzariu, A.C.; et al. Association of Intracellular Lipid Accumulation in Subcutaneous Adipocyte Precursors and Plasma Adipokines in Bariatric Surgery Candidates. Lipids Health Dis. 2019, 18, 141. [Google Scholar] [CrossRef] [PubMed]
- Pinzariu, A.C.; Oboroceanu, T.; Eloae, F.Z.; Hristov, I.; Costan, V.V.; Labusca, L.; Cianga, P.; Verestiuc, L.; Hanganu, B.; Crauciuc, D.V.; et al. Vitamin D as a Regulator of Adipocyte Differentiation Effects in Vivo and in Vitro. Rev. Chim. 2018, 69, 731–734. [Google Scholar] [CrossRef]
- Maldonado, V.V.; Patel, N.H.; Smith, E.E.; Barnes, C.L.; Gustafson, M.P.; Rao, R.R.; Samsonraj, R.M. Clinical Utility of Mesenchymal Stem/Stromal Cells in Regenerative Medicine and Cellular Therapy. J. Biol. Eng. 2023, 17, 44. [Google Scholar] [CrossRef]
- Javan, M.R.; Khosrojerdi, A.; Moazzeni, S.M. New Insights Into Implementation of Mesenchymal Stem Cells in Cancer Therapy: Prospects for Anti-Angiogenesis Treatment. Front. Oncol. 2019, 9, 840. [Google Scholar] [CrossRef]
- Otto, W.R.; Wright, N.A. Mesenchymal Stem Cells: From Experiment to Clinic. Fibrogenesis Tissue Repair. 2011, 4, 20. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, S.N.; Fu, J.M.; Chen, L.J.; Fang, Y.X.; Xu, Z.Y. Interferon-γ Priming Enhances the Therapeutic Effects of Menstrual Blood-Derived Stromal Cells in a Mouse Liver Ischemia-Reperfusion Model. World J. Stem Cells 2023, 15, 876–896. [Google Scholar] [CrossRef]
- Penack, O.; Marchetti, M.; Ruutu, T.; Aljurf, M.; Bacigalupo, A.; Bonifazi, F.; Ciceri, F.; Cornelissen, J.; Malladi, R.; Duarte, R.F.; et al. Prophylaxis and Management of Graft versus Host Disease after Stem-Cell Transplantation for Haematological Malignancies: Updated Consensus Recommendations of the European Society for Blood and Marrow Transplantation. Lancet Haematol. 2020, 7, e157–e167. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Cong, X.; Liu, G.; Zhou, J.; Bai, B.; Li, Y.; Bai, W.; Li, M.; Ji, H.; et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy. Stem Cells Dev. 2013, 22, 3192–3202. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, H.M.; Haynesworth, S.E.; Gerson, S.L.; Rosenthal, N.S.; Caplan, A.I. Ex Vivo Expansion and Subsequent Infusion of Human Bone Marrow-Derived Stromal Progenitor Cells (Mesenchymal Progenitor Cells): Implications for Therapeutic Use. Bone Marrow Transplant. 1995, 16, 557–564. [Google Scholar] [PubMed]
- Le Blanc, K.; Rasmusson, I.; Sundberg, B.; Götherström, C.; Hassan, M.; Uzunel, M.; Ringdén, O. Treatment of Severe Acute Graft-versus-Host Disease with Third Party Haploidentical Mesenchymal Stem Cells. Lancet 2004, 363, 1439–1441. [Google Scholar] [CrossRef]
- Wang, L.-T.; Liu, K.-J.; Sytwu, H.-K.; Yen, M.-L.; Yen, B.L. Advances in Mesenchymal Stem Cell Therapy for Immune and Inflammatory Diseases: Use of Cell-Free Products and Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Transl. Med. 2021, 10, 1288–1303. [Google Scholar] [CrossRef]
- Justiz Vaillant, A.A.; Misra, S.; Fitzgerald, B.M. Acute Transplantation Rejection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Fang, B.; Song, Y.; Liao, L.; Zhang, Y.; Zhao, R.C. Favorable Response to Human Adipose Tissue-Derived Mesenchymal Stem Cells in Steroid-Refractory Acute Graft-versus-Host Disease. Transplant. Proc. 2007, 39, 3358–3362. [Google Scholar] [CrossRef]
