Risk Factors and Genetic Insights into Coronary Artery Disease-Related Sudden Cardiac Death: A Molecular Analysis of Forensic Investigation
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Ethical Approval
4.2. Study Setting and Samples Collection
4.3. Whole-Exome Sequencing and Genotyping
4.4. Evaluation of Polygenic Risk Score
4.5. Prediction and Annotation of Variant Pathogenicity
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCD | Sudden cardiac death |
CAD | Coronary artery disease |
SCDCAD | CAD-related SCD |
AOR | Adjusted odds ratio |
OR | Odds ratio |
LAD | Left anterior descending |
LCX | Left circumflex |
RCA | Right coronary artery |
H&E | Hematoxylin and eosin |
SNVs | Single-nucleotide variants |
InDels | Insertion–deletions |
MUC19 | Member of Mucin 19 |
CGN | Cingulin |
References
- Lynge, T.H.; Risgaard, B.; Banner, J.; Nielsen, J.L.; Jespersen, T.; Stampe, N.K.; Albert, C.M.; Winkel, B.G.; Tfelt-Hansen, J. Nationwide burden of sudden cardiac death: A study of 54,028 deaths in Denmark. Heart Rhythm. 2021, 18, 1657–1665. [Google Scholar] [PubMed]
- Kumar, A.; Avishay, D.M.; Jones, C.R.; Shaikh, J.D.; Kaur, R.; Aljadah, M.; Kichloo, A.; Shiwalkar, N.; Keshavamurthy, S. Sudden cardiac death: Epidemiology, pathogenesis and management. Rev. Cardiovasc. Med. 2021, 22, 147–158. [Google Scholar]
- Tirandi, A.; Carbone, F.; Montecucco, F.; Liberale, L. The role of metabolic syndrome in sudden cardiac death risk: Recent evidence and future directions. Eur. J. Clin. Investig. 2022, 52, e13693. [Google Scholar]
- Feng, Y.T.; Feng, X.F. Sudden cardiac death in patients with myocardial infarction: 1.5 primary prevention. Rev. Cardiovasc. Med. 2021, 22, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Rieckmann, N.; Neumann, K.; Feger, S.; Ibes, P.; Napp, A.; Preuß, D.; Dreger, H.; Feuchtner, G.; Plank, F.; Suchánek, V.; et al. Health-related qualify of life, angina type and coronary artery disease in patients with stable chest pain. Health Qual. Life Outcomes 2020, 18, 140, Erratum in Health Qual. Life Outcomes2020, 18, 205. [Google Scholar]
- Jeff, J.M.; Peloso, G.M.; Do, R. What can we learn about lipoprotein metabolism and coronary heart disease from studying rare variants? Curr. Opin. Lipidol. 2016, 27, 99–104. [Google Scholar]
- Yu, Z.; Coorens, T.H.H.; Uddin, M.M.; Ardlie, K.G.; Lennon, N.; Natarajan, P. Genetic variation across and within individuals. Nat. Rev. Genet. 2024, 25, 548–562. [Google Scholar]
- Petrazzini, B.O.; Forrest, I.S.; Rocheleau, G.; Vy, H.M.T.; Márquez-Luna, C.; Duffy, Á.; Chen, R.; Park, J.K.; Gibson, K.; Goonewardena, S.N.; et al. Exome sequence analysis identifies rare coding variants associated with a machine learning-based marker for coronary artery disease. Nat. Genet. 2024, 56, 1412–1419. [Google Scholar]
- Iyer, K.R.; Clarke, S.L.; Guarischi-Sousa, R.; Gjoni, K.; Heath, A.S.; Young, E.P.; Stitziel, N.O.; Laurie, C.; Broome, J.G.; Khan, A.T.; et al. Unveiling the Genetic Landscape of Coronary Artery Disease Through Common and Rare Structural Variants. J. Am. Heart Assoc. 2025, 14, e036499. [Google Scholar]
- Guo, L.; Torii, S.; Fernandez, R.; Braumann, R.E.; Fuller, D.T.; Paek, K.H.; Gadhoke, N.V.; Maloney, K.A.; Harris, K.; Mayhew, C.M.; et al. Genetic Variants Associated with Unexplained Sudden Cardiac Death in Adult White and African American Individuals. JAMA Cardiol. 2021, 6, 1013–1022, Erratum in JAMA Cardiol.2021, 6, 1098. [Google Scholar]
