A New Perspective on Agitation in Alzheimer’s Disease: A Potential Paradigm Shift
Abstract
:1. Introduction
2. Agitation
2.1. Clinical Aspects
2.2. Neural Substrate
2.3. Actual Treatment Proposals
3. Aggression
4. Emotions and Cognition
5. The Autonomic Nervous System in the Elderly and in Alzheimer’s Disease
Autonomic Nervous System and Agitation
6. Discussion
A Paradigm Shift
7. Conclusions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Cummings, J.; Mintzer, J.; Brodaty, H.; Sano, M.; Banerjee, S.; Devanand, D.P.; Gauthier, S.; Howard, R.; Lanctôt, K.; Lyketsos, C.G.; et al. Agitation in cognitive disorders: International Psychogeriatric Association provisional consensus clinical and research definition. Int. Psychogeriatr. 2015, 27, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dang, M.; Zhang, Z. Brain mechanisms underlying neuropsychiatric symptoms in Alzheimer’s disease: A systematic review of symptom general and–specific lesion patterns. Mol. Neurodegener. 2021, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, K.; Turnwald, M.; O’Neil, T.; Maust, D.T.; Gerlach, L.B. Behavioral symptoms and treatment challenges for patients living with dementia: Hospice clinician and caregiver perspectives. J. Am. Geriatr. Soc. 2024. early view. [Google Scholar] [CrossRef]
- Peters, M.E.; Schwartz, S.; Han, D.; Rabins, P.V.; Steinberg, M.; Tschanz, J.T.; Lyketsos, C.G. Neuropsychiatric symptoms as predictors of progression to severe Alzheimer’s dementia and death: The Cache County Dementia Progression Study. Am. J. Psychiatr. 2015, 172, 460. [Google Scholar]
- Shin, I.-S.; Carter, M.; Masterman, D.; Fairbanks, L.; Cummings, J.L. Neuropsychiatric symptoms and quality of life in Alzheimer disease. Am. J. Geriatr. Psychiatry 2005, 13, 469–474. [Google Scholar]
- Craig, D.; Mirakhur, A.; Hart, D.J.; McIlroy, S.P.; Passmore, A.P. A cross-sectional study of neuropsychiatric symptoms in 435 patients with Alzheimer’s disease. Am. J. Geriatr. Psychiatry 2005, 13, 460–468. [Google Scholar]
- Jicha, G.A.; Carr, S.A. Conceptual evolution in Alzheimer’s disease: Implications for understanding the clinical phenotype of progressive neurodegenerative disease. J. Alzheimers Dis. 2010, 19, 253–272. [Google Scholar]
- Zuidema, S.U.; Derksen, E.; Verhey, F.R.J.; Koopmans, R.T.C.M. Prevalence of neuropsychiatric symptoms in a large sample of Dutch nursing home patients with dementia. Int. J. Geriatr. Psychiatry 2007, 22, 632–638. [Google Scholar]
- Liu, K.Y.; Whitsel, E.A.; Heiss, G.; Palta, P.; Reeves, S.; Lin, F.V.; Mather, M.; Roiser, J.P.; Howard, R. Heart rate variability and risk of agitation in Alzheimer’s disease: The Atherosclerosis Risk in Communities Study. Brain Commun. 2023, 5, fcad269. [Google Scholar]
- Krasucki, C.; Howard, R.; Mann, A. The relationship between anxiety disorders and age. Int. J. Geriatr. Psychiatry 1998, 13, 79–99. [Google Scholar]
- Mintzer, J.E.; Brawman-Mintzer, O. Agitation as a possible expression of generalized anxiety disorder in demented elderly patients: Toward a treatment approach. J. Clin. Psychiatry 1996, 57 (Suppl. S7), 55–63. [Google Scholar] [PubMed]
- Masters, M.C.; Morris, J.C.; Roe, C.M. “Noncognitive” symptoms of early Alzheimer disease: A longitudinal analysis. Neurology 2015, 84, 617–622. [Google Scholar] [PubMed]
