Systemic Inflammatory Response Syndrome, Thromboinflammation, and Septic Shock in Fetuses and Neonates
Abstract
:1. Introduction
2. Systemic Inflammatory Response Syndrome, Thromboinflammation, and Septic Shock in Fetuses and Neonates
2.1. Systemic Inflammatory Response Syndrome, SIRS
2.1.1. Diagnostic Criteria for SIRS
2.1.2. The Pathogenesis of SIRS
2.2. Fetal Inflammatory Response Syndrome, FIRS
2.3. Multiple Organ Failure in FIRS
2.4. FIRS and Antiphospholipid Antibodies
2.5. Perinatal Aspects of Septic Shock
- (1)
- The initial phase, termed “compensated shock”, is characterized by the activation of neuroendocrine compensatory mechanisms [66]. The symptoms of stage 1 may include tachycardia, hypouresis, decreased tissue perfusion, and extremity coldness in the newborn.
- (2)
- The subsequent stage in the development of septic shock is uncompensated shock, which is characterized by symptoms of systemic hypotension and metabolic acidosis.
- (3)
- The final phase of septic shock development is irreversible shock, which is characterized by severe microcirculatory disorders and irreversible cellular damage, leading to necrosis and multi-organ failure.
2.6. Hemostasis in Newborns
2.7. Alterations in Neonatal Hemostasis in Septic Shock
2.8. Formation of Neutrophil Extracellular Traps and Sepsis
2.9. The Damage of the Endothelial Glycocalyx and Increased Vascular Permeability
2.10. The Damage of the Endothelial Glycocalyx and Increased Permeability
2.11. The Role of the Convergent Model of Coagulation in Septic Shock
3. The Early Diagnosis and Treatment of Septic Shock
3.1. Antimicrobial Therapy
3.2. Infusion Therapy
3.3. Vasoactive Drugs
3.4. Corticosteroids
3.5. Antipyretic Therapy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Linnikov, V.I.; Linnikov, S.V.; Makatsariya, N.A. Sanarelli and Schwartzman, a historical background. Obstet. Gynecol. Reprod. 2022, 16, 324–327. (In Russian) [Google Scholar] [CrossRef]
- Chakraborty, R.K.; Burns, B. Systemic Inflammatory Response Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Wang, Y.; Dong, H.; Dong, T.; Zhao, L.; Fan, W.; Zhang, Y.; Yao, W. Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells. Mol. Cell Biochem. 2024, 479, 1149–1164. [Google Scholar] [CrossRef] [PubMed]
- Beznoshchenko, G.B. Sindrom sistemnogo vospalitel’nogo otveta v akusherskoj klinike: Reshennye voprosy I nereshennye problem. Ross. Vestn. Akushera-Ginekol. 2018, 18, 6–10. [Google Scholar] [CrossRef]
- Sikora, J.P.; Karawani, J.; Sobczak, J. Neutrophils and the Systemic Inflammatory Response Syndrome (SIRS). Int. J. Mol. Sci. 2023, 24, 13469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Medzidova, M.K.; Tiutiunnik, V.L.; Kan, N.E.; Kurchakova, T.A.; Kokoeva, D.N. The role of systemic inflammatory response syndrome in preterm labour development. Russ. J. Hum. Reprod. 2016, 22, 116–120. (In Russian) [Google Scholar] [CrossRef]
- De Felice, C.; De Capua, B.; Costantini, D.; Martufi, C.; Toti, P.; Tonni, G.; Laurini, R.; Giannuzzi, A.; Latini, G. Recurrent otitis media with effusion in preterm infants with histologic chorioamnionitis—A 3 years follow-up study. Early Hum. Dev. 2008, 84, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Karrow, N.A. Activation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system during inflammation and altered programming of the neuroendocrine-immune axis during fetal and neonatal development: Lessons learned from the model inflammagen, lipopolysaccharide. Brain Behav. Immun. 2006, 20, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Para, R.; Romero, R.; Miller, D.; Galaz, J.; Done, B.; Peyvandipour, A.; Gershater, M.; Tao, L.; Motomura, K.; Ruden, D.M.; et al. The Distinct Immune Nature of the Fetal Inflammatory Response Syndrome Type I and Type II. Immunohorizons 2021, 5, 735–751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glavina-Durdov, M.; Springer, O.; Capkun, V.; Saratlija-Novaković, Z.; Rozić, D.; Barle, M. The grade of acute thymus involution in neonates correlates with the duration of acute illness and with the percentage of lymphocytes in peripheral blood smear. Pathol. Study Biol. Neonate 2003, 83, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Zbyněk, S.; Ivan, B.; Jan, Š.; Jan, U.; Jaroslav, F.; Peter, K. Role of umbilical interleukin-6, procalcitonin and C-reactive protein measurement in the diagnosis of fetal inflammatory response syndrome. Ceska Gynekol. 2021, 86, 80–85. (In English) [Google Scholar] [CrossRef] [PubMed]
