Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes
Abstract
:1. Introduction
2. Modulation of Absorption and Utilization of Light Energy
2.1. Protein Engineering for Light Absorption Optimization
2.2. Transcriptional and Post-Transcriptional Regulation of Light-Harvesting Efficiency
2.3. Metabolic and Hormonal Control of Photosynthetic Pigments
3. Adjustment of Electron Transport Systems
3.1. Regulation of Electron Transport Carriers
3.2. Regulation of Photosystem Stoichiometry
3.3. Regulation of Cyclic Electron Flow (CEF)
4. Regulation of Carbon Assimilation
4.1. Improving Ci (HCO3−/CO2) Uptake and Transport
4.2. Optimizing Carbon Fixation Through RuBisCO and Carbonic Anhydrase Engineering
4.3. Exploring Photomixotrophic Cultivation for Greater Carbon Utilizaiton
5. Challenges of Regulating Photosynthesis Efficiency Through Synthetic Biology
5.1. Isolated Gene Engineering Insufficient to Achieve Measurable Improvements
5.2. Unknown Proteins Involved in Photosynthesis Emerged as Potential Factors Influencing the Regulation
5.3. Challenge of Balancing Cell Growth and Product Synthesis in Photosynthesis Regulation
5.4. Optimization Achieved in the Laboratory Proves Difficult to Reproduce in Large-Scale High-Density Cultivation
6. Perspectives and Future Direction
6.1. AI-Guided Metabolic Engineering for Photosynthetic Optimization
6.2. Unveiling the Functions of Unknown Proteins via Integrated Approach
6.3. Enhancing Microbial Synergy via Building Artificial Coculture Systems
6.4. Designing Photosynthetic Cell Factory Reactors for Large-Scale Production
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3-HB | 3-hydroxybutyric acid |
3-HV | 3-hydroxyvaleric acid |
3-HP | 3-hydroxypropionic acid |
TAG | Triglycerides |
ATP | Adenosine triphosphate |
LHCs | Light-harvesting pigment–protein complexes |
LHCRs | Chlorophyll a-binding proteins |
PSI | Photosystem I |
ABA | Abscisic acid |
NAB1 | Nucleic acid binding 1 |
CAO | Chlorophyllide a oxygenase |
AP | Alkaline phosphatase |
PSII | Photosystem II |
PQ/PQH2 | Plastoquinone |
DOP | Organophosphate |
CCCP | Carbonyl cyanide m-chlorophenyl hydrazone |
TCA cycle | Tricarboxylic acid cycle |
CRISPRi | CRISPR interference |
dCpf1 | dCas12a |
PAR | Photosynthetically active radiation |
CEF | Cyclic electron flow |
NDH | NADH dehydrogenase-like complex |
PGR5 | Proton gradient regulation 5 |
PGRL1 | PGR5-like photosynthetic phenotype 1 |
FL | Fluctuating light |
NDA2 | Type II NAD(P)H dehydrogenase |
Ci | Inorganic carbon |
RBS | Ribosome binding site |
CCM | CO2-concentrating mechanisms |
CA | Carbonic anhydrase |
CCMs | Carbon-concentrating mechanisms |
Chl-a | Chlorophyll-a |
RuBisCO | Ribulose-1,5-bisphosphate carboxylase/oxygenase |
Raf1 | RuBisCO accumulation factor 1 |
BN-PAGE | Blue native polyacrylamide gel electrophoresis |
NOG | Nonoxidative cyclic glycolysis |
ED | Entner-doudoroff |
Rpe | Ribulose-5-phosphate-3-epimerase |
Prk | Phosphoribulokinase |
PBR | Photobioreactor |
IoT | Internet of Things |
LEF | Linear electron flow |
PC | Plastocyanin |
Fd | Ferredoxin |
FNR | Ferredoxin-NADP(H) reductase |
Cytb6f | Cytochrome b6-f complex. |
References
- Gustafson, A.; Marlon, J.R.; Goldberg, M.H.; Wang, X.; Ballew, M.T.; Rosenthal, S.A.; Leiserowitz, A. Blame where blame is due: Many Americans support suing fossil fuel companies for global warming damages. Environment 2020, 62, 30–35. [Google Scholar]
- Herrington, G. Update to limits to growth: Comparing the World3 model with empirical data. J. Ind. Ecol. 2021, 25, 614–626. [Google Scholar]
- Cui, J.; Sun, H.; Chen, R.; Sun, J.; Mo, G.; Luan, G.; Lu, X. Multiple routes toward engineering efficient cyanobacterial photosynthetic biomanufacturing technologies. Green Carbon 2023, 1, 210–226. [Google Scholar] [CrossRef]
- Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of current potentials and applications. Environments 2020, 7, 13. [Google Scholar] [CrossRef]
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar]
- Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 2013, 24, 405–413. [Google Scholar]
