Is There a Place for Cannabinoids in Asthma Treatment?
Abstract
:1. Introduction
2. Asthma
3. Cannabinoid Receptors
4. Phytocannabinoids
5. Terpenes
6. Recreational Use
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CBD | cannabidiol |
THC | Δ9-tetrahydrocannabinol |
ECS | endocannabinoid system |
CB1 | cannabinoid receptor 1 |
CB2 | cannabinoid receptor 2 |
AEA | Anandamide |
2-AG | 2-arachidonoylglycerol |
FAAH | fatty acid amide hydrolase |
MAGL | monoacylglycerol lipase |
TRPV | transient receptor potential vanilloid channel |
5-HT1A | serotonin 1A |
PPAR | peroxisome proliferator-activated receptor |
GPR | G protein-coupled receptor |
AHR | airway hyperreactivity |
Th2 | T helper 2 |
ILC2 | type 2 innate lymphoid cells |
IgE | immunoglobulin E |
TSLP | thymic stromal lymphopoietin |
TNF-α | tumor necrosis factor-α |
PEF | peak expiratory flow |
FEV1 | forced expiratory volume in 1 s |
GCS | glucocorticosteroids |
BALF | bronchoalveolar-lavage fluid |
IL | interleukin |
Tregs | regulatory T cells |
TGF-β | transforming growth factor β |
COPD | chronic obstructive pulmonary disease |
EVALI | e-cigarette- and vaping-associated lung illness |
References
- Odieka, A.E.; Obuzor, G.U.; Oyedeji, O.O.; Gondwe, M.; Hosu, Y.S.; Oyedeji, A.O. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022, 27, 1689. [Google Scholar] [CrossRef] [PubMed]
- Brousseau, V.D.; Wu, B.-S.; MacPherson, S.; Morello, V.; Lefsrud, M. Cannabinoids and Terpenes: How Production of Photo-Protectants Can Be Manipulated to Enhance Cannabis sativa L. Phytochemistry. Front. Plant Sci. 2021, 12, 620021. [Google Scholar] [CrossRef]
- Leinen, Z.J.; Mohan, R.; Premadasa, L.S.; Acharya, A.; Mohan, M.; Byrareddy, S.N. Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications. Biomedicines 2023, 11, 2630. [Google Scholar] [CrossRef]
- Janecki, M.; Graczyk, M.; Lewandowska, A.A.; Pawlak, Ł. Anti-Inflammatory and Antiviral Effects of Cannabinoids in Inhibiting and Preventing SARS-CoV-2 Infection. Int. J. Mol. Sci. 2022, 23, 4170. [Google Scholar] [CrossRef]
- El Biali, M.; Broers, B.; Besson, M.; Demeules, J. Cannabinoids and COVID-19. Med. Cannabis Cannabinoids 2020, 3, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, M.; Lewandowska, A.A.; Dzierżanowski, T. The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation. Molecules 2021, 26, 4551. [Google Scholar] [CrossRef] [PubMed]
- Fantauzzi, M.F.; Aguiar, J.A.; Tremblay, B.J.-M.; Mansfield, M.J.; Yanagihara, T.; Chandiramohan, A.; Revill, S.; Ryu, M.H.; Carlsten, C.; Ask, K.; et al. Expression of endocannabinoid system components in human airway epithelial cells: Impact of sex and chronic respiratory disease status. ERJ Open Res. 2020, 6, 128–2020. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C. Medicinal cannabis: Challenges of an alternative pharmacotherapeutic. Biocell 2020, 44 (Suppl. S2), 3–4. [Google Scholar]
- Angelina, A.; Pérez-Diego, M.; López-Abente, J.; Palomares, O. The Role of Cannabinoids in Allergic Diseases: Collegium Internationale Allergologicum (CIA) Update 2020. Int. Arch. Allergy Immunol. 2020, 181, 565–584. [Google Scholar] [CrossRef]
- Pertwee, R.G.; Ross, R.A. Cannabinoid receptors and their ligands. Prostaglandins Leukot. Essent. Fat. Acids 2002, 66, 101–121. [Google Scholar] [CrossRef]
- Kicman, A.; Pędzińska-Betiuk, A.; Kozłowska, H. The potential of cannabinoids and inhibitors of endocannabinoid degradation in respiratory diseases. Eur. J. Pharmacol. 2021, 911, 174560. [Google Scholar] [CrossRef] [PubMed]
- Rieder, S.A.; Chauhan, A.; Singh, U.; Nagarkatti, M.; Nagarkatti, P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 2010, 215, 598–605. [Google Scholar] [CrossRef] [PubMed]
- García-Gutiérrez, M.S.; Navarrete, F.; Gasparyan, A.; Austrich-Olivares, A.; Sala, F.; Manzanares, J. Cannabidiol: A potential new alternative for the treatment of anxiety, depression, and psychotic disorders. Biomolecules 2020, 10, 1575. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, F.; Abreu, S.C.; Michels, M.; Xisto, D.G.; Blanco, N.G.; Hallak, J.E.; Zuardi, A.W.; Crippa, J.A.; Reis, C.; Bahl, M.; et al. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. Eur. J. Pharmacol. 2019, 843, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Silva Sofrás, F.M.; Desimone, M.F. Entourage Effect and Analytical Chemistry: Chromatography as a Tool in the Analysis of the Secondary Metabolism of Cannabis sativa L. Curr. Pharm. Des. 2023, 29, 394–406. [Google Scholar] [CrossRef]