- Bonig, H.; Kuçi, Z.; Kuçi, S.; Bakhtiar, S.; Basu, O.; Bug, G.; Dennis, M.; Greil, J.; Barta, A.; Kállay, K.M.; et al. Children and Adults with Refractory Acute Graft-versus-Host Disease Respond to Treatment with the Mesenchymal Stromal Cell Preparation “MSC-FFM”-Outcome Report of 92 Patients. Cells 2019, 8, 1577. [Google Scholar] [CrossRef]
- Weng, J.Y.; Du, X.; Geng, S.X.; Peng, Y.W.; Wang, Z.; Lu, Z.S.; Wu, S.J.; Luo, C.W.; Guo, R.; Ling, W.; et al. Mesenchymal Stem Cell as Salvage Treatment for Refractory Chronic GVHD. Bone Marrow Transplant. 2010, 45, 1732–1740. [Google Scholar] [CrossRef]
- Branisteanu, D.E.; Georgescu, S.; Serban, I.L.; Pinzariu, A.C.; Boda, D.; Maranduca, M.A.; Glod, M.; Branisteanu, C.I.; Bilibau, R.; Dimitriu, A.; et al. Management of Psoriasis in Children (Review). Exp. Ther. Med. 2021, 22, 1429. [Google Scholar] [CrossRef] [PubMed]
- Noyan, F.; Zimmermann, K.; Hardtke-Wolenski, M.; Knoefel, A.; Schulde, E.; Geffers, R.; Hust, M.; Huehn, J.; Galla, M.; Morgan, M.; et al. Prevention of Allograft Rejection by Use of Regulatory T Cells With an MHC-Specific Chimeric Antigen Receptor. Am. J. Transplant. 2017, 17, 917–930. [Google Scholar] [CrossRef]
- Casiraghi, F.; Azzollini, N.; Cassis, P.; Imberti, B.; Morigi, M.; Cugini, D.; Cavinato, R.A.; Todeschini, M.; Solini, S.; Sonzogni, A.; et al. Pretransplant Infusion of Mesenchymal Stem Cells Prolongs the Survival of a Semiallogeneic Heart Transplant through the Generation of Regulatory T Cells. J. Immunol. 2008, 181, 3933–3946. [Google Scholar]
- Arabpour, M.; Saghazadeh, A.; Rezaei, N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int. Immunopharmacol. 2021, 97, 107823. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Yue, W.; Song, Y.; Zhang, Y.; Qi, X.; Wang, Z.; Liu, B.; Shen, H.; Hu, X. Prevention of Acute Liver Allograft Rejection by IL-10-Engineered Mesenchymal Stem Cells. Clin. Exp. Immunol. 2014, 176, 473–484. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, G.; Wang, F.; Liu, H.; Liu, L.; Han, Y.; Zhang, J.; Yuan, J. Protective Effects of Mesenchymal Stem Cells with CXCR4 Up-Regulation in a Rat Renal Transplantation Model. PLoS ONE 2013, 8, e82949. [Google Scholar] [CrossRef]
- Jia, S.; Liu, Y.; Yuan, J. Evidence in Guidelines for Treatment of Coronary Artery Disease. Adv. Exp. Med. Biol. 2020, 1177, 37–73. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Tian, C.; Li, F.; Li, X.; Zhang, L.; Yang, H. Stro-1-Positive Human Mesenchymal Stem Cells Prolong Skin Graft Survival in Mice. Transplant. Proc. 2013, 45, 726–729. [Google Scholar] [CrossRef]
- Franceschini, M.; Boffa, A.; Andriolo, L.; Di Martino, A.; Zaffagnini, S.; Filardo, G. The 50 Most-Cited Clinical Articles in Cartilage Surgery Research: A Bibliometric Analysis. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, R.; Ishida, K.; Matsumoto, T.; Akisue, T.; Fujioka, H.; Mizuno, K.; Ohgushi, H.; Wakitani, S.; Kurosaka, M. Treatment of a Full-Thickness Articular Cartilage Defect in the Femoral Condyle of an Athlete with Autologous Bone-Marrow Stromal Cells. Osteoarthr. Cartil. 2007, 15, 226–231. [Google Scholar] [CrossRef]