- Angermayr, S.A.; Hellingwerf, K.J.; Lindblad, P.; Teixeira de Mattos, M.J. Energy biotechnology with cyanobacteria. Curr. Opin. Biotechnol. 2009, 20, 257–263. [Google Scholar] [PubMed]
- Lu, X. A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol. Adv. 2010, 28, 742–746. [Google Scholar]
- Zhang, L.; Chen, L.; Diao, J.; Song, X.; Shi, M.; Zhang, W. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol. Biofuels 2020, 13, 82. [Google Scholar]
- Wang, X.; Chen, L.; Liu, J.; Sun, T.; Zhang, W. Light-driven biosynthesis of myo-Inositol directly from CO2 in Synechocystis sp. PCC 6803. Front. Microbiol. 2020, 11, 566117. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Diao, J.; Li, S.; Chen, L.; Zhang, W. Direct photosynthetic production of plastic building block chemicals from CO2. Adv. Exp. Med. Biol. 2018, 1080, 215–238. [Google Scholar]
- Diao, J.; Song, X.; Zhang, L.; Cui, J.; Chen, L.; Zhang, W. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metab. Eng. 2020, 61, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Fayyaz, M.; Chew, K.W.; Show, P.L.; Ling, T.C.; Ng, I.-S.; Chang, J.-S. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnol. Adv. 2020, 43, 107554. [Google Scholar] [CrossRef]
- Chung, Y.-S.; Lee, J.-W.; Chung, C.-H. Molecular challenges in microalgae towards cost-effective production of quality biodiesel. Renew. Sustain. Energy Rev. 2017, 74, 139–144. [Google Scholar]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as sources of carotenoids. Mar. Drugs 2011, 9, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Demmig-Adams, B.; Adams III, W.W. Antioxidants in photosynthesis and human nutrition. Science 2002, 298, 2149–2153. [Google Scholar] [CrossRef]
- Cordero, B.F.; Couso, I.; León, R.; Rodríguez, H.; Vargas, M.Á. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl. Microbiol. Biotechnol. 2011, 91, 341–351. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef]
- Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; Moyano, E.; Golenioswki, M.; Cusidó, R.M.; Palazon, J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016, 21, 182. [Google Scholar] [CrossRef]
- Vecchi, V.; Barera, S.; Bassi, R.; Dall’Osto, L. Potential and challenges of improving photosynthesis in algae. Plants 2020, 9, 67. [Google Scholar] [CrossRef]
- Llamas, A.; Leon-Miranda, E.; Tejada-Jimenez, M. Microalgal and nitrogen-fixing bacterial consortia: From interaction to biotechnological potential. Plants 2023, 12, 2476. [Google Scholar] [CrossRef] [PubMed]
- Melis, A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 2009, 177, 272–280. [Google Scholar]
- Xie, Y.; Khoo, K.S.; Chew, K.W.; Devadas, V.V.; Phang, S.J.; Lim, H.R.; Rajendran, S.; Show, P.L. Advancement of renewable energy technologies via artificial and microalgae photosynthesis. Bioresour. Technol. 2022, 363, 127830. [Google Scholar]
- Dong, H.; Li, F.; Xuan, X.; Ahiakpa, J.K.; Tao, J.; Zhang, X.; Ge, P.; Wang, Y.; Gai, W.; Zhang, Y. The genetic basis and improvement of photosynthesis in tomato. Hortic. Plant J. 2024, 11, 69–84. [Google Scholar]
- Arnon, D.I. The light reactions of photosynthesis. Proc. Natl. Acad. Sci. USA 1971, 68, 2883–2892. [Google Scholar] [CrossRef]
- Zhang, X.-E.; Liu, C.; Dai, J.; Yuan, Y.; Gao, C.; Feng, Y.; Wu, B.; Wei, P.; You, C.; Wang, X.; et al. Enabling technology and core theory of synthetic biology. Sci. China Life Sci. 2023, 66, 1742–1785. [Google Scholar]
- Pouvreau, B.; Vanhercke, T.; Singh, S. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. Plant Sci. 2018, 273, 3–12. [Google Scholar]
- Ke, J.; Wang, B.; Yoshikuni, Y. Microbiome engineering: Synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol. 2021, 39, 244–261. [Google Scholar]
- Rourke, M. Access and benefit-sharing DNA Componentry for plant synthetic biology: Bioparts expressed in plant chassis. Plants People Planet. 2022, 4, 76–83. [Google Scholar]
- Lu, Y.; Gan, Q.; Iwai, M.; Alboresi, A.; Burlacot, A.; Dautermann, O.; Takahashi, H.; Crisanto, T.; Peltier, G.; Morosinotto, T.; et al. Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection. Nat. Commun. 2021, 12, 679. [Google Scholar]