- Persson, G.; Jørgensen, N.; Nilsson, L.L.; Andersen, L.H.J.; Hviid, T.V.F. A role for both HLA-F and HLA-G in reproduction and during pregnancy? Hum Immunol. 2020, 81, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Nomiyama, M.; Nakagawa, T.; Yamasaki, F.; Hisamoto, N.; Yamashita, N.; Harai, A.; Gondo, K.; Ikeda, M.; Tsuda, S.; Ishimatsu, M.; et al. Contribution of Fetal Inflammatory Response Syndrome (FIRS) with or without Maternal-Fetal Inflammation in The Placenta to Increased Risk of Respiratory and Other Complications in Preterm Neonates. Biomedicines 2023, 11, 611. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romero, R.; Savasan, Z.A.; Chaiworapongsa, T.; Berry, S.M.; Kusanovic, J.P.; Hassan, S.S.; Yoon, B.H.; Edwin, S.; Mazor, M. Hematologic profile of the fetus with systemic inflammatory response syndrome. J. Perinat. Med. 2011, 40, 19–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ead, J.K.; Armstrong, D.G. Granulocyte-macrophage colony-stimulating factor: Conductor of the wound healing orchestra? Int. Wound J. 2023, 20, 1229–1234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zurochka, A.V.; Zurochka, V.A.; Dobrynina, M.A.; Gritsenko, V.A. Immunobiological properties of granulocytemacrophage colony-stimulating factor and synthetic peptides of his active center. Med. Immunol. 2021, 23, 1031–1054. (In Russian) [Google Scholar] [CrossRef]
- Chaiworapongsa, T.; Romero, R.; Berry, S.M.; Hassan, S.S.; Yoon, B.H.; Edwin, S.; Mazor, M. The role of granulocyte colony-stimulating factor in the neutrophilia observed in the fetal inflammatory response syndrome. J. Perinat. Med. 2011, 39, 653–666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pfisterer, C.; Faber, R.; Horn, L.C. Chorioamnionitis-induced changes of fetal extramedullar hematopoiesis in the second trimester of gestation. Is diagnosis from fetal autopsy possible? Virchows Arch. 2005, 446, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Park, J.W.; Kim, B.J.; Park, C.W.; Park, J.S.; Jun, J.K.; Yoon, B.H. Acute histologic chorioamnionitis is a risk factor for adverse neonatal outcome in late preterm birth after preterm premature rupture of membranes. PLoS ONE 2013, 8, e79941. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romero, R.; Soto, E.; Berry, S.M.; Hassan, S.S.; Kusanovic, J.P.; Yoon, B.H.; Edwin, S.; Mazor, M.; Chaiworapongsa, T. Blood pH and gases in fetuses in preterm labor with and without systemic inflammatory response syndrome. J. Matern. Fetal Neonatal Med. 2012, 25, 1160–1170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zaharie, G.C.; Drugan, T.; Crivii, C.; Muresan, D.; Zaharie, A.; Hășmășanu, M.G.; Zaharie, F.; Matyas, M. Postpartum assessment of fetal inflammatory response syndrome in a preterm population with premature rupture of membranes: A Romanian study. Exp. Ther. Med. 2021, 22, 1427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kallapur, S.G.; Willet, K.E.; Jobe, A.H.; Ikegami, M.; Bachurski, C.J. Intra-amniotic endotoxin: Chorioamnionitis precedes lung maturation in preterm lambs. Am. J. Physiol. Lung Cell Mol. Physiol. 2001, 280, L527–L536. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, A.; Lisonkova, S.; Sabr, Y.; Stritzke, A.; Joseph, K.S. Neonatal respiratory morbidity following exposure to chorioamnionitis. BMC Pediatr. 2017, 17, 128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Plakkal, N.; Soraisham, A.S.; Trevenen, C.; Freiheit, E.A.; Sauve, R. Histological chorioamnionitis and bronchopulmonary dysplasia: A retrospective cohort study. J. Perinatol. 2013, 33, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.H.; Romero, R.; Kim, K.S.; Park, J.S.; Ki, S.H.; Kim, B.I.; Jun, J.K. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. Am. J. Obs. Gynecol. 1999, 181, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Sarno, L.; Della Corte, L.; Saccone, G.; Sirico, A.; Raimondi, F.; Zullo, F.; Guida, M.; Martinelli, P.; Maruotti, G.M. Histological chorioamnionitis and risk of pulmonary complications in preterm births: A systematic review and Meta-analysis. J. Matern.-Fetal Neonatal Med. 2021, 34, 3803–3812. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Y.; Zhao, A.; Wang, Z. Lung Ultrasound for the Diagnosis of Neonatal Respiratory Distress Syndrome: A Meta-analysis. Ultrasound Q. 2020, 36, 102–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dessardo, N.S.; Dessardo, S.; Mustać, E.; Banac, S.; Petrović, O.; Peter, B. Chronic lung disease of prematurity and early childhood wheezing: Is foetal inflammatory response syndrome to blame? Early Hum. Dev. 2014, 90, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Yap, V.; Perlman, J.M. Mechanisms of brain injury in newborn infants associated with the fetal inflammatory response syndrome. Semin. Fetal Neonatal Med. 2020, 25, 101110. [Google Scholar] [CrossRef] [PubMed]