- Pînzariu, A.; Sindilar, A.; Haliga, R.; Chelaru, L.; Mocanu, V. Nutritional Factors in Transdifferentiation of Scheletal Muscles to Adipocytes. Rev. Med. Chir. Soc. Med. Nat. Iasi 2014, 118, 699–705. [Google Scholar]
- Villa-Suárez, J.M.; García-Fontana, C.; Andújar-Vera, F.; González-Salvatierra, S.; de Haro-Muñoz, T.; Contreras-Bolívar, V.; García-Fontana, B.; Muñoz-Torres, M. Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int. J. Mol. Sci. 2021, 22, 4303. [Google Scholar] [CrossRef]
- Amin, H.D.; Brady, M.A.; St-Pierre, J.-P.; Stevens, M.M.; Overby, D.R.; Ethier, C.R. Stimulation of Chondrogenic Differentiation of Adult Human Bone Marrow-Derived Stromal Cells by a Moderate-Strength Static Magnetic Field. Tissue Eng. Part A 2014, 20, 1612–1620. [Google Scholar] [CrossRef]
- Formiga, F.R.; Pelacho, B.; Garbayo, E.; Abizanda, G.; Gavira, J.J.; Simon-Yarza, T.; Mazo, M.; Tamayo, E.; Jauquicoa, C.; Ortiz-de-Solorzano, C.; et al. Sustained Release of VEGF through PLGA Microparticles Improves Vasculogenesis and Tissue Remodeling in an Acute Myocardial Ischemia-Reperfusion Model. J. Control. Release 2010, 147, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Malekpour, K.; Hazrati, A.; Zahar, M.; Markov, A.; Zekiy, A.O.; Navashenaq, J.G.; Roshangar, L.; Ahmadi, M. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes for Orthopedic Diseases Treatment. Stem Cell Rev. Rep. 2022, 18, 933–951. [Google Scholar] [CrossRef] [PubMed]
- Undale, A.H.; Westendorf, J.J.; Yaszemski, M.J.; Khosla, S. Mesenchymal Stem Cells for Bone Repair and Metabolic Bone Diseases. Mayo Clin. Proc. 2009, 84, 893–902. [Google Scholar] [CrossRef]
- Wenkert, D.; McAlister, W.H.; Coburn, S.P.; Zerega, J.A.; Ryan, L.M.; Ericson, K.L.; Hersh, J.H.; Mumm, S.; Whyte, M.P. Hypophosphatasia: Nonlethal Disease despite Skeletal Presentation in Utero (17 New Cases and Literature Review). J. Bone Miner. Res. 2011, 26, 2389–2398. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas Stanchi, K.M.; Böhringer, J.; Strölin, M.; Groeschel, S.; Lenglinger, K.; Treuner, C.; Kehrer, C.; Laugwitz, L.; Bevot, A.; Kaiser, N.; et al. Hematopoietic Stem Cell Transplantation with Mesenchymal Stromal Cells in Children with Metachromatic Leukodystrophy. Stem Cells Dev. 2022, 31, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Filardo, G.; Roffi, A.; Di Martino, A.; Hamdan, M.; De Pasqual, L.; Merli, M.L.; Marcacci, M. Bone Regeneration with Mesenchymal Stem Cells. Clin. Cases Miner. Bone Metab. 2012, 9, 24–27. [Google Scholar] [PubMed]
- Kouraki, A.; Bast, T.; Ferguson, E.; Valdes, A.M. The Association of Socio-Economic and Psychological Factors with Limitations in Day-to-Day Activity over 7 Years in Newly Diagnosed Osteoarthritis Patients. Sci. Rep. 2022, 12, 943. [Google Scholar] [CrossRef]
- Mezey, G.A.; Paulik, E.; Máté, Z. Effect of Osteoarthritis and Its Surgical Treatment on Patients’ Quality of Life: A Longitudinal Study. BMC Musculoskelet. Disord. 2023, 24, 537. [Google Scholar] [CrossRef]
- Molnar, V.; Pavelić, E.; Vrdoljak, K.; Čemerin, M.; Klarić, E.; Matišić, V.; Bjelica, R.; Brlek, P.; Kovačić, I.; Tremolada, C.; et al. Mesenchymal Stem Cell Mechanisms of Action and Clinical Effects in Osteoarthritis: A Narrative Review. Genes 2022, 13, 949. [Google Scholar] [CrossRef]