- Li, J.; Zhang, K.; Li, L.; Wang, Y.; Lin, S. Unsuspected functions of alkaline phosphatase PhoD in the diatom Phaeodactylum tricornutum. Algal Res. 2022, 68, 102873. [Google Scholar]
- Zhang, K.; Li, J.; Zhou, Z.; Huang, R.; Lin, S. Roles of alkaline phosphatase PhoA in algal metabolic regulation under phosphorus-replete conditions. J. Phycol. 2021, 57, 703–707. [Google Scholar] [CrossRef]
- Negi, S.; Perrine, Z.; Friedland, N.; Kumar, A.; Tokutsu, R.; Minagawa, J.; Berg, H.; Barry, A.N.; Govindjee, G.; Sayre, R. Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. Plant J. 2020, 103, 584–603. [Google Scholar]
- Agarwal, A.; Di, R.; Falkowski, P.G. Light-harvesting complex gene regulation by a MYB-family transcription factor in the marine diatom, Phaeodactylum tricornutum. Photosynth. Res. 2022, 153, 59–70. [Google Scholar]
- Zhang, C.; Chen, J.; Yang, R.; Luo, Q.; Wang, T.; Zhang, P.; Chen, H. Abscisic acid activates desiccation tolerance responses in intertidal seaweed Neoporphyra haitanensis. Front. Mar. Sci. 2022, 9, 1007193. [Google Scholar]
- Fan, J.; Zhou, D.; Chen, C.; Wu, J.; Wu, H. Reprogramming the metabolism of Synechocystis PCC 6803 by regulating the plastoquinone biosynthesis. Synth. Syst. Biotechnol. 2021, 6, 351–359. [Google Scholar] [PubMed]
- Moore, V.; Vermaas, W. Functional consequences of modification of the photosystem I/photosystem II ratio in the cyanobacterium Synechocystis sp. PCC 6803. J. Bacteriol. 2024, 206, e00454-23. [Google Scholar]
- Knoot, C.J.; Biswas, S.; Pakrasi, H.B. Tunable repression of key photosynthetic processes using Cas12a CRISPR interference in the fast-growing cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth. Biol. 2019, 9, 132–143. [Google Scholar]
- Balan, R.; Suraishkumar, G. Simultaneous increases in specific growth rate and specific lipid content of Chlorella vulgaris through UV-induced reactive species. Biotechnol. Prog. 2014, 30, 291–299. [Google Scholar]
- Jokel, M.; Johnson, X.; Peltier, G.; Aro, E.M.; Allahverdiyeva, Y. Hunting the main player enabling Chlamydomonas reinhardtii growth under fluctuating light. Plant J. 2018, 94, 822–835. [Google Scholar]
- Margulis, K.; Zer, H.; Lis, H.; Schoffman, H.; Murik, O.; Shimakawa, G.; Krieger-Liszkay, A.; Keren, N. Over expression of the cyanobacterial Pgr5-homologue leads to pseudoreversion in a gene coding for a putative esterase in Synechocystis 6803. Life 2020, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Selão, T.T.; Jebarani, J.; Ismail, N.A.; Norling, B.; Nixon, P.J. Enhanced production of D-lactate in cyanobacteria by re-routing photosynthetic cyclic and pseudo-cyclic electron flow. Front. Plant Sci. 2020, 10, 1700. [Google Scholar]
- Baltz, A.; Dang, K.-V.; Beyly, A.; Auroy, P.; Richaud, P.; Cournac, L.; Peltier, G. Plastidial expression of type II NAD (P) H dehydrogenase increases the reducing state of plastoquinones and hydrogen photoproduction rate by the indirect pathway in Chlamydomonas reinhardtii. Plant Physiol. 2014, 165, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.K.; Srivastava, S. The effect of promoter and rbs combination on the growth and glycogen productivity of sodium-dependent bicarbonate transporter (SbtA) overexpressing Synechococcus sp. PCC 7002 cells. Front. Microbiol. 2021, 12, 607411. [Google Scholar]
- Wang, C.; Sun, B.; Zhang, X.; Huang, X.; Zhang, M.; Guo, H.; Chen, X.; Huang, F.; Chen, T.; Mi, H.; et al. Structural mechanism of the active bicarbonate transporter from cyanobacteria. Nat. Plants 2019, 5, 1184–1193. [Google Scholar]
- Lee, H.J.; Choi, J.-i.; Woo, H.M. Biocontainment of engineered Synechococcus elongatus PCC 7942 for photosynthetic production of α-farnesene from CO2. J Agric Food Chem 2021, 69, 698–703. [Google Scholar] [PubMed]
- Huang, F.; Kong, W.W.; Sun, Y.; Chen, T.; Dykes, G.F.; Jiang, Y.L.; Liu, L.N. Rubisco accumulation factor 1 (Raf1) plays essential roles in mediating Rubisco assembly and carboxysome biogenesis. Proc. Natl. Acad. Sci. USA 2020, 117, 17418–17428. [Google Scholar]