- Breitve, M.H.; Hynninen, M.J.; Brønnick, K.; Chwiszczuk, L.J.; Auestad, B.H.; Aarsland, D.; Rongve, A. A longitudinal study of anxiety and cognitive decline in dementia with Lewy bodies and Alzheimer’s disease. Alzheimers Res. Ther. 2016, 8, 3. [Google Scholar]
- Lyketsos, C.G.; Steinberg, M.; Tschanz, J.T.; Norton, M.C.; Steffens, D.C.; Breitner, J.C. Mental and behavioral disturbances in dementia: Findings from the Cache County Study on Memory in Aging. Am. J. Psychiatry 2000, 157, 708–714. [Google Scholar]
- Liu, K.Y.; Costello, H.; Reeves, S.; Howard, R. The relationship between anxiety and incident agitation in Alzheimer’s disease. J. Alzheimers Dis. 2020, 78, 1119–1127. [Google Scholar]
- Carrarini, C.; Russo, M.; Dono, F.; Barbone, F.; Rispoli, M.G.; Ferri, L.; Di Pietro, M.; Digiovanni, A.; Ajdinaj, P.; Speranza, R.; et al. Agitation and dementia: Prevention and treatment strategies in acute and chronic conditions. Front. Neurol. 2021, 12, 644317. [Google Scholar]
- Lee, D.; Clark, E.D.; Antonsdottir, I.M.; Porsteinsson, A.P. A 2023 update on the advancements in the treatment of agitation in Alzheimer’s disease. Expert Opin. Pharmacother. 2023, 24, 691–703. [Google Scholar]
- Liu, K.Y.; Stringer, A.E.; Reeves, S.J.; Howard, R.J. The neurochemistry of agitation in Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2018, 43, 99–107. [Google Scholar]
- Imbimbo, C.; Ramusino, M.C.; De Franco, V.; Gatti, A.; Perini, G. Emerging Pharmacological Approaches for Psychosis and Agitation in Alzheimer’s Disease. CNS Drugs 2025, 39, 143–160. [Google Scholar] [CrossRef]
- Reuben, D.B.; Kremen, S.; Maust, D.T. Dementia prevention and treatment: A narrative review. JAMA Intern Med. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Yunusa, I.; Alsumali, A.; Garba, A.E.; Regestein, Q.R.; Eguale, T. Assessment of reported comparative effectiveness and safety of atypical antipsychotics in the treatment of behavioral and psychological symptoms of dementia: A network meta-analysis. JAMA Netw. Open 2019, 2, e190828–e19082857. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.O.; Sail, K.R.; Snow, A.L.; Davila, J.A.; Fouladi, N.N.; Kunik, M.E. Modeling Causes of Aggressive Behavior in Patients with Dementia. Gerontologist 2013, 53, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, M.C.; Stebbins, L.; Argüelles-Borge, S.; Trinidad, B.; Golden, C.J. Development and treatment of aggression in individuals with dementia. Aggress. Violent Behav. 2020, 54, 10141. [Google Scholar] [CrossRef]
- Baron, R.A.; Richardson, D.R. Human Aggression, 2nd ed.; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Vickland, V.; Chilko, N.; Draper, B.; Low, L.-F.; O’Connor, D.; Brodaty, H. Individualized guidelines for the management of aggression in dementia—Part 1: Key concepts. Int. Psychogeriatrics 2012, 24, 1112–1124. [Google Scholar] [CrossRef]
- Ford, A.H. Neuropsychiatric aspects of dementia. Maturitas 2014, 79, 209–215. [Google Scholar] [CrossRef]
- Šimic, G.; Tkalcic, M.; Vukic, V.; Mulc, D.; Španic, E.; Šagud, M.; Olucha-Bordonau, F.E.; Vukšic, M.; Hof, P.R. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021, 11, 823. [Google Scholar] [CrossRef]
- Malik, F.; Marwaha, R. Developmental Stages of Social Emotional Development in Children; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Steimer, T. The biology of fear- and anxiety-related behaviors. Dialogues Clin. Neurosci. 2002, 4, 231–249. [Google Scholar] [CrossRef]