- Christensen, C.; Rose, M.; Cornett, C.; Allesø, M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn’t. Biomedicines 2023, 11, 2323. [Google Scholar] [CrossRef]
- Turcotte, C.; Blanchet, M.R.; Laviolette, M.; Flamand, N. Impact of cannabis, cannabinoids, and endocannabinoids in the lungs. Front. Pharmacol. 2016, 7, 317. [Google Scholar] [CrossRef]
- Graczyk, M.; Lewandowska, A.A.; Melnyczok, P.; Zgliński, A.; Łukowicz, M. Cannabinoids—Perspectives for Individual Treatment in Selected Patients: Analysis of the Case Series. Biomedicines 2022, 10, 1862. [Google Scholar] [CrossRef]
- Bozkurt, T.E. Endocannabinoid system in the airways. Molecules 2019, 24, 4626. [Google Scholar] [CrossRef]
- Ribeiro, L.I.G.; Ind, P.W. Effect of cannabis smoking on lung function and respiratory symptoms: A structured literature review. npj Prim. Care Respir. Med. 2016, 26, 16071. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention; Global Initiative for Asthma: Fontana, WI, USA, 2024. [Google Scholar]
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef]
- Habib, N.; Pasha, M.A.; Tang, D.D. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022, 11, 2764. [Google Scholar] [CrossRef]
- Bonomo, S.; Marchetti, P.; Fasola, S.; Vesentini, R.; Marcon, A.; Ferrante, G.; Antonicelli, L.; Battaglia, S.; Bono, R.; Squillacioti, G.; et al. Asthma incidence can be influenced by climate change in Italy: Findings from the GEIRD study—A climatological and epidemiological assessment. Sci. Rep. 2023, 13, 19047. [Google Scholar] [CrossRef]
- Ilmarinen, P.; Stridsman, C.; Bashir, M.; Tuomisto, L.E.; Vähätalo, I.; Goksör, E.; Kankaanranta, H.; Backman, H.; Langhammer, A.; Piirilä, P.; et al. Level of education and asthma control in adult-onset asthma. J. Asthma 2022, 59, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The Cytokines of Asthma. Immunity 2019, 50, 975–991. [Google Scholar] [CrossRef]
- Komlósi, Z.I.; van de Veen, W.; Kovács, N.; Szűcs, G.; Sokolowska, M.; O’Mahony, L.; Akdis, M.; Akdis, C.A. Cellular and molecular mechanisms of allergic asthma. Mol. Aspects Med. 2022, 85, 100995. [Google Scholar] [CrossRef] [PubMed]
- Martín-Orozco, E.; Norte-Muñoz, M.; Martínez-García, J. Regulatory T cells in allergy and asthma. Front. Pediatr. 2017, 5, 117. [Google Scholar] [CrossRef]
- Oettgen, H.C.; Geha, R.S. IgE regulation and roles in asthma pathogenesis. J. Allergy Clin. Immunol. 2001, 107, 429–441. [Google Scholar] [CrossRef]
- Froidure, A.; Mouthuy, J.; Durham, S.R.; Chanez, P.; Sibille, Y.; Pilette, C. Asthma phenotypes and IgE responses. Eur. Respir. J. 2016, 47, 304–319. [Google Scholar] [CrossRef]
- Beeh, K.M.; Ksoll, M.; Buhl, R. Elevation of total serum immunoglobulin E is associated with asthma in nonallergic individuals. Eur. Respir. J. 2000, 16, 609–614. [Google Scholar] [CrossRef]
- Ji, T.; Li, H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front. Immunol. 2023, 14, 1149203. [Google Scholar] [CrossRef] [PubMed]
- Durrant, D.M.; Metzger, D.W. Emerging roles of T helper subsets in the pathogenesis of asthma. Immunol. Investig. 2010, 39, 526–549. [Google Scholar] [CrossRef]
- Chapman, D.G.; Irvin, C.G. Mechanisms of Airway Hyperresponsiveness in Asthma: The Past, Present and Yet to Come. Clin. Exp. Allergy 2015, 45, 706–719. [Google Scholar] [CrossRef]
- Jackson, D.J.; Wechsler, M.E.; Brusselle, G.; Buhl, R. Targeting the IL-5 pathway in eosinophilic asthma: A comparison of anti-IL-5 versus anti-IL-5 receptor agents. Allergy 2024, 79, 2943–2952. [Google Scholar] [CrossRef]
- Velcovsky, H.G.; Discher, T. Effect of histamine on bronchial hyperreactivity in sarcoidosis and other lung diseases. Pneumologie 1990, 44 (Suppl. S1), 569–571. [Google Scholar]
- Cockcroft, D.W.; Davis, B.E. Mechanisms of airway hyperresponsiveness. J. Allergy Clin. Immunol. 2006, 118, 551–559. [Google Scholar] [CrossRef]
- Brusasco, V.; Crimi, E. Methacholine provocation test for diagnosis of allergic respiratory diseases. Allergy 2001, 56, 1114–1120. [Google Scholar] [CrossRef]
- Tsurikisawa, N.; Oshikata, C.; Tsuburai, T.; Saito, H.; Sekiya, K.; Tanimoto, H.; Takeichi, S.; Mitomi, H.; Akiyama, K. Bronchial hyperresponsiveness to histamine correlates with airway remodelling in adults with asthma. Respir. Med. 2010, 104, 1271–1277. [Google Scholar] [CrossRef]
- Ozier, A.; Allard, B.; Bara, I.; Girodet, P.-O.; Trian, T.; Marthan, R.; Berger, P. The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology. J. Allergy 2011, 2011, 742710. [Google Scholar] [CrossRef] [PubMed]