- Li, L.; He, X.; Liu, M.; Yun, L.; Cong, B. Diagnostic value of cardiac miR-126-5p, miR-134-5p, and miR-499a-5p in coronary artery disease-induced sudden cardiac death. Front. Cardiovasc. Med. 2022, 9, 944317. [Google Scholar]
- Blackwell, J.N.; Walker, M.; Stafford, P.; Estrada, S.; Adabag, S.; Kwon, Y. Sleep Apnea and Sudden Cardiac Death. Circ. Rep. 2019, 1, 568–574. [Google Scholar] [PubMed]
- Yuan, L.; Lu, L.; Wang, X.; Qu, M.; Gao, Y.; Pan, B. Comorbid anxiety and depressive symptoms and the related factors among international medical students in China during COVID-19 pandemic: A cross-sectional study. BMC Psychiatry 2023, 23, 165. [Google Scholar]
- Kim, E.A.; Park, J.; Kim, K.H.; Lee, N.; Kim, D.S.; Kang, S.K. Outbreak of sudden cardiac deaths in a tire manufacturing facility: Can it be caused by nanoparticles? Saf. Health Work. 2012, 3, 58–66. [Google Scholar]
- Hintsala, H.; Kandelberg, A.; Herzig, K.-H.; Rintamäki, H.; Mäntysaari, M.; Rantala, A.; Antikainen, R.; Keinänen-Kiukaanniemi, S.; Jaakkola, J.J.K.; Ikäheimo, T.M. Central aortic blood pressure of hypertensive men during short-term cold exposure. Am. J. Hypertens. 2014, 27, 656–664. [Google Scholar]
- Ryti, N.R.; Mäkikyrö, E.M.S.; Antikainen, H.; Hookana, E.; Junttila, M.J.; Ikäheimo, T.M.; Kortelainen, M.-L.; Huikuri, H.V.; Jaakkola, J.J.K. Risk of sudden cardiac death in relation to season-specific cold spells: A case-crossover study in Finland. BMJ Open 2017, 7, e017398. [Google Scholar]
- Huang, J.; He, Q.; Jiang, Y.; Wong, J.M.J.; Li, J.; Liu, J.; Wang, R.; Chen, R.; Dai, Y.; Ge, J. Low ambient temperature and incident myocardial infarction with or without obstructive coronary arteries: A Chinese nationwide study. Eur. Heart J. 2025, 46, 439–450. [Google Scholar] [PubMed]
- Hart, J.E.; Hu, C.R.; Yanosky, J.D.; Holland, I.; Iyer, H.S.; Borchert, W.; Laden, F.; Albert, C.M. Short-term exposures to temperature and risk of sudden cardiac death in women: A case-crossover analysis in the Nurses’ Health Study. Environ. Epidemiol. 2024, 8, e322. [Google Scholar]
- Vikse, J.; Henry, B.M.; Roy, J.; Ramakrishnan, P.K.; Hsieh, W.C.; Walocha, J.A.; Tomaszewski, K.A. Anatomical Variations in the Sinoatrial Nodal Artery: A Meta-Analysis and Clinical Considerations. PLoS ONE 2016, 11, e0148331, Erratum in PLoS ONE2016, 11, e0150051. [Google Scholar] [CrossRef]
- Garland, J.B.; Kesha, K.; Glenn, C.; Stables, S.M.; Ondruschka, B.; Lohner, L.B.; Tse, R. Heart Weight Is an Independent Factor Associated With, But Is a Poor Predictor for, Sudden Cardiac Death. Am. J. Forensic Med. Pathol. 2022, 43, 18–22. [Google Scholar]
- Le, A.; Peng, H.; Golinsky, D.; Di Scipio, M.; Lali, R.; Paré, G. What Causes Premature Coronary Artery Disease? Curr. Atheroscler. Rep. 2024, 26, 189–203. [Google Scholar]
- Inouye, M.; Abraham, G.; Nelson, C.P.; Wood, A.M.; Sweeting, M.J.; Dudbridge, F.; Lai, F.Y.; Kaptoge, S.; Brozynska, M.; Wang, T.; et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J. Am. Coll. Cardiol. 2018, 72, 1883–1893. [Google Scholar] [PubMed]