- Jutkowitz, E.; Brasure, M.; Fuchs, E.; Shippee, T.; Kane, R.A.; Fink, H.A.; Butler, M.; Sylvanus, T.; Kane, R.L. Care-Delivery Interventions to Manage Agitation and Aggression in Dementia Nursing Home and Assisted Living Residents: A Systematic Review and Meta-analysis. J. Am. Geriatr. Soc. 2016, 64, 477–488. [Google Scholar] [CrossRef]
- Elvidge, K.L.; Tilden, D.; Christodoulou, J.; Farrar, M.A.; Maack, M.; Valeri, M.; Ellis, M.; Smith, N.J.C.; Childhood Dementia Working Group. The collective burden of childhood dementia: A scoping review. Brain 2023, 146, 4446–4455. [Google Scholar] [CrossRef]
- Ostergaard, J.R.; Nelvagal, H.R.; Cooper, J.D. Top-down and bottom-up propagation of disease in the neuronal ceroid lipofuscinoses. Front. Neurol. 2022, 13, 1061363. [Google Scholar] [CrossRef]
- Ostergaard, J.R. Etiology of anxious and fearful behavior in juvenile neuronal ceroid lipofuscinosis (CLN disease). Front. Psychiatry 2023, 14, 1059082. [Google Scholar] [CrossRef] [PubMed]
- Reisberg, B.; Ferris, S.H.; de Leon, M.J.; Crook, T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [Google Scholar] [PubMed]
- Lewis, M.D.; Granic, I. Phases of social-emotional development from birth to school age. In The Developmental Relations Among Mind, Brain and Education: Essays in Honor of Robbie Case; Ferrari, M., Vuletic, L., Eds.; Springer: New York, NY, USA, 2010; pp. 179–212. [Google Scholar]
- Viewpoints. Approaches to defining and investigating fear. Nat. Neurosci. 2019, 22, 1205–1216. [Google Scholar]
- Bateson, M.; Brilot, B.; Nettle, D. Anxiety: An evolutionary approach. Can. J. Psychiatry 2011, 56, 707–715. [Google Scholar]
- Calhoon, G.G.; Tye, K.M. Resolving the neural circuits of anxiety. Nat. Neurosci. 2015, 18, 1394–1404. [Google Scholar]
- Duval, E.R.; Javanbakht, A.; Liberzon, I. Neural circuits in anxiety and stress disorders: A focused review. Ther. Clin. Risk Manag. 2015, 11, 115–126. [Google Scholar]
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar]
- Charney, D.S.; Grillon, C.; Bremner, D. The neurobiological basis of anxiety and fear: Circuits, mechanisms, and neurochemical interactions (Part 1). Neuroscientist 1998, 4, 35–44. [Google Scholar]
- Engelhardt, E.; Laks, J. Alzheimer disease neuropathology: Understanding autonomic dysfunction. Dement. Neuropsychol. 2008, 2, 183–191. [Google Scholar]
- Quadt, L.; Critchley, H.; Nagai, Y. Cognition, emotion, and the central autonomic network. Auton. Neurosci. Basic Clin. 2022, 238, 102948. [Google Scholar] [CrossRef]
- Nair, S.S.; Govindankutty, M.M.; Balakrishnan, M.; Prasad, K.; Sathyaprabha, T.N.; Udupa, K. Investigation of Autonomic Dysfunction in Alzheimer’s Disease—A Computational Model-Based Approach. Brain Sci. 2023, 13, 1322. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.-T.; Sun, Z.-J.; Shao, S.-C.; Yang, Y.-C.; Lu, F.-H.; Chang, C.-J.; Liao, T.-C.; Li, C.-Y.; Chen, T.H.-H.; Wu, J.-S.; et al. Autonomic modulation and the risk of dementia in a middle-aged cohort: A 17-year follow-up study. Biomed. J. 2023, 46, 100576. [Google Scholar] [CrossRef] [PubMed]
- Jandackova, V.K.; Scholes, S.; Britton, A.; Steptoe, A. Midlife heart rate variability and cognitive decline: A large longitudinal cohort study. Int. J. Clin. Health Psychol. 2024, 24, 100518. [Google Scholar] [CrossRef]