- Muraskas, J.K.; Kelly, A.F.; Nash, M.S.; Goodman, J.R.; Morrison, J.C. The role of fetal inflammatory response syndrome and fetal anemia in nonpreventable term neonatal encephalopathy. J. Perinatol. 2016, 36, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Lear, C.A.; Lear, B.A.; Davidson, J.O.; Sae-Jiw, J.; Lloyd, J.M.; Dhillon, S.K.; Gunn, A.J.; Bennet, L. Tumour necrosis factor blockade after asphyxia in foetal sheep ameliorates cystic white matter injury. Brain 2023, 146, 1453–1466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, M.; Jin, X.; Qin, F.; Zhang, X.; Wang, X.; Yuan, E.; Shi, Y.; Xu, F. The association of γδT lymphocytes with cystic leukomalacia in premature infants. Front. Neurol. 2022, 13, 1043142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Q.; Dai, W.; Chen, H.Y.; Jacobs, R.E.; Zlokovic, B.V.; Lund, B.T.; Montagne, A.; Bonnin, A. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc. Natl. Acad. Sci. USA 2022, 119, e2113310119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Jyoti, A.; Balakrishnan, B.; Williams, M.; Singh, S.; Chugani, D.C.; Kannan, S. Trajectory of inflammatory and microglial activation markers in the postnatal rabbit brain following intrauterine endotoxin exposure. Neurobiol. Dis. 2018, 111, 153–162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giovannini, E.; Bonasoni, M.P.; Pascali, J.P.; Giorgetti, A.; Pelletti, G.; Gargano, G.; Pelotti, S.; Fais, P. Infection Induced Fetal Inflammatory Response Syndrome (FIRS): State-of- the-Art and Medico-Legal Implications—A Narrative Review. Microorganisms 2023, 11, 1010. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, L.F.; Cornejo, P.; Towbin, R. Neuroimaging findings associated with the fetal inflammatory response syndrome. Semin. Fetal Neonatal Med. 2020, 25, 101143. [Google Scholar] [CrossRef] [PubMed]
- Chin, E.M.; Gorny, N.; Logan, M.; Hoon, A.H. Cerebral palsy and the placenta: A review of the maternal-placental-fetal origins of cerebral palsy. Exp. Neurol. 2022, 352, 114021. [Google Scholar] [CrossRef] [PubMed]
- Song, J.S.; Woo, S.J.; Park, K.H.; Kim, H.; Lee, K.N.; Kim, Y.M. Association of inflammatory and angiogenic biomarkers in maternal plasma with retinopathy of prematurity in preterm infants. Eye 2023, 37, 1802–1809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, Y.J.; Woo, S.J.; Kim, Y.M.; Hong, S.; Lee, Y.E.; Park, K.H. Immune and Inflammatory Proteins in Cord Blood as Predictive Biomarkers of Retinopathy of Prematurity in Preterm Infants. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3813–3820. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.; Goodfriend, E.; Zhong, Y.; Melhem, N.M. Fetal inflammatory response and risk for psychiatric disorders. Transl. Psychiatry 2023, 13, 224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoon, B.H.; Kim, Y.A.; Romero, R.; Kim, J.C.; Park, K.H.; Kim, M.H.; Park, J.S. Association of oligohydramnios in women with preterm premature rupture of membranes with an inflammatory response in fetal, amniotic, and maternal compartments. Am. J. Obs. Gynecol. 1999, 181, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Romero, R.; Lee, S.M.; Yoon, B.H. Amniotic fluid volume in intra-amniotic inflammation with and without culture-proven amniotic fluid infection in preterm premature rupture of membranes. J. Perinat. Med. 2010, 38, 39–44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azpurua, H.; Dulay, A.T.; Buhimschi, I.A.; Bahtiyar, M.O.; Funai, E.; Abdel-Razeq, S.S.; Luo, G.; Bhandari, V.; Copel, J.A.; Buhimschi, C.S. Fetal renal artery impedance as assessed by Doppler ultrasound in pregnancies complicated by intraamniotic inflammation and preterm birth. Am. J. Obs. Gynecol. 2009, 200, e1–e11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galinsky, R.; Moss, T.J.; Gubhaju, L.; Hooper, S.B.; Black, M.J.; Polglase, G.R. Effect of intra-amniotic lipopolysaccharide on nephron number in preterm fetal sheep. Am. J. Physiol. Ren. Physiol. 2011, 301, F280–F285. [Google Scholar] [CrossRef] [PubMed]
- Stantsidou, A.; Pagonopoulou, O.; Deftereou, T. Effects of chorioamnionitis in fetal renal glomeruli. Hippokratia 2021, 25, 98. [Google Scholar] [PubMed] [PubMed Central]