- Bolay, P.; Schlüter, S.; Grimm, S.; Riediger, M.; Hess, W.R.; Klähn, S. The transcriptional regulator RbcR controls ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) genes in the cyanobacterium Synechocystis sp. PCC 6803. New Phytol. 2022, 235, 432–445. [Google Scholar] [CrossRef]
- Lu, K.-J.; Chang, C.-W.; Wang, C.-H.; Chen, F.Y.-H.; Huang, I.Y.; Huang, P.-H.; Yang, C.-H.; Wu, H.-Y.; Wu, W.-J.; Hsu, K.-C.; et al. An ATP-sensitive phosphoketolase regulates carbon fixation in cyanobacteria. Nat. Metab. 2023, 5, 1111–1126. [Google Scholar]
- Fan, W.; Liu, Y.; Xu, X.; Dong, X.; Wang, H. Effects of HCO3− and CO2 conversion rates on carbon assimilation strategies in marine microalgae: Implication by stable carbon isotope analysis of fatty acids. Plant Physiol. Biochem. 2024, 209, 108530. [Google Scholar] [CrossRef]
- Lin, W.R.; Lai, Y.C.; Sung, P.K.; Tan, S.I.; Chang, C.H.; Chen, C.Y.; Chang, J.S.; Ng, I.S. Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. J. Taiwan Inst. Chem. Eng. 2018, 93, 131–141. [Google Scholar]
- Song, X.; Diao, J.; Yao, J.; Cui, J.; Sun, T.; Chen, L.; Zhang, W. Engineering a central carbon metabolism pathway to increase the intracellular acetyl-CoA pool in Synechocystis sp. PCC 6803 grown under photomixotrophic conditions. ACS Synth. Biol. 2021, 10, 836–846. [Google Scholar]
- Pressley, S.R.; Gonzales, J.N.; Atsumi, S. Efficient utilization of xylose requires CO2 fixation in Synechococcus elongatus PCC 7942. Metab. Eng. 2024, 86, 115–123. [Google Scholar] [PubMed]
- Yao, S.; Cao, X.; Wang, Y.; Li, D.; Wang, W.; Chen, R.; Li, C. Enhancing overall carbon fixation and energy conversion with formate in green microalga Chlamydomonas reinhardtii. Algal Res. 2023, 72, 103108. [Google Scholar] [CrossRef]
- Yoshihara, K.; Kumazaki, S. Primary processes in plant photosynthesis: Photosystem I reaction center. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 22–32. [Google Scholar]
- Shevela, D.; Kern, J.F.; Govindjee, G.; Messinger, J. Solar energy conversion by photosystem II: Principles and structures. Photosynth. Res. 2023, 156, 279–307. [Google Scholar]
- Hitchcock, A.; Hunter, C.N.; Sobotka, R.; Komenda, J.; Dann, M.; Leister, D. Redesigning the photosynthetic light reactions to enhance photosynthesis–the PhotoRedesign consortium. Plant J. 2022, 109, 23–34. [Google Scholar] [PubMed]
- Mussgnug, J.H.; Wobbe, L.; Elles, I.; Claus, C.; Hamilton, M.; Fink, A.; Kahmann, U.; Kapazoglou, A.; Mullineaux, C.W.; Hippler, M.; et al. NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 2005, 17, 3409–3421. [Google Scholar]
- Stra, A.; Almarwaey, L.O.; Alagoz, Y.; Moreno, J.C.; Al-Babili, S. Carotenoid metabolism: New insights and synthetic approaches. Front. Plant Sci. 2023, 13, 1072061. [Google Scholar] [CrossRef]
- Nikkanen, L.; Solymosi, D.; Jokel, M.; Allahverdiyeva, Y. Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. Physiol. Plant. 2021, 173, 514–525. [Google Scholar] [CrossRef]
- Allahverdiyeva, Y.; Suorsa, M.; Tikkanen, M.; Aro, E.-M. Photoprotection of photosystems in fluctuating light intensities. J. Exp. Bot. 2015, 66, 2427–2436. [Google Scholar]
- Allen, J.F. Photosynthesis of ATP—Electrons, proton pumps, rotors, and poise. Cell 2002, 110, 273–276. [Google Scholar] [CrossRef]
- Chow, W.S.; Melis, A.; Anderson, J. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc. Natl. Acad. Sci. USA 1990, 87, 7502–7506. [Google Scholar] [CrossRef]
- Fujimori, T.; Higuchi, M.; Sato, H.; Aiba, H.; Muramatsu, M.; Hihara, Y.; Sonoike, K. The mutant of sll1961, which encodes a putative transcriptional regulator, has a defect in regulation of photosystem stoichiometry in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2005, 139, 408–416. [Google Scholar] [CrossRef]
- Nawrocki, W.J.; Bailleul, B.; Picot, D.; Cardol, P.; Rappaport, F.; Wollman, F.A.; Joliot, P. The mechanism of cyclic electron flow. Biochim. Biophys. Acta Bioenerg. 2019, 1860, 433–438. [Google Scholar] [CrossRef]
- Alric, J.; Johnson, X. Alternative electron transport pathways in photosynthesis: A confluence of regulation. Curr. Opin. Plant Biol. 2017, 37, 78–86. [Google Scholar]