- Reddel, H.K.; Bacharier, L.B.; Bateman, E.D.; Brightling, C.E.; Brusselle, G.G.; Buhl, R.; Cruz, A.A.; Duijts, L.; Drazen, J.M.; FitzGerald, J.M.; et al. Global Initiative for Asthma Strategy 2021 Executive Summary and Rationale for Key Changes. Am. J. Respir. Crit. Care Med. 2022, 205, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Papi, A.; Blasi, F.; Canonica, G.W.; Morandi, L.; Richeldi, L.; Rossi, A. Treatment strategies for asthma: Reshaping the concept of asthma management. Allergy Asthma Clin. Immunol. 2020, 16, 75. [Google Scholar] [CrossRef] [PubMed]
- García, B.M.; Isidoro, O.N.; Peña, A.R.; González-Moro, J.M.R. Asthma Bronchial. Med.-Programa Form. Médica Contin. Acreditado 2022, 13, 3829–3837. [Google Scholar] [CrossRef]
- Yung, S.; Han, D.; Lee, J.K. Cutaneous sarcoidosis in a patient with severe asthma treated with omalizumab. Can. Respir. J. 2015, 22, 315–316. [Google Scholar]
- Aswad, M.; Pechkovsky, A.; Ghanayiem, N.; Hamza, H.; Dotan, Y.; Louria-Hayon, I. High-CBD Extract (CBD-X) in Asthma Management: Reducing Th2-Driven Cytokine Secretion and Neutrophil/Eosinophil Activity. Pharmaceuticals 2024, 17, 1382. [Google Scholar] [CrossRef] [PubMed]
- Palomares, O. Could we co-opt the cannabinoid system for asthma therapy? Expert Rev. Clin. Immunol. 2023, 19, 1183–1186. [Google Scholar] [CrossRef]
- Plichta, J.; Kuna, P.; Panek, M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: Recent developments and future perspectives. Front. Immunol. 2023, 14, 1207641. [Google Scholar] [CrossRef]
- Rogers, L.; Jesenak, M.; Bjermer, L.; Hanania, N.A.; Seys, S.F.; Diamant, Z. Biologics in severe asthma: A pragmatic approach for choosing the right treatment for the right patient. Respir. Med. 2023, 218, 107414. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Steenkamp, J.; Singh, S.; Erhardt, W.; Rowell, J.; Rane, P.; Martin, N.; Ackert, J.P.L.; Quinton, A. Tezepelumab compared with other biologics for the treatment of severe asthma: A systematic review and indirect treatment comparison. J. Med. Econ. 2022, 25, 679–690. [Google Scholar] [CrossRef]
- Mavissakalian, M.; Brady, S. The Current State of Biologic Therapies for Treatment of Refractory Asthma. Clin. Rev. Allergy Immunol. 2020, 59, 195–207. [Google Scholar] [CrossRef]
- Carriera, L.; Fantò, M.; Martini, A.; D’Abramo, A.; Puzio, G.; Scaramozzino, M.U.; Coppola, A. Combination of Biological Therapy in Severe Asthma: Where We Are? J. Pers. Med. 2023, 13, 1594. [Google Scholar] [CrossRef]
- Boligan, K.F.; von Gunten, S. Innate lymphoid cells in asthma: Cannabinoids on the balance. Allergy 2017, 72, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Ashton, J.C.; Hancox, R.J. The Case for Cannabinoid CB1 Receptors as a Target for Bronchodilator Therapy for β-agonist Resistant Asthma. Curr. Drug Targets 2018, 19, 1344–1349. [Google Scholar] [CrossRef]
- Makwana, R.; Venkatasamy, R.; Spina, D.; Page, C. The effect of phytocannabinoids on airway hyper-responsiveness, airway inflammation, and cough. J. Pharmacol. Exp. Ther. 2015, 353, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Calignano, A.; Kátona, I.; Désarnaud, F.; Giuffrida, A.; La Rana, G.; Mackie, K.; Freund, T.F.; Piomelli, D. Bidirectional control of airway responsiveness by endogenous cannabinoids. Nature 2000, 408, 96–101. [Google Scholar] [CrossRef]
- Jarjou’i, A.; Izbicki, G. Medical cannabis in asthmatic patients. Isr. Med. Assoc. J. 2020, 22, 232–235. [Google Scholar] [PubMed]
- Tashkin, D.P.; Shapiro, B.J.; Lee, Y.E.; Harper, C.E. Effects of smoked marijuana in experimentally induced asthma. Am. Rev. Respir. Dis. 1975, 112, 377–386. [Google Scholar]
- Bozkurt, T.E.; Kaya, Y.; Durlu-Kandilci, N.T.; Onder, S.; Sahin-Erdemli, I. The effect of cannabinoids on dinitrofluorobenzene-induced experimental asthma in mice. Respir. Physiol. Neurobiol. 2016, 231, 7–13. [Google Scholar] [CrossRef]
- Abohalaka, R.; Karaman, Y.; Recber, T.; Onder, S.C.; Nemutlu, E.; Bozkurt, T.E. Endocannabinoid metabolism inhibition ameliorates ovalbumin-induced allergic airway inflammation and hyperreactivity in Guinea pigs. Life Sci. 2022, 306, 120808. [Google Scholar] [CrossRef]
- Pfitzer, G. New insights into the mechanisms of anandamide-induced airway dilation placing its degradation enzyme, FAAH center stage. Commentary on: Simon A, von Einem T, Seidinger A, Matthey M, Bindila L, Wenzel D (2022) The endocannabinoid anandamide is an airway relaxant in health and disease. Nat Commun 13:6941. Pflugers Arch. Eur. J. Physiol. 2023, 475, 557–559. [Google Scholar] [CrossRef]