- Muk, T.; Jiang, P.P.; Stensballe, A.; Skovgaard, K.; Sangild, P.T.; Nguyen, D.N. Prenatal Endotoxin Exposure Induces Fetal and Neonatal Renal Inflammation via Innate and Th1 Immune Activation in Preterm Pigs. Front. Immunol. 2020, 11, 565484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuypers, E.; Wolfs, T.G.; Collins, J.J.; Jellema, R.K.; Newnham, J.P.; Kemp, M.W.; Kallapur, S.G.; Jobe, A.H.; Kramer, B.W. Intraamniotic lipopolysaccharide exposure changes cell populations and structure of the ovine fetal thymus. Reprod. Sci. 2013, 20, 946–956. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luciano, A.A.; Yu, H.; Jackson, L.W.; Wolfe, L.A.; Bernstein, H.B. Preterm labor and chorioamnionitis are associated with neonatal T cell activation. PLoS ONE 2011, 6, e16698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Melville, J.M.; Bischof, R.J.; Meeusen, E.N.; Westover, A.J.; Moss, T.J. Changes in fetal thymic immune cell populations in a sheep model of intrauterine inflammation. Reprod. Sci. 2012, 19, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.; Romero, R.; Yeo, L.; Diaz-Primera, R.; Marin-Concha, J.; Para, R.; Lopez, A.M.; Pacora, P.; Gomez-Lopez, N.; Yoon, B.H.; et al. The fetal inflammatory response syndrome: The origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin. Fetal Neonatal Med. 2020, 25, 101146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuypers, E.; Willems, M.G.; Jellema, R.K.; Kemp, M.W.; Newnham, J.P.; Delhaas, T.; Kallapur, S.G.; Jobe, A.H.; Wolfs, T.G.; Kramer, B.W. Responses of the spleen to intraamniotic lipopolysaccharide exposure in fetal sheep. Pediatr. Res. 2015, 77, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Musilova, I.; Kacerovsky, M.; Hornychova, H.; Kostal, M.; Jacobsson, B. Pulsation of the fetal splenic vein—A potential ultrasound marker of histological chorioamnionitis and funisitis in women with preterm prelabor rupture of membranes. Acta Obs. Gynecol. Scand. 2012, 91, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Managlia, E.; Tan, X.D.; De Plaen, I.G. Prenatal inflammation impairs intestinal microvascular development through a TNF-dependent mechanism and predisposes newborn mice to necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G57–G66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Razak, A.; Malhotra, A. Fetal inflammatory response spectrum: Mapping its impact on severity of necrotising enterocolitis. Pediatr. Res. 2024, 95, 1179–1180. [Google Scholar] [CrossRef] [PubMed]
- Bieghs, V.; Vlassaks, E.; Custers, A.; van Gorp, P.J.; Gijbels, M.J.; Bast, A.; Bekers, O.; Zimmermann, L.J.; Lütjohann, D.; Voncken, J.W.; et al. Chorioamnionitis induced hepatic inflammation and disturbed lipid metabolism in fetal sheep. Pediatr. Res. 2010, 68, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Heymans, C.; den Dulk, M.; Lenaerts, K.; Heij, L.R.; de Lange, I.H.; Hadfoune, M.; van Heugten, C.; Kramer, B.W.; Jobe, A.H.; Saito, M.; et al. Chorioamnionitis induces hepatic inflammation and time-dependent changes of the enterohepatic circulation in the ovine fetus. Sci. Rep. 2021, 11, 10331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sergeeva, V.A.; Shabalov, N.P.; Aleksandrovich, Y.u.S.; Nesterenko, S.N. Predopredelyaet li fetal’nyj vospalitel’nyj otvet oslozhnyonnoe techenie rannego neonatal’nogo perioda? Bajkal’skij Med. Zhurnal 2010, 93, 75–80. [Google Scholar]
- Rocha, G. Chorioamnionitis and lung injury in preterm newborns. Crit. Care Res. Pract. 2013, 2013, 890987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- MohanKumar, K.; Namachivayam, K.; Ho, T.T.; Torres, B.A.; Ohls, R.K.; Maheshwari, A. Cytokines and growth factors in the developing intestine and during necrotizing enterocolitis. Semin. Perinatol. 2017, 41, 52–60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eloundou, S.N.; Lee, J.; Wu, D.; Lei, J.; Feller, M.C.; Ozen, M.; Zhu, Y.; Hwang, M.; Jia, B.; Xie, H.; et al. Placental malperfusion in response to intrauterine inflammation and its connection to fetal sequelae. PLoS ONE 2019, 14, e0214951. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muraskas, J.; Astrug, L.; Amin, S. FIRS: Neonatal considerations. Semin. Fetal Neonatal Med. 2020, 25, 101142. [Google Scholar] [CrossRef] [PubMed]
- Luciano, A.A.; Arbona-Ramirez, I.M.; Ruiz, R.; Llorens-Bonilla, B.J.; Martinez-Lopez, D.G.; Funderburg, N.; Dorsey, M.J. Alterations in regulatory T cell subpopulations seen in preterm infants. PLoS ONE 2014, 9, e95867. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agyeman, P.K.A.; Schlapbach, L.J.; Giannoni, E.; Stocker, M.; Posfay-Barbe, K.M.; Heininger, U.; Schindler, M.; Korten, I.; Konetzny, G.; Niederer-Loher, A.; et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: A population-based cohort study. Lancet Child. Adolesc. Health 2017, 1, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L.; Wong, H.R. Pathophysiology of Neonatal Sepsis. Fetal Neonatal Physiol. 2017, 2, 1536–1552.e10. [Google Scholar] [CrossRef] [PubMed Central]
- Lekmanov, A.U.; Mironov, P.I. Pediatric sepsis—Time to reach agreement. Ross. Vestn. Perinatol. I Pediatr. Russ. Bull. Perinatol. Pediatr. 2020, 65, 131–137. (In Russian) [Google Scholar] [CrossRef]
