Recent Advances in Drug Development for Hair Loss
Abstract
:1. Introduction
2. Current Approved Hair Loss Treatments
2.1. Minoxidil
2.2. 5a-Reductase Inhibitors
2.3. JAK Inhibitors
3. Emerging Therapeutic Targets for Alopecia Treatment
3.1. AR Inhibitors
3.2. Wnt Activators
3.3. Thyroid Receptor
3.4. Prostaglandin Derivatives
3.5. Lactate Dehydrogenase (LDH)
3.6. PDE4 Inhibitors
3.7. RIPK1 Inhibitor
4. New Therapeutic Modalities for Alopecia Treatment
4.1. Antibody Therapy
4.2. Growth Factors and Platelet-Rich Plasma (PRP)
4.3. Botulinum Toxin
4.4. Cell Therapy
4.5. Exosome for Hair Loss Treatments
4.6. Innovations in Drug Delivery Systems for Hair Loss Treatments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, H.W.; Ye, Z.M.; Chen, S.Q.; McElwee, K.J. Innovative strategies for the discovery of new drugs against alopecia areata: Taking aim at the immune system. Expert. Opin. Drug Discov. 2024, 19, 1321–1338. [Google Scholar] [CrossRef] [PubMed]
- Vasserot, A.P.; Geyfman, M.; Poloso, N.J. Androgenetic alopecia: Combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert. Opin. Ther. Targets 2019, 23, 755–771. [Google Scholar] [CrossRef] [PubMed]
- Santos, Z.; Avci, P.; Hamblin, M.R. Drug discovery for alopecia: Gone today, hair tomorrow. Expert. Opin. Drug Discov. 2015, 10, 269–292. [Google Scholar] [CrossRef]
- Semalty, A.; Semalty, M.; Joshi, G.P.; Rawat, M.S. Techniques for the discovery and evaluation of drugs against alopecia. Expert. Opin. Drug Discov. 2011, 6, 309–321. [Google Scholar] [CrossRef]
- Shorter, K.; Farjo, N.P.; Picksley, S.M.; Randall, V.A. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil. FASEB J. 2008, 22, 1725–1736. [Google Scholar] [CrossRef]
- Lachgar, S.; Charveron, M.; Gall, Y.; Bonafe, J.L. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. Br. J. Dermatol. 1998, 138, 407–411. [Google Scholar] [CrossRef]
- Kwack, M.H.; Kang, B.M.; Kim, M.K.; Kim, J.C.; Sung, Y.K. Minoxidil activates beta-catenin pathway in human dermal papilla cells: A possible explanation for its anagen prolongation effect. J. Dermatol. Sci. 2011, 62, 154–159. [Google Scholar] [CrossRef]
- Dawber, R.P.; Rundegren, J. Hypertrichosis in females applying minoxidil topical solution and in normal controls. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 271–275. [Google Scholar] [CrossRef]
- Adil, A.; Godwin, M. The effectiveness of treatments for androgenetic alopecia: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2017, 77, 136–141.e5. [Google Scholar] [CrossRef]
- van Zuuren, E.J.; Fedorowicz, Z.; Carter, B. Evidence-based treatments for female pattern hair loss: A summary of a Cochrane systematic review. Br. J. Dermatol. 2012, 167, 995–1010. [Google Scholar] [CrossRef]
- Vahabi-Amlashi, S.; Layegh, P.; Kiafar, B.; Hoseininezhad, M.; Abbaspour, M.; Khaniki, S.H.; Forouzanfar, M.; Sabeti, V. A randomized clinical trial on therapeutic effects of 0.25 mg oral minoxidil tablets on treatment of female pattern hair loss. Dermatol. Ther. 2021, 34, e15131. [Google Scholar] [CrossRef] [PubMed]
- Penha, M.A.; Miot, H.A.; Kasprzak, M.; Muller Ramos, P. Oral Minoxidil vs Topical Minoxidil for Male Androgenetic Alopecia: A Randomized Clinical Trial. JAMA Dermatol. 2024, 160, 600–605. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Zheng, M.; Park, I.G.; Noh, M.; Sung, J.H. Differential expression of androgen receptor and 5-alpha reductase isoforms in skin cells. Arch. Dermatol. Res. 2024, 317, 138. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Wang, L.; Wang, H.; Chen, B. The Efficacy and Safety of Finasteride Combined with Topical Minoxidil for Androgenetic Alopecia: A Systematic Review and Meta-analysis. Aesthetic Plast. Surg. 2020, 44, 962–970. [Google Scholar] [CrossRef]
- Diviccaro, S.; Melcangi, R.C.; Giatti, S. Post-finasteride syndrome: An emerging clinical problem. Neurobiol. Stress. 2020, 12, 100209. [Google Scholar] [CrossRef]
- Safety update: Psychiatric and sexual adverse effects with finasteride. Drug Ther. Bull. 2024, 62, 101. [CrossRef]
- Almudimeegh, A.; AlMutairi, H.; AlTassan, F.; AlQuraishi, Y.; Nagshabandi, K.N. Comparison between dutasteride and finasteride in hair regrowth and reversal of miniaturization in male and female androgenetic alopecia: A systematic review. Dermatol. Rep. 2024, 16, 9909. [Google Scholar] [CrossRef]
- Herz-Ruelas, M.E.; Alvarez-Villalobos, N.A.; Millan-Alanis, J.M.; de Leon-Gutierrez, H.; Ocampo-Garza, S.S.; Gomez-Flores, M.; Grimalt, R. Efficacy of Intralesional and Oral Dutasteride in the Treatment of Androgenetic Alopecia: A Systematic Review. Skin. Appendage Disord. 2020, 6, 338–345. [Google Scholar] [CrossRef]
- Yale, K.; Pourang, A.; Plikus, M.V.; Mesinkovska, N.A. At the crossroads of 2 alopecias: Androgenetic alopecia pattern of hair regrowth in patients with alopecia areata treated with oral Janus kinase inhibitors. JAAD Case Rep. 2020, 6, 444–446. [Google Scholar] [CrossRef]
- Harel, S.; Higgins, C.A.; Cerise, J.E.; Dai, Z.; Chen, J.C.; Clynes, R.; Christiano, A.M. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci. Adv. 2015, 1, e1500973. [Google Scholar] [CrossRef]
- Xing, L.; Dai, Z.; Jabbari, A.; Cerise, J.E.; Higgins, C.A.; Gong, W.; de Jong, A.; Harel, S.; DeStefano, G.M.; Rothman, L.; et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 2014, 20, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Senna, M.M.; Sinclair, R.; Ito, T.; Dutronc, Y.; Lin, C.Y.; Yu, G.; Chiasserini, C.; McCollam, J.; Wu, W.S.; et al. Efficacy and Safety of Baricitinib in Patients with Severe Alopecia Areata over 52 Weeks of Continuous Therapy in Two Phase III Trials (BRAVE-AA1 and BRAVE-AA2). Am. J. Clin. Dermatol. 2023, 24, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Sun Pharmaceutical Industries. U.S. FDA Approves LEQSELVI™ (deuruxolitinib), an Oral JAK Inhibitor for the Treatment of Severe Alopecia Areata. SUN PHARMA. 2024. Available online: https://www.prnewswire.com/news-releases/us-fda--approves-leqselvi-deuruxolitinib-an-oral-jak-inhibitor-for-the-treatment-of-severe-alopecia-areata-302207222.html (accessed on 12 February 2025).