- Tan, S.H.S.; Kwan, Y.T.; Neo, W.J.; Chong, J.Y.; Kuek, T.Y.J.; See, J.Z.F.; Wong, K.L.; Toh, W.S.; Hui, J.H.P. Intra-Articular Injections of Mesenchymal Stem Cells Without Adjuvant Therapies for Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2021, 49, 3113–3124. [Google Scholar] [CrossRef]
- Mohamadnejad, M.; Alimoghaddam, K.; Mohyeddin-Bonab, M.; Bagheri, M.; Bashtar, M.; Ghanaati, H.; Baharvand, H.; Ghavamzadeh, A.; Malekzadeh, R. Phase 1 Trial of Autologous Bone Marrow Mesenchymal Stem Cell Transplantation in Patients with Decompensated Liver Cirrhosis. Arch. Iran. Med. 2007, 10, 459–466. [Google Scholar]
- Kharaziha, P.; Hellström, P.M.; Noorinayer, B.; Farzaneh, F.; Aghajani, K.; Jafari, F.; Telkabadi, M.; Atashi, A.; Honardoost, M.; Zali, M.R.; et al. Improvement of Liver Function in Liver Cirrhosis Patients after Autologous Mesenchymal Stem Cell Injection: A Phase I-II Clinical Trial. Eur. J. Gastroenterol. Hepatol. 2009, 21, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Qu, J.; Yan, L.; Tang, X.; Wang, X.; Ye, A.; Zou, Z.; Li, L.; Ye, J.; Zhou, L. Efficacy and Safety of Mesenchymal Stem Cell Therapy in Liver Cirrhosis: A Systematic Review and Meta-Analysis. Stem Cell Res. Ther. 2023, 14, 301. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dong, Y.; Wu, X.; Xu, X.; Niu, J. The Assessment of Mesenchymal Stem Cells Therapy in Acute on Chronic Liver Failure and Chronic Liver Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Stem Cell Res. Ther. 2022, 13, 204. [Google Scholar] [CrossRef]
- Choi, E.W. Adult Stem Cell Therapy for Autoimmune Disease. Int. J. Stem Cells 2009, 2, 122–128. [Google Scholar] [CrossRef]
- Hernanz, N.; Sierra, M.; Volpato, N.; Núñez-Gómez, L.; Mesonero, F.; Herrera-Puente, P.; García-Gutiérrez, V.; Albillos, A.; López-San Román, A. Autologous Haematopoietic Stem Cell Transplantation in Refractory Crohn’s Disease: Experience in Our Centre. Gastroenterol. Hepatol. 2019, 42, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Burt, R.K.; Traynor, A.; Statkute, L.; Barr, W.G.; Rosa, R.; Schroeder, J.; Verda, L.; Krosnjar, N.; Quigley, K.; Yaung, K.; et al. Nonmyeloablative Hematopoietic Stem Cell Transplantation for Systemic Lupus Erythematosus. JAMA 2006, 295, 527–535. [Google Scholar] [CrossRef]
- Puyade, M.; Patel, A.; Lim, Y.J.; Blank, N.; Badoglio, M.; Gualandi, F.; Ma, D.D.; Maximova, N.; Greco, R.; Alexander, T.; et al. Autologous Hematopoietic Stem Cell Transplantation for Behçet’s Disease: A Retrospective Survey of Patients Treated in Europe, on Behalf of the Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation. Front. Immunol. 2021, 12, 638709. [Google Scholar] [CrossRef]
- Madec, A.M.; Mallone, R.; Afonso, G.; Abou Mrad, E.; Mesnier, A.; Eljaafari, A.; Thivolet, C. Mesenchymal Stem Cells Protect NOD Mice from Diabetes by Inducing Regulatory T Cells. Diabetologia 2009, 52, 1391–1399. [Google Scholar] [CrossRef]
- Lu, Z.; Hu, X.; Zhu, C.; Wang, D.; Zheng, X.; Liu, Q. Overexpression of CNTF in Mesenchymal Stem Cells Reduces Demyelination and Induces Clinical Recovery in Experimental Autoimmune Encephalomyelitis Mice. J. Neuroimmunol. 2009, 206, 58–69. [Google Scholar] [CrossRef]