- Spaggiari, V.; Passini, E.; Crestani, S.; Roversi, M.F.; Bedetti, L.; Rossi, K.; Lucaccioni, L.; Baraldi, C.; Della Casa Muttini, E.; Lugli, L.; et al. Neonatal septic shock, a focus on first line interventions. Acta Biomed. 2022, 93, e2022141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schorr, C.A.; Zanotti, S.; Dellinger, R.P. Severe sepsis and septic shock: Management and performance improvement. Virulence 2014, 5, 190–199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silveira Rde, C.; Giacomini, C.; Procianoy, R.S. Neonatal sepsis and septic shock: Concepts update and review. Rev. Bras. Ter. Intensiv. 2010, 22, 280–290. [Google Scholar] [PubMed]
- Khizroeva, J.; Makatsariya, A.; Vorobev, A.; Bitsadze, V.; Elalamy, I.; Lazarchuk, A.; Salnikova, P.; Einullaeva, S.; Solopova, A.; Tretykova, M.; et al. The Hemostatic System in Newborns and the Risk of Neonatal Thrombosis. Int. J. Mol. Sci. 2023, 24, 13864. [Google Scholar] [CrossRef]
- Toulon, P.; Berruyer, M.; Brionne-François, M.; Grand, F.; Lasne, D.; Telion, C.; Arcizet, J.; Giacomello, R.; De Pooter, N. Age dependency for coagulation parameters in paediatric populations. Results of a multicentre study aimed at defining the age-specific reference ranges. Thromb. Haemost. 2016, 116, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Wiedmeier, S.E.; Henry, E.; Sola-Visner, M.C.; Christensen, R.D. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J. Perinatol. 2009, 29, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Sillers, L.; Van Slambrouck, C.; Lapping-Carr, G. Neonatal Thrombocytopenia: Etiology and Diagnosis. Pediatr. Ann. 2015, 44, e175–e180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tesfamariam, B. Distinct characteristics of neonatal platelet reactivity. Pharmacol. Res. 2017, 123, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bitsadze, V.O.; Sukontseva, T.A.; Akinshina, S.V.; Sulina, Y.Y.; Khizroeva, J.K.; Tretyakova, M.V.; Sultangadzhieva, K.h.G.; Ungiadze, J.Y.; Samburova, N.V.; Grigoreva, K.N.; et al. Septic shock. Obstet. Gynecol. Reprod. 2020, 14, 314–326. (In Russian) [Google Scholar] [CrossRef]
- Mal’ceva, L.A.; Bazilenko, D.V. Patogenez tyazhelogo sepsisa i septicheskogo shoka: Analiz sovremennyh koncepcij. Med. Neotlozhnyh Sostoyanij 2015, 7, 35–40. [Google Scholar]
- Bitsadze, V.O.; Khizroeva, J.K.; Makatsariya, A.D.; Slukhanchuk, E.V.; Tretyakova, M.V.; Rizzo, G.; Gris, J.R.; Elalamy, I.; Serov, V.N.; Shkoda, A.S.; et al. COVID-19, septic shock and syndrome of disseminated intravascular coagulation syndrome. Part 1 Ann. Russ. Acad. Med. Sci. 2020, 75, 118–128. [Google Scholar] [CrossRef]
- Levi, M.; van der Poll, T. Coagulation and sepsis. Thromb. Res. 2017, 149, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Pudjiadi, A.H.; Adhyanisitha, K.; Pusponegoro, H.D.; Suyoko, D.E.M.; Satari, H.I.; Kaswandani, N. The association between plasminogen activator inhibitor type-1 and clinical outcome in paediatric sepsis. Blood Coagul. Fibrinolysis 2020, 31, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xue, M.; Chen, Y.; Liu, C.; Kuang, Z.; Mu, S.; Wei, W.; Yin, J.; Xiang, H.; Hu, Y.; et al. Identification of soluble thrombomodulin and tissue plasminogen activator-inhibitor complex as biomarkers for prognosis and early evaluation of septic shock and sepsis-induced disseminated intravascular coagulation. Ann. Palliat. Med. 2021, 10, 10170–10184. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Neves, M.A.D.; Wu, C.; Cerroni, S.E.; Flick, M.J.; Ni, H.; Weitz, J.I.; Gross, P.L.; Kim, P.Y. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrin-dependent plasmin generation on thrombin-activated platelets. J. Thromb. Haemost. 2020, 18, 2364–2376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsantes, A.G.; Parastatidou, S.; Tsantes, E.A.; Bonova, E.; Tsante, K.A.; Mantzios, P.G.; Vaiopoulos, A.G.; Tsalas, S.; Konstantinidi, A.; Houhoula, D.; et al. Sepsis-Induced Coagulopathy: An Update on Pathophysiology, Biomarkers, and Current Guidelines. Life 2023, 13, 350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gando, S. Role of fibrinolysis in sepsis. Semin. Thromb. Hemost. 2013, 39, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Claesen, K.; Mertens, J.C.; Leenaerts, D.; Hendriks, D. Carboxypeptidase U (CPU, TAFIa, CPB2) in Thromboembolic Disease: What Do We Know Three Decades after Its Discovery? Int. J. Mol. Sci. 2021, 22, 883. [Google Scholar] [CrossRef] [PubMed]