- King, B.; Senna, M.M.; Mesinkovska, N.A.; Lynde, C.; Zirwas, M.; Maari, C.; Prajapati, V.H.; Sapra, S.; Brzewski, P.; Osman, L.; et al. Efficacy and safety of deuruxolitinib, an oral selective Janus kinase inhibitor, in adults with alopecia areata: Results from the Phase 3 randomized, controlled trial (THRIVE-AA1). J. Am. Acad. Dermatol. 2024, 91, 880–888. [Google Scholar] [CrossRef]
- Dai, Z.; Chen, J.; Chang, Y.; Christiano, A.M. Selective inhibition of JAK3 signaling is sufficient to reverse alopecia areata. JCI Insight 2021, 6, e142205. [Google Scholar] [CrossRef]
- Piliang, M.; Soung, J.; King, B.; Shapiro, J.; Rudnicka, L.; Farrant, P.; Magnolo, N.; Piraccini, B.M.; Luo, X.; Wolk, R.; et al. Efficacy and safety of the oral Janus kinase 3/tyrosine kinase expressed in hepatocellular carcinoma family kinase inhibitor ritlecitinib over 24 months: Integrated analysis of the ALLEGRO phase IIb/III and long-term phase III clinical studies in alopecia areata. Br. J. Dermatol. 2025, 192, 215–227. [Google Scholar] [CrossRef]
- Wang, Y.; Huh, Y.; Lejeune, A. Population exposure-response analysis of the effect of ritlecitinib on eyebrow assessment and eyelash assessment in patients with alopecia areata. CPT Pharmacomet. Syst. Pharmacol. 2025, 14, 389–402. [Google Scholar] [CrossRef]
- AbbVie, Inc. A Study to Evaluate the Safety and Effectiveness of Upadacitinib Tablets in Adult and Adolescent Participants with Severe Alopecia Areata (Up-AA). 2025. Available online: https://www.abbvieclinicaltrials.com/study/?id=M23-716 (accessed on 10 February 2025).
- Zelgen, S. Extension Study to Evaluate Safety and Efficacy of Jaktinib in Adults with Alopecia Areata. 2024. Available online: https://ctv.veeva.com/study/extension-study-to-evaluate-safety-and-efficacy-of-jaktinib-in-adults-with-alopecia-areata (accessed on 10 February 2025).
- Arcutis Biotherapeutics, Inc. Arcutis Completes Enrollment of Phase 1b Alopecia Areata Study Evaluating ARQ-255. Available online: https://www.arcutis.com/arcutis-completes-enrollment-of-phase-1b-alopecia-areata-study-evaluating-arq-255/ (accessed on 10 February 2025).
- Maeshima, T.; Aisu, S.; Ohkura, N.; Watanabe, M.; Itagaki, F. The Association Between Deep Vein Thrombosis, Pulmonary Embolism, and Janus Kinase Inhibitors: Reporting Status and Signal Detection in the Japanese Adverse Drug Event Report Database. Drugs Real. World Outcomes 2024, 11, 369–375. [Google Scholar] [CrossRef]
- Zhu, H.; Jian, Z.; Zhong, Y.; Ye, Y.; Zhang, Y.; Hu, X.; Pu, B.; Gu, L.; Xiong, X. Janus Kinase Inhibition Ameliorates Ischemic Stroke Injury and Neuroinflammation Through Reducing NLRP3 Inflammasome Activation via JAK2/STAT3 Pathway Inhibition. Front. Immunol. 2021, 12, 714943. [Google Scholar] [CrossRef]
- Gentile, P.; Garcovich, S. Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells 2019, 8, 466. [Google Scholar] [CrossRef]
- Al-Refu, K. Stem cells and alopecia: A review of pathogenesis. Br. J. Dermatol. 2012, 167, 479–484. [Google Scholar] [CrossRef]
- Harries, M.J.; Paus, R. The pathogenesis of primary cicatricial alopecias. Am. J. Pathol. 2010, 177, 2152–2162. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.J.; Jing, J.; Du, X.F.; Mao, M.Q.; Yang, X.S.; Lv, Z.F. Frontal fibrosing alopecia: A review of disease pathogenesis. Front. Med. 2022, 9, 911944. [Google Scholar] [CrossRef]
- Charoensuksira, S.; Tantiwong, S.; Pongklaokam, J.; Hanvivattanakul, S.; Surinlert, P.; Krajarng, A.; Thanasarnaksorn, W.; Hongeng, S.; Ponnikorn, S. Disturbance of Immune Microenvironment in Androgenetic Alopecia through Spatial Transcriptomics. Int. J. Mol. Sci. 2024, 25, 9031. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Jacobo, L.; Villarreal-Villarreal, C.D.; Ortiz-Lopez, R.; Ocampo-Candiani, J.; Rojas-Martinez, A. Genetic and molecular aspects of androgenetic alopecia. Indian. J. Dermatol. Venereol. Leprol. 2018, 84, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.C.E.; Christiano, A.M. The Changing Landscape of Alopecia Areata: The Translational Landscape. Adv. Ther. 2017, 34, 1586–1593. [Google Scholar] [CrossRef]
- Cosmo Pharmaceuticals, Inc. Cosmo Announces the Beginning of the Phase III Trials in Males for the Treatment of Androgenetic Alopecia. 2023. Available online: https://www.cosmopharma.com/news/cosmo-announces-the-beginning-of-the-phase-iii-trials-in-males-for-the-treatment-of-androgenetic-alopecia (accessed on 10 February 2025).
