Archaeal Lipids: Extraction, Separation, and Identification via Natural Product Chemistry Perspective
Abstract
:1. Introduction
2. Extraction Methodologies and Applications of Archaeal Lipids
2.1. Sample Pretreatment
2.1.1. Processing of Pure Culture Cells
2.1.2. Processing of Environmental Samples
2.2. Liquid–Liquid Extraction
2.3. Soxhlet Extraction
2.4. Accelerated Solvent Extraction
2.5. Saponification Extraction
2.6. Ultrasound-Assisted Extraction
2.7. Solid-Phase Extraction
3. Separation and Purification Strategies for Archaeal Lipids
3.1. Column Chromatography
3.2. High-Performance Liquid Chromatography
3.3. Thin-Layer Chromatography
3.4. Solid-Phase Extraction/Separation
4. Structural Elucidation of Archaeal Lipids
4.1. Mass Spectrometry
4.2. Nuclear Magnetic Resonance
4.3. Spray Reagents
4.4. Other Techniques
5. Conclusions and Perspectives
- (1)
- Standardization deficits: the paucity of commercially available archaeal lipid reference standards critically undermines the reliability of quantitative analyses and chemotaxonomic applications, necessitating the urgent development of authenticated compound libraries.
- (2)
- Methodological limitations: while the B&D method is widely adopted, studies on pure archaeal cultures reveal that pretreatments, such as high-pressure homogenization, ultrasonic disruption, or freeze–thaw cycles, significantly enhance lipid yields, underscoring the need for the systematic optimization of extraction protocols.
- (3)
- Taxonomic and evolutionary ambiguities: the ongoing discovery of novel ether-linked lipids continues to expand our understanding of archaeal membrane diversity, simultaneously raising unresolved questions. These encompass not only evolutionary drivers for the unique structural divergence of archaeal lipids from bacterial/eukaryotic counterparts but also uncertainties regarding lipid-based taxonomic classifications. For instance, the proposed chemotaxonomic frameworks for halophilic archaea remain contentious due to interspecies variability in membrane lipid composition—a discrepancy yet to be resolved through comprehensive comparative studies.
- (4)
- Analytical Complexity: compared to other natural product classes, archaeal lipid chemistry remains underexplored, a disparity exemplified by the structural revision of crenarchaeol. Initially characterized in 2002, its cyclohexane ring configuration required nearly two decades for correction via advanced NMR methodologies, reflecting both the technical intricacy of lipid analysis and an insufficient investigative focus.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APCI | Atmospheric Pressure Chemical Ionization |
APPI | Atmospheric Pressure Photoionization |
ASE | Accelerated Solvent Extraction |
B&D | Bligh–Dyer |
CC | Column Chromatography |
CCSs | Collision Cross-Sections |
CID | Collision-induced Dissociation |
CL GDGTs | Core lipids Glycerol Dialkyl Glycerol Tetraethers |
COSY | Correlated Spectroscopy |
CTAB | Cetyltrimethylammonium Bromide |
DCM | Dichloromethane |
DFT | Density Functional Theory |
DGGGOH | sn-2,3-di-O-Geranylgeranylglyceryl Alcohol |
DMSO | Dimethyl Sulfoxide |
DGDs | Diglycosyl Diethers |
ESI | Electrospray Ionization |
FID | Flame Ionization Detector |
FTICR | Fourier Transform Ion Cyclotron Resonance |
FT-IR | Fourier Transform Infrared Spectroscopy |
G1P | Glycerol-1-Phosphate |
G3P | Glycerol-3-Phosphate |
GC | Gas Chromatography |
GDGTs | Glycerol Dialkyl Glycerol Tetraethers |
GDNT | Glycerol Dialkyl Nonitol Tetraether |
GFF | Glass Fiber Filters |
HPH | Hexose-phosphohexose headgroups |
HCD | High Energy Collision Dissociation |
HILIC | Hydrophilic Interaction Liquid Chromatography |
HMBC | Heteronuclear Multiple Bond Correlation |
HMQC | Heteronuclear Multiple Quantum Correlation |
HPLC | High-Performance Liquid Chromatography |
HPTLC | High-Performance Thin-Layer Chromatography |
HTGC | High-Temperature Gas Chromatography |
I-GDGTs | Isoprenoid Glycerol Dialkyl Glycerol Tetraethers |
IPLs | Intact Polar Lipids |
IR | Infrared Spectroscopy |
LC | Liquid Chromatography |
LLE | Liquid–Liquid Extraction |
LVI | Large-Volume Injection |
MALDI-MS | Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry |
MeOH | Methanol |
MRM | Multiple Reaction Monitoring |