- Chen, Y.; Zhao, Y.H.; Kalaslavadi, T.B.; Hamati, E.; Nehrke, K.; Le, A.D.; Ann, D.K.; Wu, R. Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am. J. Respir. Cell Mol. Biol. 2004, 30, 155–165. [Google Scholar]
- Zhu, L.; Lee, P.; Yu, D.; Tao, S.; Chen, Y. Cloning and characterization of human MUC19 gene. Am. J. Respir. Cell Mol. Biol. 2011, 45, 348–358. [Google Scholar]
- Adolph, T.E.; Niederreiter, L.; Blumberg, R.S.; Kaser, A. Endoplasmic reticulum stress and inflammation. Dig. Dis. 2012, 30, 341–346. [Google Scholar] [PubMed]
- Ren, J.; Bi, Y.; Sowers, J.R.; Hetz, C.; Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 2021, 18, 499–521. [Google Scholar] [PubMed]
- Annevelink, C.E.; Westra, J.; Sala-Vila, A.; Harris, W.S.; Tintle, N.L.; Shearer, G.C. A Genome-Wide Interaction Study of Erythrocyte ω-3 Polyunsaturated Fatty Acid Species and Memory in the Framingham Heart Study Offspring Cohort. J. Nutr. 2024, 154, 1640–1651. [Google Scholar]
- Su, Y.; Long, Y.; Xie, K. Cingulin family: Structure, function and clinical significance. Life Sci. 2024, 341, 122504. [Google Scholar]
- Schossleitner, K.; Rauscher, S.; Gröger, M.; Friedl, H.P.; Finsterwalder, R.; Habertheuer, A.; Sibilia, M.; Brostjan, C.; Födinger, D.; Citi, S.; et al. Evidence That Cingulin Regulates Endothelial Barrier Function In Vitro and In Vivo. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 647–654. [Google Scholar]
- Mundi, S.; Massaro, M.; Scoditti, E.; Carluccio, M.A.; Van Hinsbergh, V.W.; Iruela-Arispe, M.L.; de Caterina, R. Endothelial permeability, LDL deposition, and cardiovascular risk factors—A review. Cardiovasc. Res. 2018, 114, 35–52. [Google Scholar]
- Markwerth, P.; Bajanowski, T.; Tzimas, I.; Dettmeyer, R. Sudden cardiac death-update. Int. J. Legal Med. 2021, 135, 483–495. [Google Scholar] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar]
- Waidyasooriya, H.M.; Hariyama, M.; Kameyama, M. Implementation of a custom hardware-accelerator for short-read mapping using Burrows-Wheeler alignment. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2013, 2013, 651–654. [Google Scholar] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar]
- Abraham, G.; Havulinna, A.S.; Bhalala, O.G.; Byars, S.G.; de Livera, A.M.; Yetukuri, L.; Tikkanen, E.; Perola, M.; Schunkert, H.; Sijbrands, E.J.; et al. Genomic prediction of coronary heart disease. Eur. Heart J. 2016, 37, 3267–3278. [Google Scholar]
- Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef]
- Adzhubei, I.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar]
- Chun, S.; Fay, J.C. Identification of deleterious mutations within three human genomes. Genome Res. 2009, 19, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef] [PubMed]
- Reva, B.; Antipin, Y.; Sander, C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011, 39, e118. [Google Scholar] [CrossRef]
- Rentzsch, P.; Schubach, M.; Shendure, J.; Kircher, M. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.A.; Edwards, K.J.; Day, I.N.M.; Gaunt, T.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 2013, 34, 57–65. [Google Scholar] [CrossRef]