- Cosmo Pharmaceuticals, Inc. Winlevi® (Clascoterone). Available online: https://www.cosmopharma.com/products/winlevi (accessed on 10 February 2025).
- Dhillon, S. Clascoterone: First Approval. Drugs 2020, 80, 1745–1750. [Google Scholar] [CrossRef]
- Lama, S.C. Kintor Announces Update on KX-826 (Pyrilutamide) for Hair Loss. 2023. Available online: https://hairscience.org/news/kintor-usa-clinical-trial-pyrilutamide-results/ (accessed on 12 February 2025).
- Kintor Pharmaceuticals, Inc. First Subject Enrollment in Phase 3 Stage of KX-826 1.0% For AGA. Available online: https://en.kintor.com.cn/news_details/6.html (accessed on 10 February 2025).
- Kintor Pharmaceuticals, Inc. Completion of First Subject Enrollment in Phase II Clinical Trial of GT20029 Gel for Treatment of Acne in China. Available online: https://en.kintor.com.cn/news_details/1803365118859653120.html (accessed on 10 February 2025).
- OliX Pharmaceuticals, Inc. OliX Pharmaceuticals Receives Regulatory Approval to Commence Phase 1 Clinical Trial of Treatment of Androgenic Alopecia. Olix Pharmaceuticals. 2023. Available online: https://www.businesswire.com/news/home/20230323005383/en/OliX-Pharmaceuticals-Receives-Regulatory-Approval-to-Commence-Phase-1-Clinical-Trial-of-Treatment-of-Androgenic-Alopecia (accessed on 10 February 2025).
- Anranda Pharma, Inc. ADA-308 for Androgenetic Alopecia. Available online: https://arandapharma.com/ada-308-for-androgenetic-alopecia.html#/ (accessed on 12 February 2025).
- Choi, B.Y. Targeting Wnt/beta-Catenin Pathway for Developing Therapies for Hair Loss. Int. J. Mol. Sci. 2020, 21, 4915. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Lee, D.H.; Shim, J.; Park, J.; Kim, Y.R.; Choi, S.; Bak, S.S.; Sung, Y.K.; Lee, S.H.; Choi, K.Y. KY19382, a novel activator of Wnt/beta-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br. J. Pharmacol. 2021, 178, 2533–2546. [Google Scholar] [CrossRef]
- Technoderma Medicines, Inc. A Randomized, Double-Blind, Vehicle-Controlled, Parallel Group, Multi-Dose Study to Evaluate the Efficacy and Safety of TDM-105795 in Male Subjects with Androgenetic Alopecia. 2024. Available online: https://adisinsight.springer.com/trials/700361593 (accessed on 10 February 2025).
- Garza, L.A.; Liu, Y.; Yang, Z.; Alagesan, B.; Lawson, J.A.; Norberg, S.M.; Loy, D.E.; Zhao, T.; Blatt, H.B.; Stanton, D.C.; et al. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci. Transl. Med. 2012, 4, 126ra134. [Google Scholar] [CrossRef]
- Pelage Pharmaceuticals, Inc. Pelage Pharmaceuticals Advances Clinical Program with First Patients Dosed in Phase 2 Study for Hair Loss and GV-Led $14M Series A-1 NEWS PROVIDED BY Pelage Pharmaceuticals. Available online: https://www.prnewswire.com/news-releases/pelage-pharmaceuticals-advances-clinical-program-with-first-patients-dosed-in-phase-2-study-for-hair-loss-and-gv-led-14m-series-a-1-302220301.html (accessed on 10 February 2025).
- Keren, A.; Shemer, A.; Ullmann, Y.; Paus, R.; Gilhar, A. The PDE4 inhibitor, apremilast, suppresses experimentally induced alopecia areata in human skin in vivo. J. Dermatol. Sci. 2015, 77, 74–76. [Google Scholar] [CrossRef]
- Zheng, M.; Choi, N.; Jang, Y.; Kwak, D.E.; Kim, Y.; Kim, W.S.; Oh, S.H.; Sung, J.H. Hair growth promotion by necrostatin-1s. Sci. Rep. 2020, 10, 17622. [Google Scholar] [CrossRef] [PubMed]
- Equillium, Inc. EQ101 phase 2 study. Available online: https://www.equilliumbio.com/EQ101-Phase-2-Study/ (accessed on 23 February 2025).
- Jacob, A.; Raj, R.; Allison, D.B.; Myint, Z.W. Androgen Receptor Signaling in Prostate Cancer and Therapeutic Strategies. Cancers 2021, 13, 5417. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, J.Y.; Zhao, L.J.; Guo, Y.Y. Synthesis and application of clinically approved small-molecule drugs targeting androgen receptor. Bioorg Chem. 2024, 143, 106998. [Google Scholar] [CrossRef]
- Wang, C.; Du, Y.; Bi, L.; Lin, X.; Zhao, M.; Fan, W. The Efficacy and Safety of Oral and Topical Spironolactone in Androgenetic Alopecia Treatment: A Systematic Review. Clin. Cosmet. Investig. Dermatol. 2023, 16, 603–612. [Google Scholar] [CrossRef]
- Rathnayake, D.; Sinclair, R. Use of spironolactone in dermatology. Skinmed 2010, 8, 328–332, quiz 333. [Google Scholar]
- Sun, H.Y.; Sebaratnam, D.F. Clascoterone as a novel treatment for androgenetic alopecia. Clin. Exp. Dermatol. 2020, 45, 913–914. [Google Scholar] [CrossRef]
- Saceda-Corralo, D.; Dominguez-Santas, M.; Vano-Galvan, S.; Grimalt, R. What’s New in Therapy for Male Androgenetic Alopecia? Am. J. Clin. Dermatol. 2023, 24, 15–24. [Google Scholar] [CrossRef]
- Moon, I.J.; Yoon, H.K.; Kim, D.; Choi, M.E.; Han, S.H.; Park, J.H.; Hong, S.W.; Cho, H.; Lee, D.K.; Won, C.H. Efficacy of Asymmetric siRNA Targeting Androgen Receptors for the Treatment of Androgenetic Alopecia. Mol. Pharm. 2023, 20, 128–135. [Google Scholar] [CrossRef]
- Biosplice Therapeutics, I. A Study of SM04554 Applied Topically to the Scalp of Male Subjects with Androgenetic Alopecia Analyzed by Biopsy of the Scalp Prior To and Post Dosing; Biosplice Therapeutics, Inc.: San Diego, CA, USA, 2020. [Google Scholar]
- JW Pharmaceutical, Inc. Hair Loss Treatment by JW0061-Mediated Wnt Modulation for “Growth in Hair Length & Follicular Number”. 2022. Available online: https://www.jw-pharma.co.kr/pharma/en/prcenter/all_view.jsp?contentsCd=230103120310932ATI8D (accessed on 10 February 2025).