MS | Mass Spectrometry |
MTBE | Methyl Tertiary-Butyl Ether |
NMR | Nuclear Magnetic Resonance |
NOE | Nuclear Overhauser Effect |
NOESY | Nuclear Overhauser Effect Spectroscopy |
NP | Normal-phase |
NS | Non-Significant |
OR | Optical Rotation |
PLFE | Polar lipid fraction E |
PGs | Phosphatidylglycerols |
PGP-Me | Phosphatidylglycerol Phosphate Methyl Ester |
ROESY | Rotating Frame Overhauser Effect Spectroscopy |
RP | Reverse-phase |
RSD | Relative Standard Deviation |
SAXS | Small-Angle X-ray Scattering |
SIM | Selected Ion Monitoring |
SPE | Solid-Phase Extraction |
2D TLC | Two-Dimensional Thin-Layer Chromatography |
TCA | Trichloroacetic Acid |
TEX86 | TetraEther IndeX of 86 Carbons |
TLC | Thin-Layer Chromatography |
TOCSY | Total Correlation Spectroscopy |
TOF | Time-of-Flight |
TGDs | Triglycosyl Diethers |
UAE | Ultrasonic-Assisted Extraction |
UK | Unsaturated Ketone Index |
UV | Ultraviolet |
References
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Koga, Y.; Morii, H. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol. Mol. Biol. Rev. 2007, 71, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Koga, Y. Early evolution of membrane lipids: How did the lipid divide occur? J. Mol. Evol. 2011, 72, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Rezanka, T.; Kyselova, L.; Murphy, D.J. Archaeal lipids. Prog. Lipid. Res. 2023, 91, 101237. [Google Scholar] [CrossRef]
- Sojo, V. Why the Lipid Divide? Membrane Proteins as Drivers of the Split between the Lipids of the Three Domains of Life. Bioessays 2019, 41, e1800251. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, X.L.; Wei, J.H.; Summons, R.E.; Welander, P.V. Calditol-linked membrane lipids are required for acid tolerance in Sulfolobus acidocaldarius. Proc. Natl. Acad. Sci. USA 2018, 115, 12932–12937. [Google Scholar] [CrossRef]
- Jacquemet, A.; Barbeau, J.; Lemiegre, L.; Benvegnu, T. Archaeal tetraether bipolar lipids: Structures, functions and applications. Biochimie 2009, 91, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Liman, G.L.S.; Garcia, A.A.; Fluke, K.A.; Anderson, H.R.; Davidson, S.C.; Welander, P.V.; Santangelo, T.J. Tetraether archaeal lipids promote long-term survival in extreme conditions. Mol. Microbiol. 2024, 121, 882–894. [Google Scholar] [CrossRef]
- Huguet, C.; Schimmelmann, A.; Thunell, R.; Lourens, L.J.; Damsté, J.S.S.; Schouten, S. A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California. Paleoceanography 2007, 22, PA3203. [Google Scholar] [CrossRef]
- Kim, J.-H.; Schouten, S.; Hopmans, E.C.; Donner, B.; Damsté, J.S.S. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim. Cosmochim. Acta 2008, 72, 1154–1173. [Google Scholar] [CrossRef]
- Zhang, Z.; Smittenberg, R.H.; Bradley, R.S. GDGT distribution in a stratified lake and implications for the application of TEX(86) in paleoenvironmental reconstructions. Sci. Rep. 2016, 6, 34465. [Google Scholar] [CrossRef]
- Damsté, J.S.S.; Weber, Y.; Zopfi, J.; Lehmann, M.F.; Niemann, H. Distributions and sources of isoprenoidal GDGTs in Lake Lugano and other central European (peri-)alpine lakes: Lessons for their use as paleotemperature proxies. Quat. Sci. Rev. 2022, 277, 107352. [Google Scholar] [CrossRef]
- KOGA, Y.; MORII, H.; AKAGAWA-MATSUSHITA, M.; OHGA, M. Correlation of Polar Lipid Composition with 16S rRNA Phylogeny in Methanogens. Further Analysis of Lipid Component Parts. Biosci. Biotechnol. Biochem. 1998, 62, 230–236. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, W.; He, W.; Xiao, W.; Chen, Y.; Zhu, Y.; Zheng, F.; Zhang, C. Lipidomic chemotaxonomy aligned with phylogeny of Halobacteria. Front. Microbiol. 2023, 14, 1297600. [Google Scholar] [CrossRef] [PubMed]
- Elling, F.J.; Konneke, M.; Nicol, G.W.; Stieglmeier, M.; Bayer, B.; Spieck, E.; de la Torre, J.R.; Becker, K.W.; Thomm, M.; Prosser, J.I.; et al. Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ. Microbiol. 2017, 19, 2681–2700. [Google Scholar] [CrossRef] [PubMed]
- KOGA, Y.; MORII, H. Recent Advances in Structural Research on Ether Lipids from Archaea Including Comparative and Physiological Aspects. Biosci. Biotechnol. Biochem. 2005, 69, 2019–2034. [Google Scholar] [CrossRef]