- Frei, R.B.; Luschnig, P.; Parzmair, G.P.; Peinhaupt, M.; Schranz, S.; Fauland, A.; Wheelock, C.E.; Heinemann, A.; Sturm, E.M. Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen-induced pulmonary inflammation in mice. Allergy 2016, 71, 944–956. [Google Scholar] [CrossRef]
- Kwon, E.K.; Choi, Y.; Sim, S.; Ye, Y.M.; Shin, Y.S.; Park, H.S.; Ban, G.Y. Cannabinoid receptor 2 as a regulator of inflammation induced oleoylethanolamide in eosinophilic asthma. J. Allergy Clin. Immunol. 2024, 153, 998–1009.e9. [Google Scholar] [CrossRef]
- Hurrell, B.P.; Helou, D.G.; Shafiei-Jahani, P.; Howard, E.; Painter, J.D.; Quach, C.; Akbari, O. Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. J. Allergy Clin. Immunol. 2022, 149, 1628–1642.e10. [Google Scholar] [CrossRef] [PubMed]
- Ferrini, M.; Hong, S.; Roberts, K.; Jaffar, Z. Cannabinoid CB2 receptors as novel target for inhibiting house dust mite induced allergic airway inflammation (P6023). J. Immunol. 2013, 190 (Suppl. S1), 120.12. [Google Scholar] [CrossRef]
- Wei, C.; Huang, L.; Zheng, Y.; Cai, X. Selective activation of cannabinoid receptor 2 regulates Treg/Th17 balance to ameliorate neutrophilic asthma in mice. Ann. Transl. Med. 2021, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Kearley, J.; Robinson, D.S.; Lloyd, C.M. CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. J. Allergy Clin. Immunol. 2008, 122, 617–624.e6. [Google Scholar] [CrossRef]
- Presser, K.; Schwinge, D.; Wegmann, M.; Huber, S.; Schmitt, S.; Quaas, A.; Maxeiner, J.H.; Finotto, S.; Lohse, A.W.; Blessing, M.; et al. Coexpression of TGF-β1 and IL-10 Enables Regulatory T Cells to Completely Suppress Airway Hyperreactivity. J. Immunol. 2008, 181, 7751–7758. [Google Scholar] [CrossRef]
- Wang, L.; Wan, H.; Tang, W.; Ni, Y.; Hou, X.; Pan, L.; Song, Y.; Shi, G. Critical roles of adenosine A2A receptor in regulating the balance of Treg/Th17 cells in allergic asthma. Clin. Respir. J. 2018, 12, 149–157. [Google Scholar] [CrossRef]
- Hartl, D.; Koller, B.; Mehlhorn, A.T.; Reinhardt, D.; Nicolai, T.; Schendel, D.J.; Griese, M.; Krauss-Etschmann, S. Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J. Allergy Clin. Immunol. 2007, 119, 1258–1266. [Google Scholar] [CrossRef]
- Conrad, L.M.; Barrientos, G.; Cai, X.; Mukherjee, S.; Das, M.; Stephen-Victor, E.; Harb, H. Regulatory T cells and their role in allergic disease. Allergy 2024, 80, 77–93. [Google Scholar] [CrossRef]
- Giannini, L.; Nistri, S.; Mastroianni, R.; Cinci, L.; Vannacci, A.; Mariottini, C.; Passani, M.B.; Mannaioni, P.F.; Bani, D.; Masini, E. Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs. J. Cell. Mol. Med. 2008, 12, 2381–2394. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, H.Y.; Hur, J.; Kim, K.H.; Kang, J.Y.; Rhee, C.K.; Lee, S.Y. TRPV1 blocking alleviates airway inflammation and remodeling in a chronic asthma murine model. Allergy Asthma Immunol. Res. 2018, 10, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Reyes-García, J.; Carbajal-García, A.; Montaño, L.M. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur. J. Pharmacol. 2022, 915, 174692. [Google Scholar] [CrossRef]
- Muller, C.; Morales, P.; Reggio, P.H. Cannabinoid ligands targeting TRP channels. Front. Mol. Neurosci. 2019, 11, 487. [Google Scholar] [CrossRef]
- Kytikova, O.Y.; Perelman, J.M.; Novgorodtseva, T.P.; Denisenko, Y.K.; Kolosov, V.P.; Antonyuk, M.V.; Gvozdenko, T.A. Peroxisome proliferator-activated receptors as a therapeutic target in asthma. PPAR Res. 2020, 2020, 8906968. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.E. An update on PPAR activation by cannabinoids. Br. J. Pharmacol. 2016, 173, 1899–1910. [Google Scholar] [CrossRef]
- Nau, F.; Miller, J.; Saravia, J.; Ahlert, T.; Yu, B.; Happel, K.I.; Cormier, S.A.; Nichols, C.D. Serotonin 5-HT2 receptor activation prevents allergic asthma in a mouse model. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2015, 308, L191–L198. [Google Scholar] [CrossRef]
- Flanagan, T.W.; Sebastian, M.N.; Battaglia, D.M.; Foster, T.P.; Cormier, S.A.; Nichols, C.D. 5-HT2 receptor activation alleviates airway inflammation and structural remodeling in a chronic mouse asthma model. Life Sci. 2019, 236, 116790. [Google Scholar] [CrossRef]
- Sack, C.; Simpson, C.; Pacheco, K. The Emerging Spectrum of Respiratory Diseases in the US. Cannabis Industry. Semin. Respir. Crit. Care Med. 2023, 44, 405–414. [Google Scholar] [CrossRef]