- Adly, M.A.; Assaf, H.A.; Pertile, P.; Hussein, M.R.; Paus, R. Expression patterns of the glial cell line-derived neurotrophic factor, neurturin, their cognate receptors GFRalpha-1, GFRalpha-2, and a common signal transduction element c-Ret in the human skin hair follicles. J. Am. Acad. Dermatol. 2008, 58, 238–250. [Google Scholar] [CrossRef]
- Antonini, D.; Sibilio, A.; Dentice, M.; Missero, C. An Intimate Relationship between Thyroid Hormone and Skin: Regulation of Gene Expression. Front. Endocrinol. 2013, 4, 104. [Google Scholar] [CrossRef]
- Contreras-Jurado, C.; Garcia-Serrano, L.; Martinez-Fernandez, M.; Ruiz-Llorente, L.; Paramio, J.M.; Aranda, A. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors. PLoS ONE 2014, 9, e108137. [Google Scholar] [CrossRef]
- Contreras-Jurado, C.; Lorz, C.; Garcia-Serrano, L.; Paramio, J.M.; Aranda, A. Thyroid hormone signaling controls hair follicle stem cell function. Mol. Biol. Cell 2015, 26, 1263–1272. [Google Scholar] [CrossRef]
- Zhi, J.; Li, F.; Jiang, X.; Bai, R. Thyroid receptor beta: A promising target for developing novel anti-androgenetic alopecia drugs. Drug Discov. Today 2024, 29, 104013. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Deng, W.; Yu, J.; Yang, S. Thyroid Hormone Receptor Agonist Promotes Hair Growth in Mice. Clin. Cosmet. Investig. Dermatol. 2022, 15, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Hossein Mostafa, D.; Samadi, A.; Niknam, S.; Nasrollahi, S.A.; Guishard, A.; Firooz, A. Efficacy of Cetirizine 1% Versus Minoxidil 5% Topical Solution in the Treatment of Male Alopecia: A Randomized, Single-blind Controlled Study. J. Pharm. Pharm. Sci. 2021, 24, 191–199. [Google Scholar] [CrossRef]
- Tosti, A.; Pazzaglia, M.; Voudouris, S.; Tosti, G. Hypertrichosis of the eyelashes caused by bimatoprost. J. Am. Acad. Dermatol. 2004, 51, S149–S150. [Google Scholar] [CrossRef]
- Choi, Y.M.; Diehl, J.; Levins, P.C. Promising alternative clinical uses of prostaglandin F2alpha analogs: Beyond the eyelashes. J. Am. Acad. Dermatol. 2015, 72, 712–716. [Google Scholar] [CrossRef]
- Ceyhan, Ç.; Düzkar, S.; Kandemir, O.; Özdal, M.Ö.; Erbaş, O. Effect of lactate dehydrogenase activity on hair follicle stem cell. Demiroglu Sci. Univ. Florence Nightngale J. Med. 2017, 3, 139–145. [Google Scholar] [CrossRef]
- Li, S.; Yu, J.; Zhang, J.; Li, X.; Yu, J. LSD1 interacting with HSP90 promotes skin wound healing by inducing metabolic reprogramming of hair follicle stem cells through the c-MYC/LDHA axis. FASEB J. 2023, 37, e23031. [Google Scholar] [CrossRef]
- Jelinek, D.; Flores, A.; Uebelhoer, M.; Pasque, V.; Plath, K.; Iruela-Arispe, M.L.; Christofk, H.R.; Lowry, W.E.; Coller, H.A. Mapping Metabolism: Monitoring Lactate Dehydrogenase Activity Directly in Tissue. J. Vis. Exp. 2018, 136, 57760. [Google Scholar] [CrossRef]
- Flores, A.; Schell, J.; Krall, A.S.; Jelinek, D.; Miranda, M.; Grigorian, M.; Braas, D.; White, A.C.; Zhou, J.L.; Graham, N.A.; et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 2017, 19, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Lu, J.; Yi, X.; Ding, Y.; Gao, Y.; Chen, W. Development of alopecia areata during phosphodiesterase 4 inhibitor treatment for psoriasis: A case report. Dermatol. Ther. 2020, 33, e14440. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Farinas, M.; Ungar, B.; Noda, S.; Shroff, A.; Mansouri, Y.; Fuentes-Duculan, J.; Czernik, A.; Zheng, X.; Estrada, Y.D.; Xu, H.; et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J. Allergy Clin. Immunol. 2015, 136, 1277–1287. [Google Scholar] [CrossRef]
- Jang, Y.H.; Jin, M.; Moon, S.Y.; Eun, D.H.; Lee, W.J.; Lee, S.J.; Kim, M.K.; Kim, S.H.; do Kim, W. Investigation on the role of necroptosis in alopecia areata: A preliminary study. J. Am. Acad. Dermatol. 2016, 75, 436–439. [Google Scholar] [CrossRef]
- Starace, M.; Cedirian, S.; Quadrelli, F.; Pampaloni, F.; Brunetti, T.; Chessa, M.A.; Gurioli, C.; Piraccini, B.M.; Neri, I. Dupilumab and Alopecia Areata: A Possible Combined or Disturbance Therapy? A Review of The Literature. Dermatol. Pract. Concept. 2024, 14, e2024270. [Google Scholar] [CrossRef]
- Hong, J.J.; Hadeler, E.K.; Mosca, M.L.; Brownstone, N.D.; Bhutani, T.; Liao, W.J. Off-label uses of TNF-a inhibitors and IL-12/23 inhibitors in dermatology. Dermatol. Online J. 2021, 27, D3271156085. [Google Scholar] [CrossRef]
- Jin, S.E.; Kim, J.; Sung, J.H. Recent approaches of antibody therapeutics in androgenetic alopecia. Front. Pharmacol. 2024, 15, 1434961. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Renert-Yuval, Y.; Bares, J.; Chima, M.; Hawkes, J.E.; Gilleaudeau, P.; Sullivan-Whalen, M.; Singer, G.K.; Garcet, S.; Pavel, A.B.; et al. Phase 2a randomized clinical trial of dupilumab (anti-IL-4Ralpha) for alopecia areata patients. Allergy 2022, 77, 897–906. [Google Scholar] [CrossRef]
- Tauber, M.; Beneton, N.; Reygagne, P.; Bachelez, H.; Viguier, M. Alopecia areata developing during ustekinumab therapy: Report of two cases. Eur. J. Dermatol. 2013, 23, 912–913. [Google Scholar] [CrossRef]
- Kirshen, C.; Kanigsberg, N. Alopecia areata following adalimumab. J. Cutan. Med. Surg. 2009, 13, 48–50. [Google Scholar] [CrossRef]
- Hope Medicine, Inc. Hope Medicine Announces US FDA Clearance for Phase II Clinical Trial of A First-in-class Monoclonal Antibody, HMI-115, in AGA Alopecia. 2022. Available online: https://www.hopemedinc.com/company-release-5 (accessed on 3 February 2024).