- Schouten, S.; Hopmans, E.C.; Damsté, J.S.S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Org. Geochem. 2013, 54, 19–61. [Google Scholar] [CrossRef]
- Caforio, A.; Driessen, A.J.M. Archaeal phospholipids: Structural properties and biosynthesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1325–1339. [Google Scholar] [CrossRef]
- Bauersachs, T.; Weidenbach, K.; Schmitz, R.A.; Schwark, L. Distribution of glycerol ether lipids in halophilic, methanogenic and hyperthermophilic archaea. Org. Geochem. 2015, 83–84, 101–108. [Google Scholar] [CrossRef]
- Willers, C.; van Rensburg, P.J.J.; Claassens, S. Microbial signature lipid biomarker analysis—an approach that is still preferred, even amid various method modifications. J. Appl. Microbiol. 2015, 118, 1251–1263. [Google Scholar] [CrossRef]
- Edwards, B.R. Lipid Biogeochemistry and Modern Lipidomic Techniques. Ann. Rev. Mar. Sci. 2023, 15, 485–508. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R. Archaea—Timeline of the third domain. Nat. Rev. Microbiol. 2011, 9, 51–61. [Google Scholar] [CrossRef]
- Sehgal, S.N.; Kates, M.; Gibbons, N.E. Lipids of Halobacterium cutirubrum. Can. J. Biochem. Physiol. 1962, 40, 69–81. [Google Scholar] [CrossRef]
- De Rosa, M.; Gambacorta, A. The lipids of archaebacteria. Prog. Lipid Res. 1988, 27, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Wilson, Z.E.; Brimble, M.A. Molecules derived from the extremes of life. Nat. Prod. Rep. 2009, 26, 44–71. [Google Scholar] [CrossRef] [PubMed]
- Wilson, Z.E.; Brimble, M.A. Molecules derived from the extremes of life: A decade later. Nat. Prod. Rep. 2021, 38, 24–82. [Google Scholar] [CrossRef]
- Pfeifer, K.; Ergal, I.; Koller, M.; Basen, M.; Schuster, B.; Rittmann, S.K.R. Archaea Biotechnology. Biotechnol. Adv. 2021, 47, 107668. [Google Scholar] [CrossRef]
- Aparici-Carratala, D.; Esclapez, J.; Bautista, V.; Bonete, M.J.; Camacho, M. Archaea: Current and potential biotechnological applications. Res. Microbiol. 2023, 174, 104080. [Google Scholar] [CrossRef]
- Gerhardtova, I.; Jankech, T.; Majerova, P.; Piestansky, J.; Olesova, D.; Kovac, A.; Jampilek, J. Recent Analytical Methodologies in Lipid Analysis. Int. J. Mol. Sci. 2024, 25, 2249. [Google Scholar] [CrossRef]
- Zullig, T.; Trotzmuller, M.; Kofeler, H.C. Lipidomics from sample preparation to data analysis: A primer. Anal. Bioanal. Chem. 2020, 412, 2191–2209. [Google Scholar] [CrossRef]
- Donato, P.; Dugo, P.; Mondello, L. Separation of lipids. In Liquid Chromatography; Elsevier: Amsterdam, The Netherlands, 2017; pp. 201–243. [Google Scholar] [CrossRef]
- Hewelt-Belka, W.; Kot-Wasik, A. Analytical Strategies and Applications in Lipidomics. In Handbook of Bioanalytics; Springer Cham: Cham, Switzerland, 2022; pp. 1–26. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.S. Advances in Lipid Extraction Methods-A Review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef]
- Evans, T.W.; Elling, F.J.; Li, Y.; Pearson, A.; Summons, R.E. A new and improved protocol for extraction of intact polar membrane lipids from archaea. Org. Geochem. 2022, 165, 104353. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Cui, Y.; Yuan, W. Ultrasound for microalgal cell disruption and product extraction: A review. Ultrason. Sonochem. 2022, 87, 106054. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, Y.; Sugai, A.; Higashibata, H.; Fukuda, W.; Ueda, K.; Uda, I.; Sato, I.; Itoh, T.; Imanaka, T.; Fujiwara, S. Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Biosci. Biotechnol. Biochem. 2009, 73, 104–108. [Google Scholar] [CrossRef]
- Feyhl-Buska, J.; Chen, Y.; Jia, C.; Wang, J.X.; Zhang, C.L.; Boyd, E.S. Influence of Growth Phase, pH, and Temperature on the Abundance and Composition of Tetraether Lipids in the Thermoacidophile Picrophilus torridus. Front. Microbiol. 2016, 7, 1323. [Google Scholar] [CrossRef]
- Ingalls, A.E.; Huguet, C.; Truxal, L.T. Distribution of intact and core membrane lipids of archaeal glycerol dialkyl glycerol tetraethers among size-fractionated particulate organic matter in hood canal, puget sound. Appl. Environ. Microbiol. 2012, 78, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Schubotz, F.; Wakeham, S.G.; Lipp, J.S.; Fredricks, H.F.; Hinrichs, K.U. Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environ. Microbiol. 2009, 11, 2720–2734. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Amann, R.; Freeman, K.H.; Hopmans, E.C.; Jørgensen, B.B.; Putnam, I.F.; Schouten, S.; Damsté, J.S.S.; Talbot, H.M.; Woebken, D. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org. Geochem. 2007, 38, 2070–2097. [Google Scholar] [CrossRef]