- Yamori, W.; Shikanai, T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu. Rev. Plant Biol. 2016, 67, 81–106. [Google Scholar] [CrossRef]
- Labs, M.; Rühle, T.; Leister, D. The antimycin A-sensitive pathway of cyclic electron flow: From 1963 to 2015. Photosynth. Res. 2016, 129, 231–238. [Google Scholar] [CrossRef]
- Tagawa, K.; Tsujimoto, H.Y.; Arnon, D.I. Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc. Natl. Acad. Sci. USA 1963, 49, 567–572. [Google Scholar] [CrossRef]
- Yamamoto, H.; Peng, L.; Fukao, Y.; Shikanai, T. An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 2011, 23, 1480–1493. [Google Scholar] [CrossRef]
- Schuller, J.M.; Birrell, J.A.; Tanaka, H.; Konuma, T.; Wulfhorst, H.; Cox, N.; Schuller, S.K.; Thiemann, J.; Lubitz, W.; Sétif, P.; et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 2019, 363, 257–260. [Google Scholar]
- Munekage, Y.; Hojo, M.; Meurer, J.; Endo, T.; Tasaka, M.; Shikanai, T. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in arabidopsis. Cell 2002, 110, 361–371. [Google Scholar] [CrossRef]
- DalCorso, G.; Pesaresi, P.; Masiero, S.; Aseeva, E.; Schünemann, D.; Finazzi, G.; Joliot, P.; Barbato, R.; Leister, D. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in arabidopsis. Cell 2008, 132, 273–285. [Google Scholar] [CrossRef]
- Dann, M.; Leister, D. Evidence that cyanobacterial Sll1217 functions analogously to PGRL1 in enhancing PGR5-dependent cyclic electron flow. Nat. Commun. 2019, 10, 5299. [Google Scholar]
- Jans, F.; Mignolet, E.; Houyoux, P.-A.; Cardol, P.; Ghysels, B.; Cuiné, S.; Cournac, L.; Peltier, G.; Remacle, C.; Franck, F. A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc. Natl. Acad. Sci. USA 2008, 105, 20546–20551. [Google Scholar]
- Alric, J. Cyclic electron flow around photosystem I in unicellular green algae. Photosynth. Res. 2010, 106, 47–56. [Google Scholar]
- Champigny, M.L. Regulation of photosynthetic carbon assimilation at the cellular level: A review. Photosynth. Res. 1985, 6, 273–286. [Google Scholar]
- Singh, S.K.; Sundaram, S.; Sinha, S.; Rahman, M.A.; Kapur, S. Recent advances in CO2 uptake and fixation mechanism of cyanobacteria and microalgae. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1297–1323. [Google Scholar]
- Tomar, V.; Sidhu, G.K.; Nogia, P.; Mehrotra, R.; Mehrotra, S. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. Plant Cell Rep. 2017, 36, 1671–1688. [Google Scholar]
- Carmo-Silva, E.; Scales, J.C.; Madgwick, P.J.; Parry, M.A. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ. 2015, 38, 1817–1832. [Google Scholar]
- Hanson, M.R.; Lin, M.T.; Carmo-Silva, A.E.; Parry, M.A. Towards engineering carboxysomes into C3 plants. Plant J. 2016, 87, 38–50. [Google Scholar] [CrossRef]
- Bracher, A.; Whitney, S.M.; Hartl, F.U.; Hayer-Hartl, M. Biogenesis and metabolic maintenance of Rubisco. Annu. Rev. Plant Biol. 2017, 68, 29–60. [Google Scholar] [CrossRef]
- Mondal, M.; Khanra, S.; Tiwari, O.; Gayen, K.; Halder, G. Role of carbonic anhydrase on the way to biological carbon capture through microalgae—A mini review. Environ. Prog. Sustain. Energy 2016, 35, 1605–1615. [Google Scholar] [CrossRef]
- Matson, M.M.; Atsumi, S. Photomixotrophic chemical production in cyanobacteria. Curr. Opin. Biotechnol. 2018, 50, 65–71. [Google Scholar] [CrossRef]
- Luan, G.; Zhang, S.; Wang, M.; Lu, X. Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnol. Adv. 2019, 37, 771–786. [Google Scholar] [CrossRef]
- Lee, T.C.; Xiong, W.; Paddock, T.; Carrieri, D.; Chang, F.; Chiu, H.F.; Ungerer, J.; Juo, S.H.H.; Maness, P.C.; Yu, J. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng. 2015, 30, 179–189. [Google Scholar] [CrossRef]
- McEwen, J.T.; Kanno, M.; Atsumi, S. 2, 3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption. Metab. Eng. 2016, 36, 28–36. [Google Scholar] [CrossRef]
- Moon, M.; Kim, C.W.; Park, W.K.; Yoo, G.; Choi, Y.E.; Yang, J.W. Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res. 2013, 2, 352–357. [Google Scholar] [CrossRef]
- Bellido-Pedraza, C.M.; Torres, M.J.; Llamas, A. The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 2024, 13, 1137. [Google Scholar] [CrossRef]