- Zheng, M.; Oh, S.H.; Choi, N.; Choi, Y.J.; Kim, J.; Sung, J.H. CXCL12 inhibits hair growth through CXCR4. Biomed. Pharmacother. 2022, 150, 112996. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; An, S.; Park, I.G.; Kim, J.; Kim, W.S.; Noh, M.; Sung, J.H. Differential Expression of CXCL12 in Human and Mouse Hair: Androgens Induce CXCL12 in Human Dermal Papilla and Dermal Sheath Cup. Int. J. Mol. Sci. 2024, 26, 95. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Kim, M.H.; Park, S.G.; Kim, W.S.; Oh, S.H.; Sung, J.H. CXCL12 Neutralizing Antibody Promotes Hair Growth in Androgenic Alopecia and Alopecia Areata. Int. J. Mol. Sci. 2024, 25, 1705. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jian, J.; Li, T.; Li, M.; Luo, K.; Deng, S.; Tang, Y.; Liu, F.; Zhao, Z.; Shi, W.; et al. Dupliumab therapy for alopecia areata: A case series and review of the literature. J. Dermatolog Treat. 2024, 35, 2312245. [Google Scholar] [CrossRef]
- Foitzik, K.; Krause, K.; Conrad, F.; Nakamura, M.; Funk, W.; Paus, R. Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis-driven hair follicle regression. Am. J. Pathol. 2006, 168, 748–756. [Google Scholar] [CrossRef]
- Craven, A.J.; Nixon, A.J.; Ashby, M.G.; Ormandy, C.J.; Blazek, K.; Wilkins, R.J.; Pearson, A.J. Prolactin delays hair regrowth in mice. J. Endocrinol. 2006, 191, 415–425. [Google Scholar] [CrossRef]
- Langan, E.A.; Griffiths, C.E.; Paus, R. Utilizing the hair follicle to dissect the regulation and autocrine/paracrine activities of prolactin in humans. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1311–E1312. [Google Scholar] [CrossRef]
- Reiter, E.; Bonnet, P.; Sente, B.; Dombrowicz, D.; de Leval, J.; Closset, J.; Hennen, G. Growth hormone and prolactin stimulate androgen receptor, insulin-like growth factor-I (IGF-I) and IGF-I receptor levels in the prostate of immature rats. Mol. Cell Endocrinol. 1992, 88, 77–87. [Google Scholar] [CrossRef]
- Ratajczak, M.Z.; Zuba-Surma, E.; Kucia, M.; Reca, R.; Wojakowski, W.; Ratajczak, J. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006, 20, 1915–1924. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, F.; Jin, H.; Wu, X. Crosstalk between CXCL12/CXCR4/ACKR3 and the STAT3 Pathway. Cells 2024, 13, 1027. [Google Scholar] [CrossRef]
- Cuesta-Margolles, G.; Schlecht-Louf, G.; Bachelerie, F. ACKR3 in Skin Homeostasis, an Overlooked Player in the CXCR4/CXCL12 Axis. J. Investig. Dermatol. 2024, articles in press. [Google Scholar] [CrossRef]
- Lin, W.H.; Xiang, L.J.; Shi, H.X.; Zhang, J.; Jiang, L.P.; Cai, P.T.; Lin, Z.L.; Lin, B.B.; Huang, Y.; Zhang, H.L.; et al. Fibroblast growth factors stimulate hair growth through beta-catenin and Shh expression in C57BL/6 mice. Biomed. Res. Int. 2015, 2015, 730139. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, H.; Zhang, Y.; Wu, W. Clinical observation of basic fibroblast growth factor (bFGF) combined with minoxidil in the treatment of male androgenetic alopecia. J. Cosmet. Dermatol. 2022, 21, 4053–4059. [Google Scholar] [CrossRef] [PubMed]
- Yano, K.; Brown, L.F.; Detmar, M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Investig. 2001, 107, 409–417. [Google Scholar] [CrossRef]
- Ding, Y.W.; Li, Y.; Zhang, Z.W.; Dao, J.W.; Wei, D.X. Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanoparticles for mini-invasive androgenetic alopecia treatment. Bioact. Mater. 2024, 38, 95–108. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Pi, L.Q.; Hwang, S.T.; Lee, W.S. Effect of IGF-I on Hair Growth Is Related to the Anti-Apoptotic Effect of IGF-I and Up-Regulation of PDGF-A and PDGF-B. Ann. Dermatol. 2012, 24, 26–31. [Google Scholar] [CrossRef]
- Neely, E.K.; Morhenn, V.B.; Hintz, R.L.; Wilson, D.M.; Rosenfeld, R.G. Insulin-like growth factors are mitogenic for human keratinocytes and a squamous cell carcinoma. J. Invest. Dermatol. 1991, 96, 104–110. [Google Scholar] [CrossRef]
- Gonzalez, R.; Moffatt, G.; Hagner, A.; Sinha, S.; Shin, W.; Rahmani, W.; Chojnacki, A.; Biernaskie, J. Platelet-derived growth factor signaling modulates adult hair follicle dermal stem cell maintenance and self-renewal. NPJ Regen. Med. 2017, 2, 11. [Google Scholar] [CrossRef]
- Danilenko, D.M.; Ring, B.D.; Yanagihara, D.; Benson, W.; Wiemann, B.; Starnes, C.O.; Pierce, G.F. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am. J. Pathol. 1995, 147, 145–154. [Google Scholar]
- Paichitrojjana, A.; Paichitrojjana, A. Platelet Rich Plasma and Its Use in Hair Regrowth: A Review. Drug Des. Devel Ther. 2022, 16, 635–645. [Google Scholar] [CrossRef]
- Yuan, J.; He, Y.; Wan, H.; Gao, Y. Effectiveness of platelet-rich plasma in treating female hair loss: A systematic review and meta-analysis of randomized controlled trials. Skin. Res. Technol. 2024, 30, e70004. [Google Scholar] [CrossRef]
- Shon, U.; Kim, M.H.; Lee, D.Y.; Kim, S.H.; Park, B.C. The effect of intradermal botulinum toxin on androgenetic alopecia and its possible mechanism. J. Am. Acad. Dermatol. 2020, 83, 1838–1839. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, R.; Niiyama, S.; Irisawa, R.; Harada, K.; Nakazawa, Y.; Kishimoto, J. Autologous cell-based therapy for male and female pattern hair loss using dermal sheath cup cells: A randomized placebo-controlled double-blinded dose-finding clinical study. J. Am. Acad. Dermatol. 2020, 83, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Ohyama, M.; Niiyama, S.; Irisawa, R.; Mae, K.; Mori, M.; Wakimoto, H.; Kinoshita-Ise, M.; Fukuyama, M.; Hayakawa, R.; et al. Efficacy of autologous dermal sheath cup cell transplantation in male and female pattern hair loss: A Single-Arm, Multi-Center, phase III equivalent clinical study. J. Dermatol. 2023, 50, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Zheng, M.; Le, T.N.H.; Kim, H.; Sung, J.H. Hair growth promoting effects of human dermal papilla cells in pig. Exp. Dermatol. 2023, 32, 1156–1158. [Google Scholar] [CrossRef]
- Epi Biotech, Inc. Epibiotech, approved by the MFDS for phase 1/2a clinical trials for dermal papilla hair loss treatment. Available online: https://epibiotech.com (accessed on 25 December 2023).