- Sostare, J.; Di Guida, R.; Kirwan, J.; Chalal, K.; Palmer, E.; Dunn, W.B.; Viant, M.R. Comparison of modified Matyash method to conventional solvent systems for polar metabolite and lipid extractions. Anal. Chim. Acta. 2018, 1037, 301–315. [Google Scholar] [CrossRef]
- Huguet, C.; Martens-Habbena, W.; Urakawa, H.; Stahl, D.A.; Ingalls, A.E. Comparison of extraction methods for quantitative analysis of core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples. Limnol. Oceanogr. Methods 2010, 8, 127–145. [Google Scholar] [CrossRef]
- Sturt, H.F.; Summons, R.E.; Smith, K.; Elvert, M.; Hinrichs, K.U. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry--new biomarkers for biogeochemistry and microbial ecology. Rapid Commun. Mass Spectrom. 2004, 18, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, H. Mechanism of osmoprotection by archaeal S-layers: A theoretical study. J. Struct. Biol. 2007, 160, 190–199. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Smedes, F.; Thomasen, T.K. Evaluation of the Bligh & Dyer lipid determination method. Mar. Pollut. Bull. 1996, 32, 681–688. [Google Scholar] [CrossRef]
- Smedes, F.; Askland, T.K. Revisiting the Development of the Bligh and Dyer Total Lipid Determination Method. Mar. Pollut. Bull. 1999, 38, 193–201. [Google Scholar] [CrossRef]
- Jensen, S.K. Improved Bligh and Dyer extraction procedure. Lipid Technol. 2008, 20, 280–281. [Google Scholar] [CrossRef]
- Cui, H.-L.; Gao, X.; Yang, X.; Xu, X.-W. Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 2010, 14, 493–499. [Google Scholar] [CrossRef]
- Nishihara, M.; Koga, Y. Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: Effective extraction of tetraether lipids by an acidified solvent. J. Biochem. 1987, 101, 997–1005. [Google Scholar] [CrossRef]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef]
- Cescut, J.; Severac, E.; Molina-Jouve, C.; Uribelarrea, J.L. Optimizing pressurized liquid extraction of microbial lipids using the response surface method. J. Chromatogr. A 2011, 1218, 373–379. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, J.; Spiro, B.; Peng, P.A.; Tang, J. Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China: Indicators of sea surface temperature and effects of their sources. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 395, 114–121. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Lewis, C.M.; Hopmans, E.C.; Schouten, S.; Damsté, J.S.S. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochim. Cosmochim. Acta 2003, 67, 1359–1374. [Google Scholar] [CrossRef]
- Lengger, S.K.; Hopmans, E.C.; Damsté, J.S.S.; Schouten, S. Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environments. Org. Geochem. 2012, 47, 34–40. [Google Scholar] [CrossRef]
- Manirakiza, P.; Covaci, A.; Schepens, P. Comparative Study on Total Lipid Determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and Modified Bligh & Dyer Extraction Methods. J. Food Compos. Anal. 2001, 14, 93–100. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, M.; Saraiva, J.A.; Martins, A.P.; Pinto, C.A.; Prieto, M.A.; Simal-Gandara, J.; Cao, H.; Xiao, J.; Barba, F.J. Extraction of lipids from microalgae using classical and innovative approaches. Food Chem. 2022, 384, 132236. [Google Scholar] [CrossRef] [PubMed]
- Ramluckan, K.; Moodley, K.G.; Bux, F. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 2014, 116, 103–108. [Google Scholar] [CrossRef]
- Aravind, S.; Barik, D.; Ragupathi, P.; Vignesh, G. Investigation on algae oil extraction from algae Spirogyra by Soxhlet extraction method. Mater. Today Proc. 2021, 43, 308–313. [Google Scholar] [CrossRef]
- Mottaleb, M.A.; Sarker, S.D. Accelerated Solvent Extraction for Natural Products Isolation. In Natural Products Isolation; Sarker, S.D., Nahar, L., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 75–87. [Google Scholar] [CrossRef]
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Pohl, C.J.A.C. Accelerated solvent extraction: A technique for sample preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar]