- Shihab, H.A.; Rogers, M.F.; Gough, J.; Mort, M.; Cooper, D.N.; Day, I.N.M.; Gaunt, T.R.; Campbell, C. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 2015, 31, 1536–1543. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.; Yuan, L.; Ling, Y.; Wang, X.; Liu, C.; Pan, Y.; Zhang, X.; Ma, X.; Wang, Y.; et al. PGG.Han: The Han Chinese genome database and analysis platform. Nucleic Acids Res. 2020, 48, D971–D976. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Yang, H.; Robinson, P.N.; Wang, K. Phenolyzer: Phenotype-based prioritization of candidate genes for human diseases. Nat. Methods 2015, 12, 841–843. [Google Scholar] [CrossRef]
SCDCAD | Controls | p | |
---|---|---|---|
Age (years) | 54.6 ± 12.8 | 53.6 ± 15.2 | >0.05 |
Gender (N/%) | >0.05 | ||
Male | 180 (74.7) | 180 (74.7) | |
Female | 61 (25.3) | 61 (25.3) | |
Time of death (N/%) | <0.001 | ||
Diurnal | 84 (34.9) | 154 (63.9) | |
Nocturnal | 157 (65.1) | 87 (36.1) | |
Season of death (N/%) | 0.022 | ||
Spring | 48 (19.9) | 60 (24.9) | |
Summer | 65 (27.0) | 71 (29.4) | |
Autumn | 45 (18.7) | 57 (23.7) | |
Winter | 83 (34.4) | 53 (22.0) | |
Place of death (N/%) | |||
In-hospital | 21 (8.7) | 53 (22.0) | <0.001 |
Out-of-hospital | 220 (91.3) | 188 (78.0) | |
Heart weight | 407.6 ± 138.4 | 448.5 ± 144.5 | >0.05 |
Number of narrowing vessels (N/%) | 0.035 | ||
1 | 69 (28.6) | 74 (30.7) | |
2 | 91 (37.8) | 111 (46.1) | |
3 | 81 (33.6) | 56 (23.2) | |
Location of stenosis (N/%) | / | ||
LAD | 190 (78.8) | 189 (78.4) | |
RCA | 189 (78.4) | 147 (61.0) | |
LCX | 115 (47.7) | 128 (53.1) | |
Unstable plaque (N/%) | 122 (50.6) | 87 (36.1) | 0.001 |
Calcification | 93 | 82 | |
Plaque inflammation | 39 | 11 | |
Intraplaque hemorrhage | 15 | 5 | |
Erosion | 11 | 2 | |
Others | 5 | 0 |
Gene | Variant | ID of SNP | Protein | Functional Annotation | ACMG | No. of SCDCAD |
---|---|---|---|---|---|---|
MUC19 | NC_000012.11: g.40884241_40884242ins [54 bp] (GRCh37.p13) | rs1948650929 | / | Frameshift insertion | VUS | 8 |
NC_000012.11: g.40883909_40883910ins [64 bp] (GRCh37.p13) | / | / | Stop gained and frameshift insertion | VUS | 1 | |
CGN | c.2000C>T | rs567100227 | p.Ala667Val | Missense | VUS | 3 |
c.2875G>A | rs769053104 | p.Asp959Asn | Missense | VUS | 1 | |
c.2818G>A | rs41272467 | p.Ala940Thr | Missense | VUS | 2 | |
c.1978C>T | rs931963460 | p.Arg660Trp | Missense | VUS | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Li, L.; Zhou, D.; Yan, Z.; Liu, M.; Yun, L. Risk Factors and Genetic Insights into Coronary Artery Disease-Related Sudden Cardiac Death: A Molecular Analysis of Forensic Investigation. Int. J. Mol. Sci. 2025, 26, 3470. https://doi.org/10.3390/ijms26083470
He X, Li L, Zhou D, Yan Z, Liu M, Yun L. Risk Factors and Genetic Insights into Coronary Artery Disease-Related Sudden Cardiac Death: A Molecular Analysis of Forensic Investigation. International Journal of Molecular Sciences. 2025; 26(8):3470. https://doi.org/10.3390/ijms26083470
Chicago/Turabian StyleHe, Xiangwang, Linfeng Li, Dianyi Zhou, Zhi Yan, Min Liu, and Libing Yun. 2025. "Risk Factors and Genetic Insights into Coronary Artery Disease-Related Sudden Cardiac Death: A Molecular Analysis of Forensic Investigation" International Journal of Molecular Sciences 26, no. 8: 3470. https://doi.org/10.3390/ijms26083470
APA StyleHe, X., Li, L., Zhou, D., Yan, Z., Liu, M., & Yun, L. (2025). Risk Factors and Genetic Insights into Coronary Artery Disease-Related Sudden Cardiac Death: A Molecular Analysis of Forensic Investigation. International Journal of Molecular Sciences, 26(8), 3470. https://doi.org/10.3390/ijms26083470