- El-Khalawany, M.; Rageh, M.A.; Elnokrashy, I.; Ibrahim, S.M.A. Efficacy of autologous stromal vascular fraction injection in the treatment of androgenic alopecia. Arch. Dermatol. Res. 2023, 315, 1269–1276. [Google Scholar] [CrossRef]
- Anderi, R.; Makdissy, N.; Azar, A.; Rizk, F.; Hamade, A. Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction for alopecia areata. Stem Cell Res. Ther. 2018, 9, 141. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, M.J.; Lee, Y.J.; Lee, J.C.; Kim, J.H.; Kim, D.H.; Do, Y.H.; Choi, J.W.; Chung, S.I.; Do, B.R. Innovative method of alopecia treatment by autologous adipose-derived SVF. Stem Cell Res. Ther. 2021, 12, 486. [Google Scholar] [CrossRef]
- Nassar, A.; Abdel-Aleem, H.; Samir, M.; Khattab, F.M. Efficacy of botulinum toxin A injection in the treatment of androgenic alopecia: A Comparative Controlled Study. J. Cosmet. Dermatol. 2022, 21, 4261–4268. [Google Scholar] [CrossRef]
- Singh, S.; Neema, S.; Vasudevan, B. A Pilot Study to Evaluate Effectiveness of Botulinum Toxin in Treatment of Androgenetic Alopecia in Males. J. Cutan. Aesthet. Surg. 2017, 10, 163–167. [Google Scholar] [CrossRef]
- Nguyen, B.; Perez, S.M.; Tosti, A. Botulinum Toxin for Scalp Conditions: A Systematic Review. Dermatol. Surg. 2023, 49, 1023–1026. [Google Scholar] [CrossRef]
- English, R.S., Jr.; Ruiz, S. Use of Botulinum Toxin for Androgenic Alopecia: A Systematic Review. Skin. Appendage Disord. 2022, 8, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.H. Effective and economical cell therapy for hair regeneration. Biomed. Pharmacother. 2023, 157, 113988. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Scioli, M.G.; Bielli, A.; Orlandi, A.; Cervelli, V. Stem cells from human hair follicles: First mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell Investig. 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Scioli, M.G.; Cervelli, V.; Orlandi, A.; Garcovich, S. Autologous Micrografts from Scalp Tissue: Trichoscopic and Long-Term Clinical Evaluation in Male and Female Androgenetic Alopecia. Biomed. Res. Int. 2020, 2020, 7397162. [Google Scholar] [CrossRef]
- Ishimatsu-Tsuji, Y.; Niiyama, S.; Irisawa, R.; Harada, K.; Kishimoto, J.; Tsuboi, R. High migratory activity of dermal sheath cup cells associated with the clinical efficacy of autologous cell-based therapy for pattern hair loss. J. Dermatol. Sci. 2024, 113, 26–33. [Google Scholar] [CrossRef]
- Reynolds, A.J.; Jahoda, C.A. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development 1992, 115, 587–593. [Google Scholar] [CrossRef]
- Kim, H.; Choi, N.; Kim, D.Y.; Kim, S.Y.; Song, S.Y.; Sung, J.H. TGF-beta2 and collagen play pivotal roles in the spheroid formation and anti-aging of human dermal papilla cells. Aging 2021, 13, 19978–19995. [Google Scholar] [CrossRef]
- Zheng, M.; Jang, Y.; Choi, N.; Kim, D.Y.; Han, T.W.; Yeo, J.H.; Lee, J.; Sung, J.H. Hypoxia improves hair inductivity of dermal papilla cells via nuclear NADPH oxidase 4-mediated reactive oxygen species generation’. Br. J. Dermatol. 2019, 181, 523–534. [Google Scholar] [CrossRef]
- Yamao, M.; Inamatsu, M.; Ogawa, Y.; Toki, H.; Okada, T.; Toyoshima, K.E.; Yoshizato, K. Contact between dermal papilla cells and dermal sheath cells enhances the ability of DPCs to induce hair growth. J. Investig. Dermatol. 2010, 130, 2707–2718. [Google Scholar] [CrossRef]
- Hye Kim, J.; Gyu Park, S.; Kim, W.K.; Song, S.U.; Sung, J.H. Functional regulation of adipose-derived stem cells by PDGF-D. Stem Cells 2015, 33, 542–556. [Google Scholar] [CrossRef]
- Yi, T.; Kim, W.K.; Choi, J.S.; Song, S.Y.; Han, J.; Kim, J.H.; Kim, W.S.; Park, S.G.; Lee, H.J.; Cho, Y.K.; et al. Isolation of adipose-derived stem cells by using a subfractionation culturing method. Expert. Opin. Biol. Ther. 2014, 14, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.; Kim, W.S.; Oh, S.H.; Sung, J.H. HB-EGF Improves the Hair Regenerative Potential of Adipose-Derived Stem Cells via ROS Generation and Hck Phosphorylation. Int. J. Mol. Sci. 2019, 21, 122. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.; Hwang, J.; Kim, D.Y.; Kim, J.; Song, S.Y.; Sung, J.H. Involvement of DKK1 secreted from adipose-derived stem cells in alopecia areata. Cell Prolif. 2024, 57, e13562. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, W.K.; Sung, Y.K.; Kwack, M.H.; Song, S.Y.; Choi, J.S.; Park, S.G.; Yi, T.; Lee, H.J.; Kim, D.D.; et al. The molecular mechanism underlying the proliferating and preconditioning effect of vitamin C on adipose-derived stem cells. Stem Cells Dev. 2014, 23, 1364–1376. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.G.; Song, S.Y.; Kim, J.K.; Sung, J.H. Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2. Cell Death Dis. 2013, 4, e588. [Google Scholar] [CrossRef]