- Tashkin, D.P.; Reiss, S.; Shapiro, B.J.; Calvarese, B.; Olsen, J.L.; Lodge, J.W. Bronchial effects of aerosolized delta 9-tetrahydrocannabinol in healthy and asthmatic subjects. Am. Rev. Respir. Dis. 1977, 115, 57–65. [Google Scholar]
- Williams, S.J.; Hartley, J.P.; Graham, J.D. Bronchodilator effect of delta1-tetrahydrocannabinol administered by aerosol of asthmatic patients. Thorax 1976, 31, 720–723. [Google Scholar]
- Tashkin, D.P.; Shapiro, B.J.; Frank, I.M. Acute effects of smoked marijuana and oral Δ9 tetrahydrocannabinol on specific airway conductance in asthmatic subjects. Am. Rev. Respir. Dis. 1974, 109, 420–428. [Google Scholar] [PubMed]
- Gong, H.; Tashkin, D.P.; Simmons, M.S.; Calvarese, B.; Shapiro, B.J. Acute and subacute bronchial effects of oral cannabinoids. Clin. Pharmacol. Ther. 1984, 35, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Underner, M.; Peiffer, G.; Perriot, J.; Jaafari, N. Asthma and cannabis, cocaine or heroin use. Rev. Mal. Respir. 2020, 37, 572–589. [Google Scholar] [CrossRef]
- Vuolo, F.; Petronilho, F.; Sonai, B.; Ritter, C.; Hallak, J.E.C.; Zuardi, A.W.; Crippa, J.A.; Dal-Pizzol, F. Evaluation of Serum Cytokines Levels and the Role of Cannabidiol Treatment in Animal Model of Asthma. Mediat. Inflamm. 2015, 2015, 538670. [Google Scholar] [CrossRef]
- Pelaia, C.; Heffler, E.; Crimi, C.; Maglio, A.; Vatrella, A.; Pelaia, G.; Canonica, G.W. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front. Pharmacol. 2022, 13, 851940. [Google Scholar] [CrossRef]
- Nair, P.; O’Byrne, P.M. The interleukin-13 paradox in asthma: Effective biology, ineffective biologicals. Eur. Respir. J. 2019, 53, 1802250. [Google Scholar] [CrossRef]
- Tan, K.B.C.; Alexander, D.; Linden, J.; Murray, E.K.; Gibson, D.S. Anti-inflammatory effects of phytocannabinoids and terpenes on inflamed Tregs and Th17 cells in vitro. Exp. Mol. Pathol. 2024, 139, 104924. [Google Scholar]
- Dudášová, A.; Keir, S.D.; Parsons, M.E.; Molleman, A.; Page, C.P. The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig. Pulm. Pharmacol. Ther. 2013, 26, 373–379. [Google Scholar] [CrossRef]
- Lowe, H.; Steele, B.; Bryant, J.; Toyang, N.; Ngwa, W. Non-cannabinoid metabolites of cannabis sativa l. With therapeutic potential. Plants 2021, 10, 400. [Google Scholar] [CrossRef]
- Chen, C.; Pan, Z. Cannabidiol and terpenes from hemp–ingredients for future foods and processing technologies. J. Futur. Foods 2021, 1, 113–127. [Google Scholar] [CrossRef]
- Sommano, S.R.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. The Cannabis Terpenes. Molecules 2020, 25, 5792. [Google Scholar] [CrossRef]
- Juergens, U.R.; Stöber, M.; Schmidt-Schilling, L.; Kleuver, T.; Vetter, H. Antiinflammatory effects of euclyptol (1.8-cineole) in bronchial asthma: Inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur. J. Med. Res. 1998, 3, 407–412. [Google Scholar]
- Del Prado-Audelo, M.L.; Cortés, H.; Caballero-Florán, I.H.; González-Torres, M.; Escutia-Guadarrama, L.; Bernal-Chávez, S.A.; Giraldo-Gomez, D.M.; Magaña, J.J.; Leyva-Gómez, G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front. Pharmacol. 2021, 12, 704197. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Song, B.; Cho, K.S.; Lee, I.S. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int. J. Mol. Sci. 2020, 21, 2187. [Google Scholar] [CrossRef]
- Caimmi, D.; Neukirch, C.; Demoly, P. Essential oils: What is the clinical tolerance in asthmatic patients? J. Asthma 2022, 59, 934–936. [Google Scholar] [CrossRef]
- Donelli, D.; Antonelli, M.; Baraldi, R.; Corli, A.; Finelli, F.; Gardini, F.; Margheritini, G.; Meneguzzo, F.; Neri, L.; Lazzeroni, D.; et al. Exposure to Forest Air Monoterpenes with Pulmonary Function Tests in Adolescents with Asthma: A Cohort Study. Forests 2023, 14, 2012. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Nam, S.Y.; Chung, C.K.; Seo, J.H.; Rah, S.Y.; Kim, H.M.; Jeong, H.J. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int. Immunopharmacol. 2014, 23, 273–282. [Google Scholar] [CrossRef]
- Juergens, U.R.; Sadlon, A.E.; Lamson, D.W. Anti-inflammatory properties of the monoterpene 1.8-cineole: Current evidence for co-medication in inflammatory airway diseases\rImmune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Drug Res. 2014, 64, 638–646. [Google Scholar]
- Bastos, V.P.D.; Gomes, A.S.; Lima, F.J.B.; Brito, T.S.; Soares, P.M.G.; Pinho, J.P.M.; Silva, C.S.; Santos, A.A.; Souza, M.H.L.P.; Magalhães, P.J.C. Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged guinea pigs. Basic Clin. Pharmacol. Toxicol. 2011, 108, 34–39. [Google Scholar] [CrossRef]