- Tang, Y.; Zhang, Y.; Rosenberg, J.N.; Sharif, N.; Betenbaugh, M.J.; Wang, F. Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Adv. 2016, 6, 29127–29134. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Song, L.; Sommerfeld, M.; Hu, Q. Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Res. 2020, 51, 102080. [Google Scholar] [CrossRef]
- Jeannotte, R.; Hamel, C.; Jabaji, S.; Whalen, J.K. Comparison of solvent mixtures for pressurized solvent extraction of soil fatty acid biomarkers. Talanta 2008, 77, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Quénéa, K.; Mathieu, J.; Derenne, S. Soil lipids from accelerated solvent extraction: Influence of temperature and solvent on extract composition. Org. Geochem. 2012, 44, 45–52. [Google Scholar] [CrossRef]
- Auderset, A.; Schmitt, M.; Martínez-García, A. Simultaneous extraction and chromatographic separation of n-alkanes and alkenones from glycerol dialkyl glycerol tetraethers via selective Accelerated Solvent Extraction. Org. Geochem. 2020, 143, 103979. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; He, X.; Pang, J.; Yang, J.; Cui, Z.; Xin, M.; Cao, W.; Wang, B.; Wang, Z. Improved protocols for large-volume injection and liquid chromatography–mass spectrometry analyses enable determination of various glycerol dialkyl glycerol tetraethers in a small amount of sediment and suspended particulate matter. Chem. Geol. 2022, 595, 120793. [Google Scholar] [CrossRef]
- Traversier, M.; Gaslondes, T.; Milesi, S.; Michel, S.; Delannay, E. Polar lipids in cosmetics: Recent trends in extraction, separation, analysis and main applications. Phytochem. Rev. 2018, 17, 1179–1210. [Google Scholar] [CrossRef]
- Chang, J.; Xia, Y.; Ma, S.; Fang, X.; Sun, M. Improvement of saponification extraction method for fatty acids separation from geological samples. Acta Geochim. 2016, 35, 148–155. [Google Scholar] [CrossRef]
- Schouten, S.; Hopmans, E.C.; Baas, M.; Boumann, H.; Standfest, S.; Konneke, M.; Stahl, D.A.; Damste, J.S.S. Intact membrane lipids of “Candidatus Nitrosopumilus maritimus,” a cultivated representative of the cosmopolitan mesophilic group I Crenarchaeota. Appl. Environ. Microbiol. 2008, 74, 2433–2440. [Google Scholar] [CrossRef]
- Thilakarathna, R.C.N.; Siow, L.F.; Tang, T.K.; Lee, Y.Y. A review on application of ultrasound and ultrasound assisted technology for seed oil extraction. J. Food Sci. Technol. 2023, 60, 1222–1236. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Rütters, H.; Sass, H.; Cypionka, H.; Rullkötter, J. Microbial communities in a Wadden Sea sediment core—Clues from analyses of intact glyceride lipids, and released fatty acids. Org. Geochem. 2002, 33, 803–816. [Google Scholar] [CrossRef]
- Meador, T.B.; Zhu, C.; Elling, F.J.; Könneke, M.; Hinrichs, K.-U. Identification of isoprenoid glycosidic glycerol dibiphytanol diethers and indications for their biosynthetic origin. Org. Geochem. 2014, 69, 70–75. [Google Scholar] [CrossRef]
- Lü, X.; Yang, H.; Song, J.; Versteegh, G.J.M.; Li, X.; Yuan, H.; Li, N.; Yang, C.; Yang, Y.; Ding, W.; et al. Sources and distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) in sediments from the east coastal sea of China: Application of GDGT-based paleothermometry to a shallow marginal sea. Org. Geochem. 2014, 75, 24–35. [Google Scholar] [CrossRef]
- Huanye, W.; Weiguo, L.; Chuanlun, Z. Comparison of the ultrasound-assisted organic solvent extraction and modified Bligh-Dyer extraction for the analysis of glycerol dialkyl glycerol tetraethers from environmental samples. J. Earth Environ. 2017, 8, 176–184. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Zhu, C.; Weijers, J.W.H.; Wagner, T.; Pan, J.-M.; Chen, J.-F.; Pancost, R.D. Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin. Org. Geochem. 2011, 42, 376–386. [Google Scholar] [CrossRef]
- Pitcher, A.; Hopmans, E.C.; Schouten, S.; Damsté, J.S.S. Separation of core and intact polar archaeal tetraether lipids using silica columns: Insights into living and fossil biomass contributions. Org. Geochem. 2009, 40, 12–19. [Google Scholar] [CrossRef]