- Kirst, H.; Garcia-Cerdan, J.G.; Zurbriggen, A.; Ruehle, T.; Melis, A. Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. Plant Physiol. 2012, 160, 2251–2260. [Google Scholar] [CrossRef]
- Nickelsen, J.; Rengstl, B. Photosystem II assembly: From cyanobacteria to plants. Annu. Rev. Plant Biol. 2013, 64, 609–635. [Google Scholar] [PubMed]
- Krauspe, V.; Fahrner, M.; Spät, P.; Steglich, C.; Frankenberg-Dinkel, N.; Maček, B.; Schilling, O.; Hess, W.R. Discovery of a small protein factor involved in the coordinated degradation of phycobilisomes in cyanobacteria. Proc. Natl. Acad. Sci. USA 2021, 118, e2012277118. [Google Scholar]
- Wu, G.; Yan, Q.; Jones, J.A.; Tang, Y.J.; Fong, S.S.; Koffas, M.A.G. Metabolic burden: Cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016, 34, 652–664. [Google Scholar]
- Li, Y.; Han, D.; Hu, G.; Sommerfeld, M.; Hu, Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2010, 107, 258–268. [Google Scholar] [PubMed]
- Ruffing, A.M.; Jones, H.D.T. Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol. Bioeng. 2012, 109, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Benner, P.; Meier, L.; Pfeffer, A.; Krüger, K.; Oropeza Vargas, J.E.; Weuster-Botz, D. Lab-scale photobioreactor systems: Principles, applications, and scalability. Bioprocess Biosyst. Eng. 2022, 45, 791–813. [Google Scholar]
- Hincapie, E.; Stuart, B.J. Design, construction, and validation of an internally lit air-lift photobioreactor for growing algae. Front. Energy Res. 2015, 2, 65. [Google Scholar]
- Li, S.; Sun, T.; Chen, L.; Zhang, W. Light and carbon dioxide-driven synthesis of high-density fuel in Synechococcus elongates UTEX 2973. Sheng Wu Gong Cheng Xue Bao = Chin. J. Biotechnol. 2020, 36, 2126–2138. [Google Scholar]
- Wang, Z.; Peng, X.; Xia, A.; Shah, A.A.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q. The role of machine learning to boost the bioenergy and biofuels conversion. Bioresour. Technol. 2022, 343, 126099. [Google Scholar]
- Kugler, A.; Stensjö, K. Machine learning predicts system-wide metabolic flux control in cyanobacteria. Metab. Eng. 2024, 82, 171–182. [Google Scholar]
- Long, B.; Fischer, B.; Zeng, Y.; Amerigian, Z.; Li, Q.; Bryant, H.; Li, M.; Dai, S.Y.; Yuan, J.S. Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nat. Commun. 2022, 13, 541. [Google Scholar] [CrossRef] [PubMed]
- Coşgun, A.; Günay, M.E.; Yıldırım, R. Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning. Renew. Energy 2021, 163, 1299–1317. [Google Scholar] [CrossRef]
- Nishiguchi, H.; Hiasa, N.; Uebayashi, K.; Liao, J.; Shimizu, H.; Matsuda, F. Transomics data-driven, ensemble kinetic modeling for system-level understanding and engineering of the cyanobacteria central metabolism. Metab. Eng. 2019, 52, 273–283. [Google Scholar] [CrossRef]
- Cao, X.; Khitun, A.; Harold, C.M.; Bryant, C.J.; Zheng, S.-J.; Baserga, S.J.; Slavoff, S.A. Nascent alt-protein chemoproteomics reveals a pre-60S assembly checkpoint inhibitor. Nat. Chem. Biol. 2022, 18, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.J.; Shin, M.S.; Oh, Y.J.; Oh, H.S.; Ryu, K.H. Identification of protein functions using a machine-learning approach based on sequence-derived properties. Proteome Sci. 2009, 7, 1–19. [Google Scholar] [CrossRef]
- Matuszyńska, A.; Ebenhöh, O.; Zurbriggen, M.D.; Ducat, D.C.; Axmann, I.M. A new era of synthetic biology—Microbial community design. Synth. Biol. 2024, 9, ysae011. [Google Scholar]
- Xu, Z.; Theodoropoulos, C.; Pittman, J.K. Optimization of a Chlorella–Saccharomyces co–culture system for enhanced metabolite productivity. Algal Res. 2024, 79, 103455. [Google Scholar] [CrossRef]
- Hays, S.G.; Yan, L.L.; Silver, P.A.; Ducat, D.C. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J. Biol. Eng. 2017, 11, 1–14. [Google Scholar] [CrossRef]
- Kruyer, N.S.; Realff, M.J.; Sun, W.; Genzale, C.L.; Peralta-Yahya, P. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nat. Commun. 2021, 12, 6166. [Google Scholar] [CrossRef]