- Lee, H.S.; Park, D.E.; Song, W.J.; Park, H.W.; Kang, H.R.; Cho, S.H.; Sohn, S.W. Effect of 1.8-Cineole in Dermatophagoides pteronyssinus-stimulated bronchial epithelial cells and mouse model of asthma. Biol. Pharm. Bull. 2016, 39, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Kennedy-Feitosa, E.; Okuro, R.T.; Pinho Ribeiro, V.; Lanzetti, M.; Barroso, M.V.; Zin, W.A.; Porto, L.C.; Brito-Gitirana, L.; Valenca, S.S. Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse. Pulm. Pharmacol. Ther. 2016, 41, 11–18. [Google Scholar] [CrossRef]
- Falk, A.A.; Hagberg, M.T.; Lof, A.E.; Wigaeus-Hjelm, E.M.; Zhiping, W. Uptake, distribution and elimination of α-pinene in man after exposure by inhalation. Scand. J. Work. Environ. Health 1990, 16, 372–378. [Google Scholar] [CrossRef]
- Khoj, L.; Zagà, V.; Amram, D.L.; Hosein, K.; Pistone, G.; Bisconti, M.; Serafini, A.; Cammarata, L.M.; Cattaruzza, M.S.; Mura, M. Effects of cannabis smoking on the respiratory system: A state-of-the-art review. Respir. Med. 2024, 221, 107494. [Google Scholar] [CrossRef] [PubMed]
- Chatkin, J.M.; Zani-Silva, L.; Ferreira, I.; Zamel, N. Cannabis-Associated Asthma and Allergies. Clin. Rev. Allergy Immunol. 2019, 56, 196–206. [Google Scholar] [CrossRef]
- Goodwin, R.D.; Wyka, K.; Luo, M.; Weinberger, A.H.; Kattan, M. Cannabis legalization and childhood asthma in the United States: An ecologic analysis. Prev. Med. 2023, 170, 107414. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kanani, A. Occupational Asthma from Cannabis Indica Hybrids: Case Reports. J. Allergy Clin. Immunol. 2022, 149, AB31. [Google Scholar] [CrossRef]
- Winhusen, T.; Theobald, J.; Kaelber, D.C.; Lewis, D. Regular cannabis use, with and without tobacco co-use, is associated with respiratory disease. Drug Alcohol Depend. 2019, 204, 107557. [Google Scholar] [CrossRef]
- Ogeer, I.; Brouilliette, K.; Ohayon, J. Cannabis allergy: From edible to inhalation-case report and challenge. Allergy Asthma Clin. Immunol. 2021, 17 (Suppl. S1), 52. [Google Scholar]
- Preteroti, M.; Wilson, E.T.; Eidelman, D.H.; Baglole, C.J. Modulation of pulmonary immune function by inhaled cannabis products and consequences for lung disease. Respir. Res. 2023, 24, 95. [Google Scholar] [CrossRef]
- Hazekamp, A.; Ruhaak, R.; Zuurman, L.; Van Gerven, J.; Verpoorte, R. Evaluation of a vaporizing device (Volcano®) for the pulmonary administration of tetrahydrocannabinol. J. Pharm. Sci. 2006, 95, 1308–1317. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.D.; Arora, A.; Barsky, S.H.; Kleerup, E.C.; Simmons, M.; Tashkin, D.P. Airway Inflammation in Young Marijuana and Tobacco Smokers. Am. J. Respir. Crit. Care Med. 1998, 157 Pt I, 928–937. [Google Scholar] [CrossRef]
- Barbers, R.G.; Gong, H.; Tashkin, D.P.; Oishi, J.; Wallace, J.M. Differential examination of bronchoalveolar lavage cells in tobacco cigarette and marijuana smokers. Am. Rev. Respir. Dis. 1987, 135, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Ocampo, T.L.; Rans, T.S. Cannabis sativa: The unconventional “weed” allergen. Ann. Allergy Asthma Immunol. 2015, 114, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Tashkin, D.P.; Baldwin, G.C.; Sarafian, T.; Dubinett, S.; Roth, M.D. Respiratory and immunologic consequences of marijuana smoking. J. Clin. Pharmacol. 2002, 42, 71S–81S. [Google Scholar] [CrossRef]
- Malvi, A.; Khatib, M.N.; Balaraman, A.K.; Roopashree, R.; Kaur, M.; Srivastava, M.; Barwal, A.; Prasad, S.; Rajput, P.; Syed, R.; et al. Cannabis consumption and risk of asthma: A systematic review and meta-analysis. BMC Pulm. Med. 2025, 29, 48. [Google Scholar]
- Ghasemiesfe, M.; Ravi, D.; Vali, M.; Korenstein, D.; Arjomandi, M.; Frank, J.; Austin, P.C.; Keyhani, S. Marijuana use, respiratory symptoms, and pulmonary function: A systematic review and meta-analysis. Ann. Intern. Med. 2018, 169, 106–115. [Google Scholar] [CrossRef]
- Jacinto, T.; Malinovchi, A.; Janson, C.; Fonseca, J.; Alving, K. Effect of cigarette smoke exposure on exhaled nitric oxide and its relation to asthma and hay feverin adult NHANES subjects. Eur. Respir. J. 2015, 46 (Suppl. S59), PA4000. [Google Scholar]
- Ribeiro, L.; Ind, P.W. Marijuana and the lung: Hysteria or cause for concern? Breathe 2018, 14, 196–205. [Google Scholar] [CrossRef]
- Tashkin, D.P.; Roth, M.D. Pulmonary effects of inhaled cannabis smoke. Am. J. Drug Alcohol Abuse 2019, 45, 596–609. [Google Scholar] [CrossRef]