- Song, S.Y.; Chung, H.M.; Sung, J.H. The pivotal role of VEGF in adipose-derived-stem-cell-mediated regeneration. Expert. Opin. Biol. Ther. 2010, 10, 1529–1537. [Google Scholar] [CrossRef]
- Yang, J.A.; Chung, H.M.; Won, C.H.; Sung, J.H. Potential application of adipose-derived stem cells and their secretory factors to skin: Discussion from both clinical and industrial viewpoints. Expert. Opin. Biol. Ther. 2010, 10, 495–503. [Google Scholar] [CrossRef]
- Tak, Y.J.; Lee, S.Y.; Cho, A.R.; Kim, Y.S. A randomized, double-blind, vehicle-controlled clinical study of hair regeneration using adipose-derived stem cell constituent extract in androgenetic alopecia. Stem Cells Transl. Med. 2020, 9, 839–849. [Google Scholar] [CrossRef]
- Legiawati, L.; Suseno, L.S.; Sitohang, I.B.S.; Yusharyahya, S.N.; Pawitan, J.A.; Liem, I.K.; Kurniawati, T.; Ardelia, A.; Paramastri, K. Combination of adipose-derived stem cell conditioned media and minoxidil for hair regrowth in male androgenetic alopecia: A randomized, double-blind clinical trial. Stem Cell Res. Ther. 2023, 14, 210. [Google Scholar] [CrossRef]
- Lee, Y.I.; Kim, J.; Kim, J.; Park, S.; Lee, J.H. The Effect of Conditioned Media From Human Adipocyte-Derived Mesenchymal Stem Cells on Androgenetic Alopecia After Nonablative Fractional Laser Treatment. Dermatol. Surg. 2020, 46, 1698–1704. [Google Scholar] [CrossRef]
- Mantovani, G.P.; Marra, C.; De Maria, F.; Pinto, V.; De Santis, G. Adipose-derived stromal vascular fraction (SVF) for the treatment of androgenic alopecia (AGA): A systematic review. Acta Biomed. 2023, 94, e2023236. [Google Scholar] [CrossRef]
- Kang, B.Y.; Li, A.W.; Lee, M.H.; Wong, C.C.; Naseer, N.; Ibrahim, S.A.; Miller, C.H.; Keimig, E.L.; Poon, E.; Alam, M. The safety and efficacy of autologous adipose-derived stromal vascular fraction for nonscarring alopecia: A systematic review. Arch. Dermatol. Res. 2022, 314, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, E.N.; Koval, O.A.; Igorevich, E.I.; Encarnacion Ramirez, M.J.; Nurmukhametov, R.; Valentinovich, K.K.; Montemurro, N. Analyzing the Clinical Potential of Stromal Vascular Fraction: A Comprehensive Literature Review. Medicina 2024, 60, 221. [Google Scholar] [CrossRef] [PubMed]
- Butt, G.; Hussain, I.; Ahmad, F.J.; Choudhery, M.S. Stromal vascular fraction-enriched platelet-rich plasma therapy reverses the effects of androgenetic alopecia. J. Cosmet. Dermatol. 2020, 19, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Ma, C.; Chen, H.D.; Wu, Y.; Xu, X.G. The Roles of Exosomes in Regulating Hair Follicle Growth. Clin. Cosmet. Investig. Dermatol. 2024, 17, 1603–1612. [Google Scholar] [CrossRef]
- Queen, D.; Avram, M.R. Exosomes for Treating Hair Loss: A Review of Clinical Studies. Dermatol. Surg. 2024, 51, 409–415. [Google Scholar] [CrossRef]
- Piraccini, B.M.; Blume-Peytavi, U.; Scarci, F.; Jansat, J.M.; Falques, M.; Otero, R.; Tamarit, M.L.; Galvan, J.; Tebbs, V.; Massana, E.; et al. Efficacy and safety of topical finasteride spray solution for male androgenetic alopecia: A phase III, randomized, controlled clinical trial. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 286–294. [Google Scholar] [CrossRef]
- Kim, H.; Ryu, C.; Lee, M.; Lee, K.R.; Kim, J. A Phase I, Open-Label, Sequential, Single-Dose Clinical Trial to Evaluate the Pharmacokinetic, Pharmacodynamic, and Safety of IVL3001, a Finasteride-Based Novel Long-Acting Injection for Androgenetic Alopecia. Adv. Ther. 2024, 41, 2936–2952. [Google Scholar] [CrossRef]
- Hwang, K.M.; Choi, M.S.; Seok, S.H.; Park, E.S. Development of self-microemulsifying tablets containing dutasteride for enhanced dissolution and pharmacokinetic profile. Int. J. Pharm. 2022, 618, 121660. [Google Scholar] [CrossRef]
- Kushwaha, P.; Usmani, S.; Sufiyan, M.; Singh, P. Innovating alopecia treatment: Nanostructured lipid carriers as advanced delivery platforms. Naunyn Schmiedebergs Arch. Pharmacol. 2025. [Google Scholar] [CrossRef]
- Paredes, A.J.; Volpe-Zanutto, F.; Permana, A.D.; Murphy, A.J.; Picco, C.J.; Vora, L.K.; Coulter, J.A.; Donnelly, R.F. Novel tip-loaded dissolving and implantable microneedle array patches for sustained release of finasteride. Int. J. Pharm. 2021, 606, 120885. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Eum, J.; Yang, H.; Jung, H. Transdermal finasteride delivery via powder-carrying microneedles with a diffusion enhancer to treat androgenetic alopecia. J. Control Release 2019, 316, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Afika, N.; Saniy, A.F.; Fawwaz Dharma, A.A.; Ko, C.K.; Kamran, R.; Permana, A.D. Trilayer dissolving microneedle for transdermal delivery of minoxidil: A proof-of-concept study. J. Biomater. Sci. Polym. Ed. 2024, 35, 1750–1770. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, L.; Du, L.; Zhou, Y.; Xu, K.; Chen, J.; He, Y.; Qu, Q.; Miao, Y.; Xing, M.; et al. Duo-role Platelet-rich Plasma: Temperature-induced fibrin gel and growth factors’ reservoir for microneedles to promote hair regrowth. J. Adv. Res. 2024, 55, 89–102. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Su, J. Research Progress of Extracellular Vesicles-Loaded Microneedle Technology. Pharmaceutics 2024, 16, 326. [Google Scholar] [CrossRef]