- Gupta, N.; Chandra, S.R.; Rukmani, M.R.; Sathyaprabha, T.N. Autonomic dysfunction in patients with Alzheimer’s disease. Alzheimer’s Dement. Cogn. Neurol. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Weinstein, G.; Davis-Plourde, K.; Beiser, A.S.; Seshadri, S. Autonomic imbalance and risk of dementia and stroke: The framingham study. Stroke 2021, 52, 2068e76. [Google Scholar]
- Deutscha, C.K.; Patnaik, P.P.; Grecoc, F.A. Is There a Characteristic Autonomic Response During Outbursts of Combative Behavior in Dementia Patients? J. Alzheimer’s Dis. Rep. 2020, 5, 389–394. [Google Scholar]
- Mole, S.E.; Anderson, G.; Band, H.A.; Berkovic, S.F.; Cooper, J.D.; Holthaus, S.M.K.; McKay, T.R.; Medina, D.L.; Rahim, A.A.; Schulz, A.; et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol. 2019, 18, 107–116. [Google Scholar]
- Ostergaard, J.R. Treatment of non-epileptic episodes of anxious, fearful behavior in adolescent juvenile neuronal ceroid lipofuscinosis (CLN3 disease). Front. Neurol. 2023, 14, 1216861. [Google Scholar]
- Baekmann, C.; Handrup, M.M.; Molgaard, H.; Ejerskov, C.; Jensen, H.K.; Ostergaard, J.R. Insight of autonomic dysfunction in CLN3 Disease: A Study on episodes resembling Paroxysmal Sympathetic Hyperactivity (PSH). Orphanet. J. Rare Dis. 2024, 19, 374. [Google Scholar] [CrossRef]
- Degnan, K.A.; Almas, A.N.; Fox, N.A. Temperament and the environment in the etiology of childhood anxiety. J. Child Psychol. Psychiatry 2010, 51, 497–517. [Google Scholar]
- Mather, M. The emotion paradox in the aging body and brain. Ann. N. Y. Acad. Sci. 2024, 1536, 13–41. [Google Scholar] [PubMed]
- Heneka, M.T.; van der Flier, W.M.; Jessen, F.; Hoozemanns, J.; Thal, D.R.; Boche, D.; Brosseron, F.; Teunissen, C.; Zetterberg, H.; Jacobs, A.H.; et al. Neuroinflammation in Alzheimer disease. Nat. Rev. Immunol. 2024. [Google Scholar] [CrossRef]
- Chobanyan-Jürgens, K.; Jordan, J. Autonomic nervous system activity and inflammation: Good ideas, good treatments, or both? American Journal of Physiology. Heart Circ. Physiol. 2015, 309, H1999–H2001. [Google Scholar]
- Elenkov, I.J.; Wilder, R.L.; Chrousos, G.P.; Vizi, E.S. The sympathetic nerve–an integrative interface between two supersystems: The brain and the immune system. Pharmacol. Rev. 2000, 52, 595–638. [Google Scholar] [CrossRef]
- Pongratz, G.; Straub, R.H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 2014, 16, 504. [Google Scholar]
- Jänig, W. Sympathetic nervous system and inflammation: A conceptual view. Auton. Neurosci. 2014, 182, 4–14. [Google Scholar]
- Carandina, A.; Rodrigues, G.D.; Di Francesco, P.; Filtz, A.; Bellocchi, C.; Furlan, L.; Carugo, S.; Montano, N.; Tobaldini, E. Effects of transcutaneous auricular vagus nerve stimulation on cardiovascular autonomic control in health and disease. Auton. Neurosci. 2021, 236, 102893. [Google Scholar]
- Hilz, M.J. Transcutaneous vagus nerve stimulation—A brief introduction and overview. Auton. Neurosci. 2022, 243, 103038. [Google Scholar]
- Merrill, C.A.; Jonsson, M.A.; Minthon, L.; Ejnell, H.; Silander, H.C.-S.; Blennow, K.; Karlsson, M.; Nordlund, A.; Rolstad, S.; Warkentin, S.; et al. Vagus nerve stimulation in patients with Alzheimer’s disease: Additional follow-up results of a pilot study through 1 year. J. Clin. Psychiatry 2006, 67, 1171–1189. [Google Scholar]