- Avela, H.F.; Sirén, H. Advances in analytical tools and current statistical methods used in ultra-high-performance liquid chromatography-mass spectrometry of glycero-, glycerophospho- and sphingolipids. Int. J. Mass Spectrom. 2020, 457, 116408. [Google Scholar] [CrossRef]
- Palyzova, A.; Guschina, I.A.; Rezanka, T. Chiral analysis of glycerol phosphates—can bacteria biosynthesize heterochiral phospholipid membranes? J. Chromatogr. A 2022, 1676, 463267. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.; Hong, Z.; Ma, C.; Fang, X.; Zheng, F.; Teng, W.; Zhang, C.; Si, T. Biosynthesis of Hybrid Neutral Lipids with Archaeal and Eukaryotic Characteristics in Engineered Saccharomyces cerevisiae. Angew. Chem. Int. Ed. Engl. 2023, 62, e202214344. [Google Scholar] [CrossRef]
- Fuchs, B.; Suss, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid analysis by thin-layer chromatography--a review of the current state. J. Chromatogr. A 2011, 1218, 2754–2774. [Google Scholar] [CrossRef]
- Tietel, Z. Two-Dimensional Thin-Layer Chromatography as an Accessible, Low-Cost Tool for Lipid-Class Profile Screening. Separations 2024, 11, 161. [Google Scholar] [CrossRef]
- Fuchs, B.; Popkova, Y.; Süß, R.; Schiller, J. Separation of (Phospho)Lipids by Thin-Layer Chromatography. In Instrumental Thin-Layer Chromatography; Elsevier: Amsterdam, The Netherlands, 2015; pp. 375–405. [Google Scholar] [CrossRef]
- Komagata, K.; Suzuki, K.-I. 4 Lipid and Cell-Wall Analysis in Bacterial Systematics. In Methods in Microbiology; Colwell, R.R., Grigorova, R., Eds.; Academic Press: Cambridge, MA, USA, 1988; pp. 161–207. [Google Scholar] [CrossRef]
- Sugai, A.; Uda, I.; Itoh, Y.H.; Itoh, T. The Core Lipid Composition of the 17 Strains of Hyperthermophilic Archaea, Thermococcales. J. Oleo Sci. 2004, 53, 41–44. [Google Scholar] [CrossRef]
- Cui, H.L.; Hou, J.; Amoozegar, M.A.; Dyall-Smith, M.L.; de la Haba, R.R.; Minegishi, H.; Montalvo-Rodriguez, R.; Oren, A.; Sanchez-Porro, C.; Ventosa, A.; et al. Proposed minimal standards for description of new taxa of the class Halobacteria. Int. J. Syst. Evol. Microbiol. 2024, 74, 006290. [Google Scholar] [CrossRef]
- Fuchs, B. Analysis of phospolipids and glycolipids by thin-layer chromatography–matrix-assisted laser desorption and ionization mass spectrometry. J. Chromatogr. A 2012, 1259, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Engel, K.M.; Griesinger, H.; Schulz, M.; Schiller, J. Normal-phase versus reversed-phase thin-layer chromatography (TLC) to monitor oxidized phosphatidylcholines by TLC/mass spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Lobasso, S.; Lopalco, P.; Angelini, R.; Vitale, R.; Huber, H.; Muller, V.; Corcelli, A. Coupled TLC and MALDI-TOF/MS analyses of the lipid extract of the hyperthermophilic archaeon Pyrococcus furiosus. Archaea 2012, 2012, 957852. [Google Scholar] [CrossRef]
- Borisov, R.; Kanateva, A.; Zhilyaev, D. Recent Advances in Combinations of TLC With MALDI and Other Desorption/Ionization Mass-Spectrometry Techniques. Front. Chem. 2021, 9, 771801. [Google Scholar] [CrossRef]
- Aziz, M.N.; Brotto, L.; Yacoub, A.S.; Awad, K.; Brotto, M. Detailed Protocol for Solid-Phase Extraction for Lipidomic Analysis. Methods Mol. Biol. 2024, 2816, 151–159. [Google Scholar] [CrossRef]
- Viau, M.; Kermarrec, A.; Meynier, A. Separation of Lipid Classes by Solid Phase Extraction for Subsequent Analysis. In Multidimensional Characterization of Dietary Lipids; Humana: New York, NY, USA, 2024; pp. 19–29. [Google Scholar] [CrossRef]
- Zhu, R.; Evans, T.W.; Wörmer, L.; Lin, Y.-S.; Zhu, C.; Hinrichs, K.-U. Improved sensitivity of sedimentary phospholipid analysis resulting from a novel extract cleanup strategy. Org. Geochem. 2013, 65, 46–52. [Google Scholar] [CrossRef]
- Liu, X.-L.; Birgel, D.; Elling, F.J.; Sutton, P.A.; Lipp, J.S.; Zhu, R.; Zhang, C.; Könneke, M.; Peckmann, J.; Rowland, S.J.; et al. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers. Geochim. Cosmochim. Acta 2016, 183, 138–152. [Google Scholar] [CrossRef]
- Wang, X.; He, Z.; Li, X.; Song, Q.; Zou, X.; Song, X.; Feng, L. Comparison of pretreatment methods in lipid analysis and ultra-performance liquid chromatography-mass spectrometry analysis of archaea. Se Pu = Chin. J. Chromatogr. 2020, 38, 914–922. Available online: https://www.chrom-china.com/CN/10.3724/SP.J.1123.2019.12009 (accessed on 25 March 2025).