- Ramalho, T.P.; Chopin, G.; Salman, L.; Baumgartner, V.; Heinicke, C.; Verseux, C. On the growth dynamics of the cyanobacterium Anabaena sp. PCC 7938 in Martian regolith. Npj Microgravity 2022, 8, 43. [Google Scholar]
- Penloglou, G.; Pavlou, A.; Kiparissides, C. Recent advancements in photo-bioreactors for microalgae cultivation: A brief overview. Processes 2024, 12, 1104. [Google Scholar] [CrossRef]
- Tummawai, T.; Rohitatisha Srinophakun, T.; Padungthon, S.; Sukpancharoen, S. Application of artificial intelligence and image processing for the cultivation of Chlorella sp. using tubular photobioreactors. ACS Omega 2024, 9, 46017–46029. [Google Scholar] [PubMed]
- Molazadeh, M.; Ahmadzadeh, H.; Pourianfar, H.R.; Lyon, S.; Rampelotto, P.H. The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front. Bioeng. Biotechnol. 2019, 7, 42. [Google Scholar]
Regulatory Targets | Strains | Strategies and Tools for Regulating Photosynthesis | Influence on Photosynthesis | Impact | Ref. |
---|---|---|---|---|---|
Protein engineering for light absorption optimizaiton | Nannochloropsis oceanica | Knocking out the high light resistance 1 (HLR1) gene using CRISPR-Cas9 and RNAi methods | A reduction in the PSI antenna size and a decrease in ROS production, resulting in improved tolerance to high-light conditions | Enhance high-light tolerance | [30] |
Phaeodactylum tricornutum | Knocking out the PhoD-type alkaline phosphatase (AP) gene using CRISPR | In the mutant mPhoD44 cells under P-enrichment, the Chl-a and Chl-c contents increased by 37% and 49%, respectively, compared to the WT | Elevation of photosynthetic pigment levels | [31] | |
Phaeodactylum tricornutum CCAP 1055/1 | Generating a functional knockout mutant of AP (PhoA) using CRISPR/Cas9 | An increase in pigment, carbon, and lipid contents, alongside enhanced photosynthetic and growth rates, as well as elevated transcription levels of the associated metabolic pathways | Elevation of photosynthetic pigment levels | [32] | |
Transcriptional and post-transcriptional regulation of light-harvesting efficiency | Chlamydomona reinhardtii | Expressing a CAO gene extended by 50 mRNA bases that encode a binding site to inhibite the Nab1 translationa in Chlamydomonas reinhardtii CAO (chlorophyllide a oxygenase) gene knockout cell line | The photosynthetic rate significantly increased, with biomass productivity doubling that of the WT | Enhancement of photosynthetic rate | [33] |
Phaeodactylum tricornutum | Disrupting the function of the LRM transcription factor using antisense RNA interference | Unable to respond to changes in light intensity | Impairment of photoprotective capacity | [34] | |
Metabolic and hormonal control of photosynthetic pigments | Nannochloropsis haitanensis | Exogenous application of abscisic acid followed by analysis using transcriptomic techniques | Downregulation of the light-harvesting protein gene (LHCA1) leads to a reduced light-harvesting capacity | Reduction in light absorption | [35] |
Regulation of electron transport carriers | Synechocystis sp. PCC 6803 | Overexpressing 4-hydroxybenzoate geranyltransferase (lepgt) | The electron transfer efficiency increased by up to 111% times compared to the WT | Enhancement of photosynthetic electron transport efficiency | [36] |
Photosystem stoichiometry | Synechocystis sp. PCC 6803 | Introducing random nucleotides into psbA2 promoter by mutagenesis | Reducing PSI to enhance its yield under high-light conditions | Enhance high-light tolerance | [37] |
Synechococcus sp. UTEX 2973 | Inhibiting BtpA gene via dCas12a (dCpf1) CRISPRi | Reducing PSI levels and intracellular Chl-a content | Reduction in light absorption | [38] | |
Chlorella vulgaris | Ultraviolet (UV) mutagenesis | Increasing the PSII/PSI ratio by 2 to 7 times | Enhancement of photosynthetic efficiency under low-light conditions | [39] | |
Cyclic electron flow | Chlamydomonas reinhardtii | Generating pgr5 mutant by DNA insertional mutagenesis | Modifying the adaptability of mutants to fluctuating light conditions | Impairment of adaptation to fluctuating light conditions | [40] |