- Peuker, E.T.; Filler, T.J. The nerve supply of the human auricle. Clin. Anat. 2002, 15, 35–37. [Google Scholar]
- Bretherton, B.; Atkinson, L.; Murray, A.; Clancy, J.; Deuchars, S.; Deuchars, J. Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: Potential benefits of daily stimulation. Aging 2019, 11, 4836–4857. [Google Scholar] [PubMed]
- Badran, B.W.; Yu, A.B.; Adair, D.; Mappin, G.; DeVries, W.H.; Jenkins, D.D.; George, M.S.; Bikson, M. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, targeting, and considerations. J. Vis. Exp. 2019, 143, e58984. [Google Scholar]
- Watanabe, K.; Tubbs, R.S.; Satoh, S.; Zomorodi, A.R.; Liedtke, W.; Labidi, M.; Friedman, A.H.; Fukushima, T. Isolated Deep Ear Canal Pain: Possible Role of Auricular Branch of Vagus Nerve-Case Illustrations with Cadaveric Correlation. World Neurosurg. 2016, 96, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhang, X.; Zhou, M.; Kendrick, K.M.; Zhao, W. Therapeutic applications of transcutaneous auricular vagus nerve stimulation with potential for application in neurodevelopmental or other pediatric disorders. Front. Endocrinol. 2022, 13, 1000758. [Google Scholar] [CrossRef]
- Berboth, S.; Morawetz, C. Amygdala-prefrontal connectivity during emotion regulation: A meta-analysis of psychophysiological interactions. Neuropsychologia 2021, 153, 107767. [Google Scholar] [CrossRef]
- Kohn, N.; Eickhoff, S.B.; Scheller, M.; Laird, A.R.; Fox, P.T.; Habel, U. Neural network of cognitive emotion regulation—An ALE meta-analysis and MACM analysis. Neuroimage 2014, 87, 345–355. [Google Scholar]
- Fallgatter, A.J.; Ehlis, A.C.; Ringel, T.M.; Herrmann, M.J. Age effect on far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Int. J. Psychophysiol. 2005, 56, 37–43. [Google Scholar] [CrossRef]
- Laucius, O.; Gabrinoviciene, R.; Juceviciute, N.; Vaitkus, A.; Balnyte, R.; Petrikonis, K.; Rastenyte, D. Effect of aging on vagus somatosensory evoked potentials and ultrasonographic parameters of the vagus nerve. J. Clin. Neurosci. 2021, 90, 359–362. [Google Scholar]
- Cartwright, M.S.; Passmore, L.V.; Yoon, J.S.; Brown, M.E.; Caress, J.B.; Walker, F.O. Cross-sectional area reference values for nerve ultrasonography. Muscle Nerve 2008, 37, 566–571. [Google Scholar] [CrossRef]
- Lamb, D.G.; Porges, E.C.; Lewis, G.F.; Williamson, J.B. Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: Preliminary evidence. Front. Med. 2017, 4, 124. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostergaard, J.R. A New Perspective on Agitation in Alzheimer’s Disease: A Potential Paradigm Shift. Int. J. Mol. Sci. 2025, 26, 3370. https://doi.org/10.3390/ijms26073370
Ostergaard JR. A New Perspective on Agitation in Alzheimer’s Disease: A Potential Paradigm Shift. International Journal of Molecular Sciences. 2025; 26(7):3370. https://doi.org/10.3390/ijms26073370
Chicago/Turabian StyleOstergaard, John R. 2025. "A New Perspective on Agitation in Alzheimer’s Disease: A Potential Paradigm Shift" International Journal of Molecular Sciences 26, no. 7: 3370. https://doi.org/10.3390/ijms26073370
APA StyleOstergaard, J. R. (2025). A New Perspective on Agitation in Alzheimer’s Disease: A Potential Paradigm Shift. International Journal of Molecular Sciences, 26(7), 3370. https://doi.org/10.3390/ijms26073370