- Davtian, N.; Bard, E.; Ménot, G.; Fagault, Y. The importance of mass accuracy in selected ion monitoring analysis of branched and isoprenoid tetraethers. Org. Geochem. 2018, 118, 58–62. [Google Scholar] [CrossRef]
- Law, K.P.; Zhang, C.L. Current progress and future trends in mass spectrometry-based archaeal lipidomics. Org. Geochem. 2019, 134, 45–61. [Google Scholar] [CrossRef]
- Knappy, C.S.; Keely, B.J. Novel glycerol dialkanol triols in sediments: Transformation products of glycerol dibiphytanyl glycerol tetraether lipids or biosynthetic intermediates? Chem. Commun. 2012, 48, 841–843. [Google Scholar] [CrossRef]
- Liu, X.-L.; Lipp, J.S.; Schröder, J.M.; Summons, R.E.; Hinrichs, K.-U. Isoprenoid glycerol dialkanol diethers: A series of novel archaeal lipids in marine sediments. Org. Geochem. 2012, 43, 50–55. [Google Scholar] [CrossRef]
- Tourte, M.; Kuentz, V.; Schaeffer, P.; Grossi, V.; Cario, A.; Oger, P.M. Novel Intact Polar and Core Lipid Compositions in the Pyrococcus Model Species, P. furiosus and P. yayanosii, Reveal the Largest Lipid Diversity Amongst Thermococcales. Biomolecules 2020, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Bauersachs, T.; Schwark, L. Glycerol monoalkanediol diethers: A novel series of archaeal lipids detected in hydrothermal environments. Rapid Commun. Mass Spectrom. 2016, 30, 54–60. [Google Scholar] [CrossRef]
- Huguet, C.; Hopmans, E.C.; Febo-Ayala, W.; Thompson, D.H.; Damsté, J.S.S.; Schouten, S. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 2006, 37, 1036–1041. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Jia, C.; Zheng, F.; Zhu, C. Tracking the signals of living archaea: A multiple reaction monitoring (MRM) method for detection of trace amounts of intact polar lipids from the natural environment. Org. Geochem. 2016, 97, 1–4. [Google Scholar] [CrossRef]
- Li, Y.-Y.; He, C.; Wu, J.-X.; Zhang, Y.-H.; Liang, Y.-M.; Shi, Q.; Zhang, C.-L. Molecular Characterization of Glycerol Dialkyl Glycerol Tetraethers by High Resolution Orbitrap Mass Spectrometry. J. Chin. Mass Spectrom. Soc. 2021, 42, 1127–1138. Available online: https://doaj.org/article/2f4ef637b93649518eb48b6c710b40f3 (accessed on 25 March 2025).
- Becker, K.W.; Lipp, J.S.; Zhu, C.; Liu, X.-L.; Hinrichs, K.-U. An improved method for the analysis of archaeal and bacterial ether core lipids. Org. Geochem. 2013, 61, 34–44. [Google Scholar] [CrossRef]
- Radović, J.R.; Silva, R.C.; Snowdon, R.; Larter, S.R.; Oldenburg, T.B.P. Rapid Screening of Glycerol Ether Lipid Biomarkers in Recent Marine Sediment Using Atmospheric Pressure Photoionization in Positive Mode Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2016, 88, 1128–1137. [Google Scholar] [CrossRef]
- Law, K.P.; He, W.; Tao, J.; Zhang, C. A Novel Approach to Characterize the Lipidome of Marine Archaeon Nitrosopumilus maritimus by Ion Mobility Mass Spectrometry. Front. Microbiol. 2021, 12, 735878. [Google Scholar] [CrossRef] [PubMed]
- Kates, M.; Joo, C.N.; Palameta, B.; Shier, T. Absolute sterochemical configuration of phytanyl (dihydrophytly) groups in lipids of Halobacterium cutirubrum. Biochemistry 1967, 6, 3329–3338. [Google Scholar] [CrossRef]
- de Rosa, M.; Gambacorta, A.; Minale, L.; Bu, J.D. Cyclic diether lipids from very thermophilic acidophilic bacteria. J. Chem. Soc. Chem. Commun. 1974, 14, 543–544. [Google Scholar] [CrossRef]
- de Rosa, M.; de Rosa, S.; Gambacorta, A. 13C-NMR assignments and biosynthetic data for the ether lipids of Caldariella. Phytochemistry 1977, 16, 1909–1912. [Google Scholar] [CrossRef]
- de Rosa, M.; de Rosa, S.; Gambacorta, A.; Minale, L.; Bu, J.D. Chemical structure of the ether lipids of thermophilic acidophilic bacteria of the Caldariella group. Phytochemistry 1977, 16, 1961–1965. [Google Scholar] [CrossRef]
- Rosa, M.D.; Gambacorta, A. Lipid biogenesis in archaebacteria. Syst. Appl. Microbiol. 1986, 7, 278–285. [Google Scholar] [CrossRef]
- Damsté, J.S.; Schouten, S.; Hopmans, E.C.; van Duin, A.C.; Geenevasen, J.A. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J. Lipid Res. 2002, 43, 1641–1651. [Google Scholar] [CrossRef]
- Rosa, M.D.; Rosa, S.D.; Gambacorta, A.; Bu, J.D. Structure of calditol; a new branched-chain nonitol, and of the derived tetraether lipids in thermoacidophile archaebacteria of the Caldariella group. Phytochemistry 1980, 19, 249–254. [Google Scholar] [CrossRef]