- Mook-Kanamori, B.B.; Valls Serón, M.; Geldhoff, M.; Havik, S.R.; van der Ende, A.; Baas, F.; van der Poll, T.; Meijers, J.C.; PMorgan, B.; Brouwer, M.C.; et al. Thrombin-activatable fibrinolysis inhibitor influences disease severity in humans and mice with pneumococcal meningitis. J. Thromb. Haemost. 2015, 13, 2076–2086. [Google Scholar] [CrossRef] [PubMed]
- Prodeus, A.P.; Ustinova, M.V.; Korsunskiy, A.A.; Goncharov, A.G. New aspects of sepsis and septic shock pathogenesis in children. The complement system as target for an effective therapy. Russ. J. Infect. Immun. Infektsiya I Immun. 2018, 8, 19–24. [Google Scholar] [CrossRef]
- Hazelzet, J.; Ade Groot, R.; van Mierlo, G.; Joosten, K.F.M.; van der Voort, E.; Eerenberg, A.; Suur, M.H.; Hop, W.C.J.; Hack, C.E. Complement Activation in Relation to Capillary Leakage in Children with Septic Shock and Purpura. Infect. Immun. 1998, 66, 5350–5356. [Google Scholar] [CrossRef] [PubMed]
- Kelwick, R.; Desanlis, I.; Wheeler, G.N.; Edwards, D.R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 2015, 16, 113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Levi, M.; Scully, M.; Singer, M. The role of ADAMTS-13 in the coagulopathy of sepsis. J. Thromb. Haemost. 2018, 16, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Opal, S.M. Coagulation abnormalities in critically ill patients. Crit. Care 2006, 10, 222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pillai, V.G.; Bao, J.; Zander, C.B.; McDaniel, J.K.; Chetty, P.S.; Seeholzer, S.H.; Bdeir, K.; Cines, D.B.; Zheng, X.L. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: A potential link of inflammation to TTP. Blood 2016, 128, 110–119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.; Chung, D.W. Inflammation, von Willebrand factor, and ADAMTS13. Blood 2018, 132, 141–147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peigne, V.; Azoulay, E.; Coquet, I.; Mariotte, E.; Darmon, M.; Legendre, P.; Adoui, N.; Marfaing-Koka, A.; Wolf, M.; Schlemmer, B.; et al. The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Crit. Care 2013, 17, R273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Habe, K.; Wada, H.; Ito-Habe, N.; Hatada, T.; Matsumoto, T.; Ohishi, K.; Maruyama, K.; Imai, H.; Mizutani, H.; Nobori, T. Plasma ADAMTS13, von Willebrand factor (VWF) and VWF propeptide profiles in patients with DIC and related diseases. Thromb. Res. 2012, 129, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Ono, T.; Mimuro, J.; Madoiwa, S.; Soejima, K.; Kashiwakura, Y.; Ishiwata, A.; Takano, K.; Ohmori, T.; Sakata, Y. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: Its correlation with development of renal failure. Blood 2006, 107, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Schwameis, M.; Schörgenhofer, C.; Assinger, A.; Steiner, M.M.; Jilma, B. VWF excess ADAMTS13 deficiency: A unifying pathomechanism linking inflammation to thrombosis in, DIC, malaria, TTP. Thromb Haemost 2015, 113, 708–718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Emmer, B.T.; Ginsburg, D.; Desch, K.C. Von Willebrand Factor and ADAMTS13: Too Much or Too Little of a Good Thing? Arter. Thromb. Vasc. Biol. 2016, 36, 2281–2282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sonneveld, M.A.; Franco, O.H.; Ikram, M.A.; Hofman, A.; Kavousi, M.; de Maat, M.P.; Leebeek, F.W. Von Willebrand Factor, ADAMTS13, and the Risk of Mortality: The Rotterdam Study. Arter. Thromb. Vasc. Biol. 2016, 36, 2446–2451. [Google Scholar] [CrossRef] [PubMed]
- Papadogeorgou, P.; Boutsikou, T.; Boutsikou, M.; Pergantou, E.; Mantzou, A.; Papassotiriou, I.; Iliodromiti, Z.; Sokou, R.; Bouza, E.; Politou, M.; et al. A Global Assessment of Coagulation Profile and a Novel Insight into Adamts-13 Implication in Neonatal Sepsis. Biology 2023, 12, 1281. [Google Scholar] [CrossRef] [PubMed]
- Kansas, G.S. Selectins and their ligands: Current concepts and controversies. Blood 1996, 88, 3259–3287. [Google Scholar] [PubMed]
- Martinod, K.; Deppermann, C. Immunothrombosis and thromboinflammation in host defense and disease. Platelets 2021, 32, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, J.; Margraf, A.; Zarbock, A. Role of Platelets in Leukocyte Recruitment and Resolution of Inflammation. Front. Immunol. 2018, 9, 2712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iba, T.; Levy, J.H. Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J. Thromb. Haemost. 2018, 16, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, Y.; Shenkman, B.; Sirota, L.; Vishne, T.H.; Dardik, R.; Varon, D.; Linder, N. Whole blood platelet deposition on extracellular matrix under flow conditions in preterm neonatal sepsis. Eur. J. Pediatr. 2002, 161, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, K.; Berger, A.; Langgartner, M.; Prusa, A.R.; Hayde, M.; Herkner, K.; Pollak, A.; Spittler, A.; Forster-Waldl, E. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J. Infect. Dis. 2007, 195, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Sitaru, A.G.; Speer, C.P.; Holzhauer, S.; Obergfell, A.; Walter, U.; Grossmann, R. Chorioamnionitis is associated with increased CD40L expression on cord blood platelets. Thromb. Haemost. 2005, 94, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Aloui, C.; Prigent, A.; Sut, C.; Tariket, S.; Hamzeh-Cognasse, H.; Pozzetto, B.; Richard, Y.; Cognasse, F.; Laradi, S.; Garraud, O. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int. J. Mol. Sci. 2014, 15, 22342–22364. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andryukov, B.G.; Bogdanova, V.D.; Lyapun, I.N. Phenotypic heterogeneity of neutrophils: New antimicrobic characteristics and diagnostic technologies. Russ. J. Hematol. Transfusiology 2019, 64, 211–221. (In Russian) [Google Scholar] [CrossRef]
- Kaplan, M.J.; Radic, M. Neutrophil extracellular traps: Double-edged swords of innate immunity. J. Immunol. 2012, 189, 2689–2695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D., Jr.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ngamsri, K.C.; Putri, R.A.; Jans, C.; Schindler, K.; Fuhr, A.; Zhang, Y.; Gamper-Tsigaras, J.; Ehnert, S.; Konrad, F.M. CXCR4 and CXCR7 Inhibition Ameliorates the Formation of Platelet-Neutrophil Complexes and Neutrophil Extracellular Traps through Adora2b Signaling. Int. J. Mol. Sci. 2021, 22, 13576. [Google Scholar] [CrossRef]
- Etulain, J.; Martinod, K.; Wong, S.L.; Cifuni, S.M.; Schattner, M.; Wagner, D.D. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 2015, 126, 242–246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elaskalani, O.; Abdol Razak, N.B.; Metharom, P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun. Signal 2018, 16, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Folco, E.J.; Mawson, T.L.; Vromman, A.; Bernardes-Souza, B.; Franck, G.; Persson, O.; Nakamura, M.; Newton, G.; Luscinskas, F.W.; Libby, P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arter. Thromb. Vasc. Biol. 2018, 38, 1901–1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoppenbrouwers, T.; Boeddha, N.P.; Ekinci, E.; Emonts, M.; Hazelzet, J.A.; Driessen, G.J.; de Maat, M.P. Neutrophil Extracellular Traps in Children With Meningococcal Sepsis. Pediatr. Crit. Care Med. 2018, 19, e286–e291. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.; Davis, R.P.; Kim, S.J.; Tse, M.; Esmon, C.T.; Kolaczkowska, E.; Jenne, C.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017, 129, 1357–1367, Erratum in Blood 2022, 139, 952. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fatmi, A.; Saadi, W.; Beltrán-García, J.; García-Giménez, J.L.; Pallardó, F.V. The Endothelial Glycocalyx and Neonatal Sepsis. Int. J. Mol. Sci. 2022, 24, 364. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dreschers, S.; Platen, C.; Ludwig, A.; Gille, C.; Köstlin, N.; Orlikowsky, T.W. Metalloproteinases TACE and MMP-9 Differentially Regulate Death Factors on Adult and Neonatal Monocytes After Infection with Escherichia coli. Int. J. Mol. Sci. 2019, 20, 1399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, Y.; Du, W.X.; Jiang, H.Y.; Ai, Q.; Feng, J.; Liu, Z.; Yu, J.L. Multiplex Cytokine Profiling Identifies Interleukin-27 as a Novel Biomarker For Neonatal Early Onset Sepsis. Shock 2017, 47, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Formosa, A.; Turgeon, P.; Dos Santos, C.C. Role of miRNA dysregulation in sepsis. Mol. Med. 2022, 28, 99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bindayna, K. MicroRNA as Sepsis Biomarkers: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 6476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, X.; Zhang, Y.; Lin, S.; Li, Y.; Hua, Y.; Zhou, K. Diagnostic significance of microRNAs in sepsis. PLoS ONE 2023, 18, e0279726. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, J.; Lui, K.Y.; Hu, X.; Liu, E.; Zhang, T.; Tong, L.; Xu, J.; Huang, F.; Zhu, Y.; Lu, M.; et al. Circulating microRNAs as novel diagnostic biomarkers and prognostic predictors for septic patients. Infect. Genet. Evol. 2021, 95, 105082. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.; Toh, C.H. The convergent model of coagulation. J. Thromb. Haemost. 2024, 22, 2140–2146. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, G.; Mertowska, P.; Mertowski, S.; Przysucha, A.; Strużyna, J.; Grywalska, E.; Torres, K. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int. J. Mol. Sci. 2023, 24, 12563. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr. Crit. Care Med. 2020, 21, e52–e106. [Google Scholar] [CrossRef] [PubMed]