- Yuan, X.; Sun, L. Stem Cell Therapy in Lupus. Rheumatol. Immunol. Res. 2022, 3, 61–68. [Google Scholar] [CrossRef]
- Fava, A.; Petri, M. Systemic Lupus Erythematosus: Diagnosis and Clinical Management. J. Autoimmun. 2019, 96, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.-J.; Xiong, A.-J.; Li, Y.-H.; Pan, S.-Y.; Zhang, Q.-P.; Zhao, Y.; Liu, Y.; Marion, T.N. Mesenchymal Stem Cells: Allogeneic MSC May Be Immunosuppressive but Autologous MSC Are Dysfunctional in Lupus Patients. Front. Cell. Dev. Biol. 2019, 7, 285. [Google Scholar] [CrossRef]
- Sun, L.; Akiyama, K.; Zhang, H.; Yamaza, T.; Hou, Y.; Zhao, S.; Xu, T.; Le, A.; Shi, S. Mesenchymal Stem Cell Transplantation Reverses Multiorgan Dysfunction in Systemic Lupus Erythematosus Mice and Humans. Stem Cells 2009, 27, 1421–1432. [Google Scholar] [CrossRef]
- Smith-Berdan, S.; Gille, D.; Weissman, I.L.; Christensen, J.L. Reversal of Autoimmune Disease in Lupus-Prone New Zealand Black/New Zealand White Mice by Nonmyeloablative Transplantation of Purified Allogeneic Hematopoietic Stem Cells. Blood 2007, 110, 1370–1378. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, H.; Jin, O.; Feng, X.; Yao, G.; Hou, Y.; Sun, L. Transplantation of Human Bone Marrow Mesenchymal Stem Cell Ameliorates the Autoimmune Pathogenesis in MRL/Lpr Mice. Cell. Mol. Immunol. 2008, 5, 417–424. [Google Scholar] [CrossRef]
- Turovsky, E.A.; Golovicheva, V.V.; Varlamova, E.G.; Danilina, T.I.; Goryunov, K.V.; Shevtsova, Y.A.; Pevzner, I.B.; Zorova, L.D.; Babenko, V.A.; Evtushenko, E.A.; et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Afford Neuroprotection by Modulating PI3K/AKT Pathway and Calcium Oscillations. Int. J. Biol. Sci. 2022, 18, 5345–5368. [Google Scholar] [CrossRef] [PubMed]
- Yamout, B.; Hourani, R.; Salti, H.; Barada, W.; El-Hajj, T.; Al-Kutoubi, A.; Herlopian, A.; Baz, E.K.; Mahfouz, R.; Khalil-Hamdan, R.; et al. Bone Marrow Mesenchymal Stem Cell Transplantation in Patients with Multiple Sclerosis: A Pilot Study. J. Neuroimmunol. 2010, 227, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Mallam, E.; Kemp, K.; Wilkins, A.; Rice, C.; Scolding, N. Characterization of in Vitro Expanded Bone Marrow-Derived Mesenchymal Stem Cells from Patients with Multiple Sclerosis. Mult. Scler. 2010, 16, 909–918. [Google Scholar] [CrossRef]
- Jetta, D.; Shireen, T.; Hua, S.Z. Epithelial Cells Sense Local Stiffness via Piezo1 Mediated Cytoskeletal Reorganization. Front. Cell. Dev. Biol. 2023, 11, 1198109. [Google Scholar] [CrossRef]
- Islam, M.A.; Alam, S.S.; Kundu, S.; Ahmed, S.; Sultana, S.; Patar, A.; Hossan, T. Mesenchymal Stem Cell Therapy in Multiple Sclerosis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 6311. [Google Scholar] [CrossRef] [PubMed]
- Vaheb, S.; Afshin, S.; Ghoshouni, H.; Ghaffary, E.M.; Farzan, M.; Shaygannejad, V.; Thapa, S.; Zabeti, A.; Mirmosayyeb, O. Neurological Efficacy and Safety of Mesenchymal Stem Cells (MSCs) Therapy in People with Multiple Sclerosis (pwMS): An Updated Systematic Review and Meta-Analysis. Mult. Scler. Relat. Disord. 2024, 87, 105681. [Google Scholar] [CrossRef]