- Bode, M.L.; Buddoo, S.R.; Minnaar, S.H.; Plessis, C.A.D. Extraction, isolation and NMR data of the tetraether lipid calditoglycerocaldarchaeol (GDNT) from Sulfolobus metallicus harvested from a bioleaching reactor. Chem. Phys. Lipids 2008, 154, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Sprott, G.D.; Larocque, S.; Cadotte, N.; Dicaire, C.J.; McGee, M.; Brisson, J.R. Novel polar lipids of halophilic eubacterium Planococcus H8 and archaeon Haloferax volcanii. Biochim. Biophys. Acta 2003, 1633, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Coffinet, S.; Meador, T.B.; Mühlena, L.; Becker, K.W.; Schröder, J.; Zhu, Q.-Z.; Lipp, J.S.; Heuer, V.B.; Crump, M.P.; Hinrichs, K.-U. Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs). Biogeosciences 2020, 17, 317–330. [Google Scholar] [CrossRef]
- Ferrante, G.; Ekiel, I.; Sprott, G.D. Structures of diether lipids of Methanospirillum hungatei containing novel head groups N,N-diniethylamino- and N,N,N-trimethylaminopentanetetrol. Biochim. Biophys. Acta (BBA)—Lipids Lipid Metab. 1987, 921, 281–291. [Google Scholar] [CrossRef]
- Lobasso, S.; Lopalco, P.; Lattanzio, V.M.; Corcelli, A. Osmotic shock induces the presence of glycocardiolipin in the purple membrane of Halobacterium salinarum. J. Lipid Res. 2003, 44, 2120–2126. [Google Scholar] [CrossRef]
- Holzheimer, M.; Damste, J.S.S.; Schouten, S.; Havenith, R.W.A.; Cunha, A.V.; Minnaard, A.J. Total Synthesis of the Alleged Structure of Crenarchaeol Enables Structure Revision*. Angew. Chem. Int. Ed. Engl. 2021, 60, 17504–17513. [Google Scholar] [CrossRef]
- Swain, M.; Brisson, J.-R.; Sprott, G.D.; Cooper, F.P.; Patel, G.B. Identification of β-l-gulose as the sugar moiety of the main polar lipid of Thermoplasma acidophilum. Biochim. Biophys. Acta (BBA)—Lipids Lipid Metab. 1997, 1345, 56–64. [Google Scholar] [CrossRef]
- Caforio, A.; Siliakus, M.F.; Exterkate, M.; Jain, S.; Jumde, V.R.; Andringa, R.L.H.; Kengen, S.W.M.; Minnaard, A.J.; Driessen, A.J.M.; van der Oost, J. Converting Escherichia coli into an archaebacterium with a hybrid heterochiral membrane. Proc. Natl. Acad. Sci. USA 2018, 115, 3704–3709. [Google Scholar] [CrossRef] [PubMed]
- Vaskovsky, V.E.; Kostetsky, E.Y. Modified spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 1968, 9, 396. [Google Scholar] [CrossRef]
- Goswami, S.K.; Frey, C.F. Spray detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 1971, 12, 509–510. [Google Scholar] [CrossRef]
- Dynska-Kukulska, K.; Ciesielski, W.; Zakrzewski, R. The use of a new, modified Dittmer-Lester spray reagent for phospholipid determination by the TLC image analysis technique. Biomed. Chromatogr. 2013, 27, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.-L.; Tohty, D.; Feng, J.; Zhou, P.-J.; Liu, S.-J. Natronorubrum aibiense sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China, and emended description of the genus Natronorubrum. Int. J. Syst. Evol. Microbiol. 2006, 56, 1515–1517. [Google Scholar] [CrossRef]
- Cui, H.-L.; Tohty, D.; Zhou, P.-J.; Liu, S.-J. Haloterrigena longa sp. nov. and Haloterrigena limicola sp. nov., extremely halophilic archaea isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 2006, 56, 1837–1840. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.F.W.D.H.; Humphry-Baker, R.; Kim, S.B.R.J.-M. Tetraether Bolaform Amphiphiles as Models of Archaebacterial Membrane Lipids: Raman Spectroscopy, 31P NMR, X-ray Scattering, and Electron Microscopy. J. Am. Chem. Soc. 1992, 114, 9035–9042. [Google Scholar] [CrossRef]
- Chong, P.L.-G.; Zein, M.; Khan, T.K.; Winter, R.H.A. Structure and conformation of bipolar tetraether lipid membranes derived from thermoacidophilic archaeon Sulfolobus acidocaldarius as revealed by small-angle X-ray scattering and high-pressure FT-IR spectroscopy. J. Phys. Chem. B 2003, 107, 8694–8700. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Luo, Y.; Liu, C.; Lu, X.; Feng, B. Archaeal Lipids: Extraction, Separation, and Identification via Natural Product Chemistry Perspective. Int. J. Mol. Sci. 2025, 26, 3167. https://doi.org/10.3390/ijms26073167
Li T, Luo Y, Liu C, Lu X, Feng B. Archaeal Lipids: Extraction, Separation, and Identification via Natural Product Chemistry Perspective. International Journal of Molecular Sciences. 2025; 26(7):3167. https://doi.org/10.3390/ijms26073167
Chicago/Turabian StyleLi, Tuo, Youyi Luo, Changhong Liu, Xuan Lu, and Baomin Feng. 2025. "Archaeal Lipids: Extraction, Separation, and Identification via Natural Product Chemistry Perspective" International Journal of Molecular Sciences 26, no. 7: 3167. https://doi.org/10.3390/ijms26073167
APA StyleLi, T., Luo, Y., Liu, C., Lu, X., & Feng, B. (2025). Archaeal Lipids: Extraction, Separation, and Identification via Natural Product Chemistry Perspective. International Journal of Molecular Sciences, 26(7), 3167. https://doi.org/10.3390/ijms26073167