Mesenteric Lymphatic B Cells Migrate to the Gut and Aggravate TNBS-Induced Rat Colitis via Regulating Intestinal T Cells
Abstract
:1. Introduction
2. Results
2.1. The Ratio of B Cells Increased in ML and MLN in TNBS-Induced Colitis Rats
2.2. MLB Cells Exhibit a Tendency to Migrate to the Intestine in TNBS-Induced Colitis Rats
2.3. MLB Cells Migrate to Colon by Intestinal T Cells Through Ccr8-Ccl1 Axis
2.4. MLB Cells Aggravate Colitis by Inducing Intestinal T Cell Differentiation
3. Discussion
4. Materials and Methods
4.1. Rats and Induction of Colitis
4.2. Collecting Mesenteric Lymph
4.3. Hematoxylin and Eosin (H&E) Staining and Histopathological Score
4.4. Magnetic Microbead-Based Cell Sorting
4.5. Mesenteric Lymphatic B Cell Adoptive Transfer and Intravital Imagination
4.6. Bulk RNA Sequencing and Bioinformatic Analysis
4.7. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
4.8. Immunocyte Isolation and Flow Cytometry
4.9. Knockdown of Ccl1 Expression in Colonic CD4+ T Cells
4.10. Co-Culture of Colonic CD4+ T Cells and MLB Cells
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
B220 | Protein Tyrosine Phosphatase Receptor Type C |
CD | Crohn’s Disease |
CD3 | Cluster of Differentiation 3 |
CD4 | Cluster of Differentiation 4 |
CD8 | Cluster of Differentiation 8 |
CD14 | Cluster of Differentiation 14 |
CD28 | Cluster of Differentiation 28 |
CD32 | Cluster of Differentiation 32 |
CD40L | Cluster of Differentiation 40 Ligand |
CD45 | Cluster of Differentiation 45 |
CD45RA | Cluster of Differentiation 45RA |
CD86 | Cluster of Differentiation 86 |
Cd19 | Cluster of Differentiation 19 |
Cd27 | Cluster of Differentiation 27 |
Cd40 | Cluster of Differentiation 40 |
Cd79b | Cluster of Differentiation 79b |
Ccl1 | C-C Motif Chemokine Ligand 1 |
Ccl17 | C-C Motif Chemokine Ligand 17 |
Ccl22 | C-C Motif Chemokine Ligand 22 |
Ccr4 | C-C Motif Chemokine Receptor 4 |
Ccr8 | C-C Motif Chemokine Receptor 8 |
Cxcr4 | C-X-C Motif Chemokine Receptor 4 |
Cxcr5 | C-X-C Motif Chemokine Receptor 5 |
Cxcl11 | C-X-C Motif Chemokine Ligand 11 |
Cxcl12 | C-X-C Motif Chemokine Ligand 12 |
Cxcl13 | C-X-C Motif Chemokine Ligand 13 |
DSS | Dextran Sodium Sulfate |
DiR | 1,1-Dioctadecyl-3,3,3,3-tetramethylindotricarbocyaineiodide |
DCs | Dendritic Cells |
FMO | Fluorescence Minus One |
GSEA | Gene Set Enrichment Analysis |
GALT | Gut-Associated Lymphoid Tissue |
IBD | Inflammatory Bowel Disease |
IL-4 | Interleukin 4 |
IL-10 | Interleukin 10 |
IL-17 | Interleukin 17 |
IFN-γ | Interferon-gamma |
Mif | Macrophage Migration Inhibitory Factor |
ML | Mesenteric Lymphatics |
MLB | Mesenteric Lymphatic B |
MLNs | Mesenteric Lymph Nodes |
NC | Normal Control |
SD | Sprague Dawley |
TLOs | Tertiary Lymphoid Organs |
TNBS | 2,4,6-Trinitrobenzenesulfonic Acid |
TNF-α | Tumor Necrosis Factor-alpha |
UC | Ulcerative Colitis |
VEGF | Vascular Endothelial Growth Factors |
VEGFR-3 | Vascular Endothelial Growth Factor Receptor 3 |
VEGF-C | Vascular Endothelial Growth Factor C |
Appendix A
Materials and Equipment | Manufacturer/Country | Catalog Number |
---|---|---|
CD45R MicroBeads | Miltenyi Bergisch Gladbach, NRW, Germany | 130-090-494 |
CD4 MicroBeads | Miltenyi Bergisch Gladbach, NRW, Germany | 130-090-319 |
DiR | Invitrogen, Carlsbad, CA, USA | D12731 |
CD45 | Biolegend, San Diego, CA, USA | 202214 |
B220 | BD Biosciences, San Jose, CA, USA | 743590 |
CD3 | Biolegend, San Diego, CA, USA | 201403 |
CD4 | Biolegend, San Diego, CA, USA | 201520 |
CD8 | eBioscience, San Diego, CA, USA | 56-0084-82 |
IL-10 | BD Bioscience, San Jose, CA, USA | 555088 |
IFN-γ | Biolegend, San Diego, CA, USA | 507806 |
IL-4 | Invitrogen, Carlsbad, CA, USA | 50-7045-82 |
CD32 | BD Bioscience, San Jose, CA, USA | 550271 |
TRIzol | ThermoFisher, Waltham, MA, USA | 15596018 |
IL-17 | Invitrogen, Carlsbad, CA, USA | 48-7177-82 |
Anti-CD3 antibody | eBioscience, San Diego, CA, USA | 16-0030-85 |
Anti-CD28 | eBioscience, San Diego, CA, USA | 16-0280-85 |
Anti-CD40 | Invitrogen, Carlsbad, CA, USA | 16-0402-81 |
TNBS | Sigma, St. Louis, MO, USA | P2297 |
siCcl1 1~3 | Tsingke Biotech, Beijing, China | / |
IVIS Spectrum | PerkinElmer, Waltham, MA, USA | / |
NanoPhotometer spectrophotometer | IMPLEN GmbH, Munich, Germany | / |
Bioanalyzer 2100 system | Agilent Technologies, Santa Clara, CA, USA | / |
GraphPad Prism v9.5.0 | GraphPad Software, La Jolla, CA, USA | / |
Appendix B
References