- Terstappen, G.C.; Meyer, A.H.; Bell, R.D.; Zhang, W. Strategies for Delivering Therapeutics across the Blood-Brain Barrier. Nat. Rev. Drug Discov. 2021, 20, 362–383. [Google Scholar] [CrossRef]
- Harris, V.K.; Faroqui, R.; Vyshkina, T.; Sadiq, S.A. Characterization of Autologous Mesenchymal Stem Cell-Derived Neural Progenitors as a Feasible Source of Stem Cells for Central Nervous System Applications in Multiple Sclerosis. Stem Cells Transl. Med. 2012, 1, 536–547. [Google Scholar] [CrossRef]
- Bai, Y.-B.; Zhao, F.; Wu, Z.-H.; Shi, G.-N.; Jiang, N. Left Ventricular Thrombosis Caused Cerebral Embolism during Venoarterial Extracorporeal Membrane Oxygenation Support: A Case Report. World J. Clin. Cases 2024, 12, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dreyfus, C.F. The Role of Growth Factors as a Therapeutic Approach to Demyelinating Disease. Exp. Neurol. 2016, 283, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Petrou, P.; Kassis, I.; Levin, N.; Paul, F.; Backner, Y.; Benoliel, T.; Oertel, F.C.; Scheel, M.; Hallimi, M.; Yaghmour, N.; et al. Beneficial Effects of Autologous Mesenchymal Stem Cell Transplantation in Active Progressive Multiple Sclerosis. Brain 2020, 143, 3574–3588. [Google Scholar] [CrossRef]
- Harris, V.K.; Stark, J.W.; Yang, S.; Zanker, S.; Tuddenham, J.; Sadiq, S.A. Mesenchymal Stem Cell-Derived Neural Progenitors in Progressive MS: Two-Year Follow-up of a Phase I Study. Neurol. Neuroimmunol. Neuroinflamm. 2020, 8, e928. [Google Scholar] [CrossRef]
- Sarsenova, M.; Issabekova, A.; Abisheva, S.; Rutskaya-Moroshan, K.; Ogay, V.; Saparov, A. Mesenchymal Stem Cell-Based Therapy for Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 11592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, Q.; Zhu, J.; Guo, H.; Zhai, Q.; Li, B.; Jin, Y.; He, X.; Jin, F. Comparison of Therapeutic Effects of Different Mesenchymal Stem Cells on Rheumatoid Arthritis in Mice. PeerJ 2019, 7, e7023. [Google Scholar] [CrossRef]
- Hwang, J.J.; Rim, Y.A.; Nam, Y.; Ju, J.H. Recent Developments in Clinical Applications of Mesenchymal Stem Cells in the Treatment of Rheumatoid Arthritis and Osteoarthritis. Front. Immunol. 2021, 12, 631291. [Google Scholar] [CrossRef]
- Park, E.H.; Lim, H.-S.; Lee, S.; Roh, K.; Seo, K.-W.; Kang, K.-S.; Shin, K. Intravenous Infusion of Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Rheumatoid Arthritis: A Phase Ia Clinical Trial. Stem Cells Transl. Med. 2018, 7, 636–642. [Google Scholar] [CrossRef]
- Ghoryani, M.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Mohammadi, M. The Sufficient Immunoregulatory Effect of Autologous Bone Marrow-Derived Mesenchymal Stem Cell Transplantation on Regulatory T Cells in Patients with Refractory Rheumatoid Arthritis. J. Immunol. Res. 2020, 2020, 3562753. [Google Scholar] [CrossRef]
- Sage, E.K.; Thakrar, R.M.; Janes, S.M. Genetically Modified Mesenchymal Stromal Cells in Cancer Therapy. Cytotherapy 2016, 18, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Lalu, M.M.; McIntyre, L.; Pugliese, C.; Fergusson, D.; Winston, B.W.; Marshall, J.C. Safety of Cell Therapy with Mesenchymal Stromal Cells (SafeCell): A Systematic Review and Meta-Analysis of Clinical Trials. PLoS ONE 2012, 7, e47559. [Google Scholar] [CrossRef]