- Abdallah, S.J.; Smith, B.M.; Ware, M.A.; Moore, M.; Li, P.Z.; Bourbeau, J.; Jensen, D. Effect of vaporized cannabis on exertional breathlessness and exercise endurance in advanced chronic obstructive pulmonary disease: A randomized controlled trial. Ann. Am. Thorac. Soc. 2018, 15, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Zeiger, J.S.; Silvers, W.S.; Winders, T.A.; Hart, M.K.; Zeiger, R.S. Cannabis attitudes and patterns of use among followers of the Allergy & Asthma Network. Ann. Allergy Asthma Immunol. 2021, 126, 401–410.e1. [Google Scholar] [CrossRef] [PubMed]
- Weaver, V.M.; Hua, J.T.; Fitzsimmons, K.M.; Laing, J.R.; Farah, W.; Hart, A.; Braegger, T.J.; Reid, M.; Weissman, D.N. Fatal Occupational Asthma in Cannabis Production—Massachusetts, 2022. MMWR. Morb. Mortal. Wkly. Rep. 2023, 72, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R.D.; Zhou, C.; Silverman, K.D.; Rastogi, D.; Borrell, L.N. Cannabis use and the prevalence of current asthma among adolescents and adults in the United States. Prev. Med. 2024, 179, 107827. [Google Scholar] [CrossRef]
- Dalbah, R.; Haddaden, M.; Haddadin, B.; Cecchini, A.; Abdelhay, A.; Hoskere, G. V Effects of Cannabis Use on Acute Asthma Exacerbation in Hospitalized Patients. Chest 2023, 164, A58. [Google Scholar] [CrossRef]
- ieringer, D.; St. Laurent, J.; Goodrich, S. Cannabis vaporizer combines efficient delivery of THC with effective suppression of pyrolytic compounds. J. Cannabis Ther. 2004, 4, 7–27. [Google Scholar] [CrossRef]
- Earleywine, M.; Van Dam, N.T. Case studies in cannabis vaporization. Addict. Res. Theory 2010, 18, 243–249. [Google Scholar] [CrossRef]
- Kaplan, A.G. Cannabis and Lung Health: Does the Bad Outweigh the Good? Pulm. Ther. 2021, 7, 395–408. [Google Scholar] [CrossRef]
- Fehr, K.O.; Kalant, H. Analysis of cannabis smoke obtained under different combustion conditions. Can. J. Physiol. Pharmacol. 1972, 50, 761–767. [Google Scholar] [CrossRef]
- Tashkin, D.P. Effects of marijuana smoking on the lung. Ann. Am. Thorac. Soc. 2013, 10, 239–247. [Google Scholar] [CrossRef]
- MacCallum, C.A.; Lo, L.A.; Pistawka, C.A.; Christiansen, A.; Boivin, M. Cannabis vaporisation: Understanding products, devices and risks. Drug Alcohol Rev. 2024, 43, 732–745. [Google Scholar] [CrossRef]
- Aston, E.R.; Farris, S.G.; Metrik, J.; Rosen, R.K. Vaporization of marijuana among recreational users: A qualitative study. J. Stud. Alcohol Drugs 2019, 80, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Aston, E.R.; Scott, B.; Farris, S.G. A qualitative analysis of cannabis vaporization among medical users. Exp. Clin. Psychopharmacol. 2019, 27, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Boakye, E.; Obisesan, O.H.; Uddin, S.M.I.; El-Shahawy, O.; Dzaye, O.; Osei, A.D.; Benjamin, E.J.; Stokes, A.C.; Robertson, R.M.; Bhatnagar, A.; et al. Cannabis vaping among adults in the United States: Prevalence, trends, and association with high-risk behaviors and adverse respiratory conditions. Prev. Med. 2021, 153, 106800. [Google Scholar] [CrossRef] [PubMed]
- Boakye, E.; El Shahawy, O.; Obisesan, O.; Dzaye, O.; Osei, A.D.; Erhabor, J.; Uddin, S.M.I.; Blaha, M.J. The inverse association of state cannabis vaping prevalence with the e-cigarette or vaping product-use associated lung injury. PLoS ONE 2022, 17, e0276187. [Google Scholar] [CrossRef]
- Johnson, D.A.; Funnell, M.P.; Heaney, L.M.; Cable, T.G.; Wheeler, P.C.; Bailey, S.J.; Clifford, T.; James, L.J. Cannabidiol Oil Ingested as Sublingual Drops or Within Gelatin Capsules Shows Similar Pharmacokinetic Profiles in Healthy Males. Cannabis Cannabinoid Res. 2023, 9, e1423–e1432. [Google Scholar] [CrossRef]
- MacCallum, C.A.; Lo, L.A.; Boivin, M. “Is medical cannabis safe for my patients?” A practical review of cannabis safety considerations. Eur. J. Intern. Med. 2021, 89, 10–18. [Google Scholar] [CrossRef]
- Stella, B.; Baratta, F.; Della Pepa, C.; Arpicco, S.; Gastaldi, D.; Dosio, F. Cannabinoid Formulations and Delivery Systems: Current and Future Options to Treat Pain. Drugs 2021, 81, 1513–1557. [Google Scholar] [CrossRef]
- Metcalf, M.; Rossie, K.; Stokes, K.; Tanner, B. Health Care Professionals’ Clinical Skills to Address Vaping and e-Cigarette Use by Patients: Needs and Interest Questionnaire Study. JMIR Form. Res. 2022, 6, e32242. [Google Scholar] [CrossRef]
- Posis, A.; Bellettiere, J.; Liles, S.; Alcaraz, J.; Nguyen, B.; Berardi, V.; Klepeis, N.E.; Hughes, S.C.; Wu, T.; Hovell, M.F. Indoor cannabis smoke and children’s health. Prev. Med. Rep. 2019, 14, 100853. [Google Scholar] [CrossRef]