- Yang, G.; Chen, Q.; Wen, D.; Chen, Z.; Wang, J.; Chen, G.; Wang, Z.; Zhang, X.; Zhang, Y.; Hu, Q.; et al. A Therapeutic Microneedle Patch Made from Hair-Derived Keratin for Promoting Hair Regrowth. ACS Nano 2019, 13, 4354–4360. [Google Scholar] [CrossRef]
Brand Name | General Name | Mechanism of Action | Advantages and Challenges |
---|---|---|---|
Rogaine | Minoxidil |
|
|
Ell-Cranell | a-tradiol |
|
|
Propecia | Finasteride |
|
|
Avodart | Dutasteride |
|
|
Finjuve | Finasteride |
|
|
Olumiant | Baricitinib |
|
|
Litfulo | Ritlecitinib |
|
|
Leqselvi | Deuruxolitinib |
|
|
Target/MoA | Product/Pipeline | Company | Stage of Development | Route of Administration | Reference |
---|---|---|---|---|---|
JAK 1 | RINVOQ™ (Upadacitinib) | ABBEVI (North Chicago, IL, USA) | P3 | Oral | [28] |
JAK | Gecacitinib (Jaktinib) | Suzhou Zelgen Biopharmaceuticals (Suzhou, China) | P3 | Oral | [29] |
JAK 1 | ARQ-255 | Arcutis Biotherapeutics (Westlake Village, CA, USA) | P1b | Oral | [30] |
Target/MoA | Product/Pipeline | Company | Stage of Development | Route of Administration | Reference |
---|---|---|---|---|---|
AR Antagonist | Breezula (Clascoterone) | Cosmo Pharmaceuticals (Lainate, Milan, Italy) | P3 | Topical | [40,41,42] |
AR Antagonist | KX-826 (Pyrilutamide) | Kintor Pharmaceuticals (Suzhou, China) | P3 | Topical | [43,44] |
AR Degrader | GT20029 | Kintor Pharmaceuticals | P2 | Topical | [45] |
AR RNAi | OLX104C | OliX Pharmaceuticals (Suwon, Gyeonggi, Republic of Korea) | P1 | Intradermal injection | [46] |
AR Antagonist | ADA-308 | Aranda Pharma (Kuopio, Finland) | Preclinical | Topical | [47] |
GFRA1 agonist (Wnt Activator) | JW0061 | JW Pharmaceutical (Gwacheon, Gyeonggi, Republic of Korea) | Preclinical | Topical | [48] |
CXXC5 Inhibitor (Wnt Activator) | KY19382 | CK Regeon (Seoul, Republic of Korea) | Preclinical | Topical | [49] |
Thyroid-Receptor β1 Agonist | TDM-105795 | Technoderma Medicines (Chengdu, China) | P2 | Topical | [50] |
Prostaglandin F2α | DLQ01 | Dermaliq Therapeutics (Wilmington, DE, USA) | P2a | Topical | [51] |
lactate dehydrogenase (LDH) | PP405 | Pelage Pharmaceuticals (Los Angeles, CA, USA) | Phase 1 | Topical | [52] |
PDE4 inhibitor | Apremilast (CC-10004) | Celegene/BMS (Summit, NJ, USA) | Case report | Oral | [53] |
RIPK1 inhibitor | Necrostatin-1s | Epi Biotech (Incheon, Republic of Korea) | Preclinical | Topical | [54] |
Selective cytokine inhibitor | EQ101 | Equillium (La Jolla, CA, USA) | P2 | Intravenous injection | [55] |
Target Gene | Product/Pipelines | Company | Type of Alopecia | Stage of Development | Reference |
---|---|---|---|---|---|
IL-4 and IL-13 | Dupilumab | Sanofi (Paris, France) | AA | P2 | [84] |
IL-12 and IL-23 | Ustekinumab | Janssen Biotech (Horsham, PA, USA) | AA | Case report | [85] |
TNF-a | Adalimumab | AbbVie (North Chicago, IL, USA) | AA | Case report | [86] |
Prolactin receptor | HMI-115 | Hope Medicine (Pudong, Shanghai, China) | AGA | P2 | [87] |
CXCL12 | EPI-005 | Epi Biotech | AGA, AA | preclinical | [88,89,90] |
Product/Pipelines | Company | Stage of development | Reference |
---|---|---|---|
PRP | - | Marketed | [107,108] |
Botulinum toxin/Nabota | Daewoong Pharmaceutics (Seoul, Republic of Korea) | Marketed | [109] |
Dermal sheath cup cells | Shisheido (Tokyo, Japan) | Marketed | [110,111] |
Dermal papilla cells | Epi Biotech | P1/2a | [112,113] |
Stromal vascular fraction | - | Marketed | [114,115,116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Song, S.-Y.; Sung, J.-H. Recent Advances in Drug Development for Hair Loss. Int. J. Mol. Sci. 2025, 26, 3461. https://doi.org/10.3390/ijms26083461
Kim J, Song S-Y, Sung J-H. Recent Advances in Drug Development for Hair Loss. International Journal of Molecular Sciences. 2025; 26(8):3461. https://doi.org/10.3390/ijms26083461
Chicago/Turabian StyleKim, Jino, Seung-Yong Song, and Jong-Hyuk Sung. 2025. "Recent Advances in Drug Development for Hair Loss" International Journal of Molecular Sciences 26, no. 8: 3461. https://doi.org/10.3390/ijms26083461
APA StyleKim, J., Song, S.-Y., & Sung, J.-H. (2025). Recent Advances in Drug Development for Hair Loss. International Journal of Molecular Sciences, 26(8), 3461. https://doi.org/10.3390/ijms26083461