- Haque, K.N. Defining common infections in children and neonates. J. Hosp. Infect. 2007, 65 (Suppl. 2), 110–114. [Google Scholar] [CrossRef] [PubMed]
- McGovern, M.; Giannoni, E.; Kuester, H.; Turner, M.A.; van den Hoogen, A.; Bliss, J.M.; Koenig, J.M.; Keij, F.M.; Mazela, J.; Finnegan, R.; et al. Infection, Inflammation, Immunology and Immunisation (I4) section of the ESPR. Challenges in developing a consensus definition of neonatal sepsis. Pediatr. Res. 2020, 88, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, I.; Sangareddi, S.; Venkataraman, S.; Kissoon, N.; Thiruvengadamudayan, V.; Kasthuri, R.K. A prospective randomized controlled study of two fluid regimens in the initial management of septic shock in the emergency department. Pediatr. Emerg. Care 2008, 24, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Iroh Tam, P.Y.; Musicha, P.; Kawaza, K.; Cornick, J.; Denis, B.; Freyne, B.; Everett, D.; Dube, Q.; French, N.; Feasey, N.; et al. Emerging Resistance to Empiric Antimicrobial Regimens for Pediatric Bloodstream Infections in Malawi (1998–2017). Clin. Infect. Dis. 2019, 69, 61–68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perner, A.; Haase, N.; Guttormsen, A.B.; Tenhunen, J.; Klemenzson, G.; Åneman, A.; Madsen, K.R.; Møller, M.H.; Elkjær, J.M.; Poulsen, L.M.; et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N. Engl. J. Med. 2012, 367, 124–134, Erratum in N. Engl. J. Med. 2012, 367, 481. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.F.; Brou, L.; Deakyne, S.J.; Fairclough, D.L.; Kempe, A.; Bajaj, L. Lactate Clearance and Normalization and Prolonged Organ Dysfunction in Pediatric Sepsis. J. Pediatr. 2016, 170, e1–e4. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.M.; Shieh, H.H.; Bousso, A.; Góes, P.F.; de Cássia FO Fernandes, I.; de Souza, D.C.; Paulo, R.L.; Chagas, F.; Gilio, A.E. Double-Blind Prospective Randomized Controlled Trial of Dopamine Versus Epinephrine as First-Line Vasoactive Drugs in Pediatric Septic Shock. Crit. Care Med. 2015, 43, 2292–2302. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, K.N.; Singhi, S.; Jayashree, M.; Bansal, A.; Nallasamy, K. Double-Blind Randomized Clinical Trial Comparing Dopamine and Epinephrine in Pediatric Fluid-Refractory Hypotensive Septic Shock. Pediatr. Crit. Care Med. 2016, 17, e502–e512. [Google Scholar] [CrossRef] [PubMed]
- El-Nawawy, A.; Khater, D.; Omar, H.; Wali, Y. Evaluation of Early Corticosteroid Therapy in Management of Pediatric Septic Shock in Pediatric Intensive Care Patients: A Randomized Clinical Study. Pediatr. Infect. Dis. J. 2017, 36, 155–159. [Google Scholar] [CrossRef] [PubMed]
Criterion | Value |
---|---|
Body temperature (rectal, oral) | >38.5 °C or <36 °C |
Heart rate | Tachycardia ≥ 90/min, or bradycardia in children under 1 year of age below the 10th percentile |
Respiratory rate | ≥20/min or hyperventilation with blood carbon dioxide ≤ 32 mmHg |
White blood cell count | Leukocytosis or leukopenia or neutrophil left shift |
Maternal risk factors |
|
Fetal risk factors |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitsadze, V.; Lazarchuk, A.; Vorobev, A.; Khizroeva, J.; Tretyakova, M.; Makatsariya, N.; Gashimova, N.; Grigoreva, K.; Tatarintseva, A.; Karpova, A.; et al. Systemic Inflammatory Response Syndrome, Thromboinflammation, and Septic Shock in Fetuses and Neonates. Int. J. Mol. Sci. 2025, 26, 3259. https://doi.org/10.3390/ijms26073259
Bitsadze V, Lazarchuk A, Vorobev A, Khizroeva J, Tretyakova M, Makatsariya N, Gashimova N, Grigoreva K, Tatarintseva A, Karpova A, et al. Systemic Inflammatory Response Syndrome, Thromboinflammation, and Septic Shock in Fetuses and Neonates. International Journal of Molecular Sciences. 2025; 26(7):3259. https://doi.org/10.3390/ijms26073259
Chicago/Turabian StyleBitsadze, Victoria, Arina Lazarchuk, Alexander Vorobev, Jamilya Khizroeva, Maria Tretyakova, Natalia Makatsariya, Nilufar Gashimova, Kristina Grigoreva, Alena Tatarintseva, Anna Karpova, and et al. 2025. "Systemic Inflammatory Response Syndrome, Thromboinflammation, and Septic Shock in Fetuses and Neonates" International Journal of Molecular Sciences 26, no. 7: 3259. https://doi.org/10.3390/ijms26073259
APA StyleBitsadze, V., Lazarchuk, A., Vorobev, A., Khizroeva, J., Tretyakova, M., Makatsariya, N., Gashimova, N., Grigoreva, K., Tatarintseva, A., Karpova, A., Mostovoi, A., Zainulina, M., Kapanadze, D., Blbulyan, A., Kuneshko, N., Gris, J.-C., Elalamy, I., Gerotziafas, G., & Makatsariya, A. (2025). Systemic Inflammatory Response Syndrome, Thromboinflammation, and Septic Shock in Fetuses and Neonates. International Journal of Molecular Sciences, 26(7), 3259. https://doi.org/10.3390/ijms26073259