Synechocystis sp. PCC 6803 | Overexpressing pgr5 gene using pTKP2031v vector | Increasing chlorophyll accumulation, active PSI units, and the maximum P700 oxidation level | Elevation of photosynthetic pigment levels | [41] | |
Synechococcus sp. PCC 7002 | Knocked out the pgr5 gene | Enhancing chlorophyll accumulation, active PSI units, the maximum P700 oxidation level (ΔAmax), the intracellular [NADPH]/[NADP+] ratio, and increasing d-lactate accumulation in the mutant strain by up to 700% | Elevation of photosynthetic pigment levels | [42] | |
Chlamydomonas reinhardtii | Overexpressing NDA2 gene | Increasing the CEF activity and hydrogen production | Enhancement of CEF activity | [43] | |
Improving Ci (HCO3−/CO2) uptake systems and transport | Synechococcus sp. PCC 7002 | Overexpressing Sbta through optimizing RBS sequences and promoters | Increasing the biomass by 90% compared to the WT | Enhancement of biomass accumulation | [44] |
Synechocystis sp. PCC 6803 | Engineering the transporters for CO2 and HCO3− | Modulating the assimilation of HCO3− to enhance cell growth | Enhancement of biomass accumulation | [45] | |
Synechococcus elongatus PCC 7942 | Overexpressing CA and BicA in an α-farnesene-producing strain lacking CCM | Enhancing α-farnesene production and improving adaptability to high CO2 conditions | Enhancement of elevated CO2 tolerance | [46] | |
Optimizing carbon fixation through RuBisCO and carbonic anhydrase engineering | Synechococcus elongatus PCC 7942 | Knocking out Rubisco accumulation factor 1, Raf1 | Reducing CO2 fixation rate and biomass accumulation | Reduction in biomass accumulation | [47] |
Synechocystis sp. PCC 6803 | Partial knocking out rbcR gene | Downregulating gene expression of RuBisCO and its chaperone proteins rbcLXS, as well as the ccmK2K1LMN operon, which encodes carboxysome components | Reduction in carbon fixation capacity | [48] | |
Synechococcus elongatus PCC 7942 | Knocking out phosphoketolase (Sexpk) | Enhancing the CO2 fixation rate | Enhancement of carbon fixation capacity | [49] | |
Phaeodactylum tricornutum, Nannochloropsis oceanica | Exogenous addition of the exCA-specific inhibitor acetazolamide | Inhibits the net photosynthetic rate, chlorophyll a content, and growth rate | Reduction in growth rate | [50] | |
Chlorella sorokiniana, Chlorella vulgaris | Introducing MICA from Mesorhizobium loti | Increasing the lipid content by up to 220% compared to WT | Enhancement of lipid content | [51] | |
Exploring photomixotrophic cultivation for greater carbon utilizaiton | Synechocystis sp. PCC 6803 | Introducing synthetic NOG pathway and knocking the native ED pathways | Increasing the intracellular pool of acetyl-CoA by approximately 280% | Enhancement of acetyl-CoA content | [52] |
Synechococcus elongatus PCC 7942 | Overexpressing ribulose-5-phosphate-3-epimerase (Rpe) and phosphoribulokinase (Prk), as well as knocking out cp12 | Increasing 2,3-butanediol production by 53% | Enhancement of biomass accumulation and 2,3-butanediol production | [53] | |
Chlamydomonas reinhardtii | Laboratory evolution | Increasing tolerance to formate, biomass production, and photosynthetic oxygen evolution | Enhancement of biomass accumulation | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, S.; Ma, K.; Song, X.; Sun, T.; Chen, L.; Zhang, W. Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes. Int. J. Mol. Sci. 2025, 26, 3116. https://doi.org/10.3390/ijms26073116
Fu S, Ma K, Song X, Sun T, Chen L, Zhang W. Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes. International Journal of Molecular Sciences. 2025; 26(7):3116. https://doi.org/10.3390/ijms26073116
Chicago/Turabian StyleFu, Shujin, Kaiyu Ma, Xinyu Song, Tao Sun, Lei Chen, and Weiwen Zhang. 2025. "Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes" International Journal of Molecular Sciences 26, no. 7: 3116. https://doi.org/10.3390/ijms26073116
APA StyleFu, S., Ma, K., Song, X., Sun, T., Chen, L., & Zhang, W. (2025). Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes. International Journal of Molecular Sciences, 26(7), 3116. https://doi.org/10.3390/ijms26073116