- Tolar, J.; Nauta, A.J.; Osborn, M.J.; Panoskaltsis Mortari, A.; McElmurry, R.T.; Bell, S.; Xia, L.; Zhou, N.; Riddle, M.; Schroeder, T.M.; et al. Sarcoma Derived from Cultured Mesenchymal Stem Cells. Stem Cells 2007, 25, 371–379. [Google Scholar] [CrossRef]
- Ning, H.; Yang, F.; Jiang, M.; Hu, L.; Feng, K.; Zhang, J.; Yu, Z.; Li, B.; Xu, C.; Li, Y.; et al. The Correlation between Cotransplantation of Mesenchymal Stem Cells and Higher Recurrence Rate in Hematologic Malignancy Patients: Outcome of a Pilot Clinical Study. Leukemia 2008, 22, 593–599. [Google Scholar] [CrossRef]
- Sage, E.K.; Kolluri, K.K.; McNulty, K.; Lourenco, S.D.S.; Kalber, T.L.; Ordidge, K.L.; Davies, D.; Gary Lee, Y.C.; Giangreco, A.; Janes, S.M. Systemic but Not Topical TRAIL-Expressing Mesenchymal Stem Cells Reduce Tumour Growth in Malignant Mesothelioma. Thorax 2014, 69, 638–647. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Yuan, Y. KSHV Enhances Mesenchymal Stem Cell Homing and Promotes KS-like Pathogenesis. Virology 2020, 549, 5–12. [Google Scholar] [CrossRef]
- Niess, H.; von Einem, J.C.; Thomas, M.N.; Michl, M.; Angele, M.K.; Huss, R.; Günther, C.; Nelson, P.J.; Bruns, C.J.; Heinemann, V. Treatment of Advanced Gastrointestinal Tumors with Genetically Modified Autologous Mesenchymal Stromal Cells (TREAT-ME1): Study Protocol of a Phase I/II Clinical Trial. BMC Cancer 2015, 15, 237. [Google Scholar] [CrossRef]
- Schweizer, M.T.; Wang, H.; Bivalacqua, T.J.; Partin, A.W.; Lim, S.J.; Chapman, C.; Abdallah, R.; Levy, O.; Bhowmick, N.A.; Karp, J.M.; et al. A Phase I Study to Assess the Safety and Cancer-Homing Ability of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells in Men with Localized Prostate Cancer. Stem Cells Transl. Med. 2019, 8, 441–449. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pînzariu, A.C.; Moscalu, R.; Soroceanu, R.P.; Maranduca, M.A.; Drochioi, I.C.; Vlasceanu, V.I.; Timofeiov, S.; Timofte, D.V.; Huzum, B.; Moscalu, M.; et al. The Therapeutic Use and Potential of MSCs: Advances in Regenerative Medicine. Int. J. Mol. Sci. 2025, 26, 3084. https://doi.org/10.3390/ijms26073084
Pînzariu AC, Moscalu R, Soroceanu RP, Maranduca MA, Drochioi IC, Vlasceanu VI, Timofeiov S, Timofte DV, Huzum B, Moscalu M, et al. The Therapeutic Use and Potential of MSCs: Advances in Regenerative Medicine. International Journal of Molecular Sciences. 2025; 26(7):3084. https://doi.org/10.3390/ijms26073084
Chicago/Turabian StylePînzariu, Alin Constantin, Roxana Moscalu, Radu Petru Soroceanu, Minela Aida Maranduca, Ilie Cristian Drochioi, Vlad Ionut Vlasceanu, Sergiu Timofeiov, Daniel Vasile Timofte, Bogdan Huzum, Mihaela Moscalu, and et al. 2025. "The Therapeutic Use and Potential of MSCs: Advances in Regenerative Medicine" International Journal of Molecular Sciences 26, no. 7: 3084. https://doi.org/10.3390/ijms26073084
APA StylePînzariu, A. C., Moscalu, R., Soroceanu, R. P., Maranduca, M. A., Drochioi, I. C., Vlasceanu, V. I., Timofeiov, S., Timofte, D. V., Huzum, B., Moscalu, M., Serban, D. N., & Serban, I. L. (2025). The Therapeutic Use and Potential of MSCs: Advances in Regenerative Medicine. International Journal of Molecular Sciences, 26(7), 3084. https://doi.org/10.3390/ijms26073084