- Bramness, J.G.; Von Soest, T. A longitudinal study of cannabis use increasing the use of asthma medication in young Norwegian adults. BMC Pulm. Med. 2019, 19, 52. [Google Scholar] [CrossRef]
- Gieringer, D.H. Cannabis “Vaporization”: A Promising Strategy for Smoke Harm Reduction. In Cannabis Therapeutics in HIV/AIDS; Taylor and Francis: Abingdon, UK, 2012; pp. 153–170. ISBN 9780203049105. [Google Scholar]
- Clobes, T.A.; Palmier, L.A.; Gagnon, M.; Klaiman, C.; Arellano, M. The impact of education on attitudes toward medical cannabis. PEC Innov. 2022, 1, 100009. [Google Scholar] [CrossRef] [PubMed]
Mode of Action | Agent | Result | Clinical Implication | Reference |
---|---|---|---|---|
CB1 antagonism | SR141716 | ↑ Irritant-induced smooth muscle contraction | Exacerbation of bronchoconstriction and cough | [55] |
CB1 agonism | ACEA | ↓ 5-hydroxytryptamine-induced smooth muscle contraction | Prevention of tracheal hyperreactivity | [58] |
FAAH/MAGL inhibition | JZL195 | ↓ Pro-inflammatory cytokine production ↓ Inflammatory cell infiltration | Alleviation of airway hyperreactivity and inflammation in allergic asthma | [59] |
CB2 agonism | JWH133 | ↑ Chemoattractant-induced eosinophil shape change, chemotaxis, and CD11b surface expression ↑ Eosinophil influx in the airways ↑ Production of reactive oxygen species | Aggravation of airway hyperreactivity | [61] |
CB2 antagonism | SR144528 | ↓ Activity of peripheral blood eosinophils and dEol-1 cells ↓ Level of inflammatory and type 2 cytokines | Alleviation of airway hyperreactivity | [62] |
CB2 agonism | JWH133 | ↑ ILC2 proliferation and function ↑ ILC2-driven lung inflammation | Exacerbation of airway hyperreactivity | [63] |
CB2 agonism | P6023 | ↓ Accumulation of CD4+ T cells and eosinophils ↓ Th2 cytokine production | Mitigation of airway hyperreactivity and mucus production | [64] |
CB2 agonism | β-caryophyllene | ↓ Infiltration of inflammatory agents (eosinophils, neutrophils, lymphocytes, IL-6, IL-8, and TNF-α) ↑ CD4+ differentiation into Treg cells ↑ Cytokines secreted by Tregs (TGF-β and IL-10) ↓ Cytokines secreted by Th17 (IL-17A and IL-22) | Amelioration of neutrophilic asthma symptoms | [65] |
CB1/CB2 agonism | CP55, 940 | ↓ Leukocyte and eosinophilic infiltration ↓ Mast cell activation ↓ Free radical-induced DNA injury ↓ Myeloperoxidase activity ↓ TNF-α and prostaglandin D2 levels in BALF ↓ Bronchial lumen restriction and alveolar hyperinflation | Reduction in cough and dyspnea | [71] |
Phytocannabinoid | Result | Clinical Implication | Reference |
---|---|---|---|
THC | ↓ TNF-α-enhanced vagal-induced bronchoconstriction ↓ Citric acid-induced cough response | Decrease in airway hyperreactivity and cough | [54] |
CBD | ↓ Collagen fiber content in airway and alveolar septa ↓ Proinflammatory markers in BALF and lung homogenate | Decrease in airway hyperreactivity and remodeling processes | [14] |
CBD | ↓ Th1 cytokines (TNF-α and IL-6) ↓ Th2 cytokines (IL-4, IL-5 and IL-13) | Potential adjunctive asthma treatment | [85] |
High-concentration CBD extract | ↓ Leukocyte, neutrophil, and eosinophil migration ↓ Differentiation of CD4+ T cells into Th2 cells ↓ Th2-mediated immune response ↓ IgE blood levels ↓ Secretion of type 2 cytokines (IL-4, IL-5, and IL-13) ↓ Secretion of non-type 2 cytokines (IL-8 and IL-6) | Potential adjunctive treatment for both type 2 and non-type 2 asthma | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowska, A.A.; Rybacki, C.; Graczyk, M.; Waśniowska, D.; Kołodziej, M. Is There a Place for Cannabinoids in Asthma Treatment? Int. J. Mol. Sci. 2025, 26, 3328. https://doi.org/10.3390/ijms26073328
Lewandowska AA, Rybacki C, Graczyk M, Waśniowska D, Kołodziej M. Is There a Place for Cannabinoids in Asthma Treatment? International Journal of Molecular Sciences. 2025; 26(7):3328. https://doi.org/10.3390/ijms26073328
Chicago/Turabian StyleLewandowska, Agata Anna, Cezary Rybacki, Michał Graczyk, Dorota Waśniowska, and Małgorzata Kołodziej. 2025. "Is There a Place for Cannabinoids in Asthma Treatment?" International Journal of Molecular Sciences 26, no. 7: 3328. https://doi.org/10.3390/ijms26073328
APA StyleLewandowska, A. A., Rybacki, C., Graczyk, M., Waśniowska, D., & Kołodziej, M. (2025). Is There a Place for Cannabinoids in Asthma Treatment? International Journal of Molecular Sciences, 26(7), 3328. https://doi.org/10.3390/ijms26073328