- Rahier, J.F.; De Beauce, S.; Dubuquoy, L.; Erdual, E.; Colombel, J.F.; Jouret-Mourin, A.; Geboes, K.; Desreumaux, P. Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2011, 34, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Maconi, G.; Sorin, V.; Kopylov, U.; Barzilay, O.; Ferretti, F.; Innamorati, S.; Tonolini, M.; Eliakim, R.; Amitai, M.M. Diagnostic significance of mesenteric lymph node involvement in proximal small bowel Crohn’s disease. Ther. Adv. Gastroenterol. 2022, 15, 17562848221118664. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.G. The size and histological appearances of mesenteric lymph nodes in Crohn’s disease. Gut 1972, 13, 970–972. [Google Scholar] [CrossRef] [PubMed]
- Furfaro, F.; D’Amico, F.; Zilli, A.; Craviotto, V.; Aratari, A.; Bezzio, C.; Spinelli, A.; Gilardi, D.; Radice, S.; Saibeni, S.; et al. Noninvasive Assessment of Postoperative Disease Recurrence in Crohn’s Disease: A Multicenter, Prospective Cohort Study on Behalf of the Italian Group for Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 3143–3151. [Google Scholar] [CrossRef]
- McNamee, E.N.; Rivera-Nieves, J. Ectopic Tertiary Lymphoid Tissue in Inflammatory Bowel Disease: Protective or Provocateur? Front. Immunol. 2016, 7, 308. [Google Scholar] [CrossRef]
- Randolph, G.J.; Bala, S.; Rahier, J.F.; Johnson, M.W.; Wang, P.L.; Nalbantoglu, I.; Dubuquoy, L.; Chau, A.; Pariente, B.; Kartheuser, A.; et al. Lymphoid Aggregates Remodel Lymphatic Collecting Vessels that Serve Mesenteric Lymph Nodes in Crohn Disease. Am. J. Pathol. 2016, 186, 3066–3073. [Google Scholar] [CrossRef]
- Czepielewski, R.S.; Erlich, E.C.; Onufer, E.J.; Young, S.; Saunders, B.T.; Han, Y.H.; Wohltmann, M.; Wang, P.L.; Kim, K.W.; Kumar, S.; et al. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity 2021, 54, 2795–2811.e9. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, W.; Zuo, L.; Shen, B. The Role of the Mesentery in Crohn’s Disease: The Contributions of Nerves, Vessels, Lymphatics, and Fat to the Pathogenesis and Disease Course. Inflamm. Bowel Dis. 2016, 22, 1483–1495. [Google Scholar] [CrossRef]
- Kerjaschki, D. The lymphatic vasculature revisited. J. Clin. Investig. 2014, 124, 874–877. [Google Scholar] [CrossRef]
- Crohn, B.B.; Janowitz, H.D. Reflections on regional ileitis, twenty years later. J. Am. Med. Assoc. 1954, 156, 1221–1225. [Google Scholar] [CrossRef]
- Kunisawa, J.; Kurashima, Y.; Kiyono, H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv. Drug Deliv. Rev. 2012, 64, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Rehal, S.; Stephens, M.; Roizes, S.; Liao, S.; von der Weid, P.Y. Acute small intestinal inflammation results in persistent lymphatic alterations. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 314, G408–G417. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.; Oberdorfer, L.; Hyde, R.; Hoff, K.; Thies, V.; Worbs, T.; Schmitz, S.; Forster, R. CCR7 essentially contributes to the homing of plasmacytoid dendritic cells to lymph nodes under steady-state as well as inflammatory conditions. J. Immunol. 2011, 186, 3364–3372. [Google Scholar] [CrossRef]
- Li, J.; Ueno, A.; Fort Gasia, M.; Luider, J.; Wang, T.; Hirota, C.; Jijon, H.B.; Deane, M.; Tom, M.; Chan, R.; et al. Profiles of Lamina Propria T Helper Cell Subsets Discriminate Between Ulcerative Colitis and Crohn’s Disease. Inflamm. Bowel Dis. 2016, 22, 1779–1792. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, C.S.; Zheng, J.J.; Xia, J. Curcumin regulated shift from Th1 to Th2 in trinitrobenzene sulphonic acid-induced chronic colitis. Acta Pharmacol. Sin. 2006, 27, 1071–1077. [Google Scholar] [CrossRef]
- Shen, W.; Li, Y.; Zou, Y.; Cao, L.; Cai, X.; Gong, J.; Xu, Y.; Zhu, W. Mesenteric Adipose Tissue Alterations in Crohn’s Disease Are Associated With the Lymphatic System. Inflamm. Bowel Dis. 2019, 25, 283–293. [Google Scholar] [CrossRef]
- Jurisic, G.; Sundberg, J.P.; Detmar, M. Blockade of VEGF receptor-3 aggravates inflammatory bowel disease and lymphatic vessel enlargement. Inflamm. Bowel Dis. 2013, 19, 1983–1989. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, C.; Li, P.; Li, C.; Shu, W.; Zhao, Y.; Wang, X. ADSCs stimulated by VEGF-C alleviate intestinal inflammation via dual mechanisms of enhancing lymphatic drainage by a VEGF-C/VEGFR-3-dependent mechanism and inhibiting the NF-kappaB pathway by the secretome. Stem Cell Res. Ther. 2022, 13, 448. [Google Scholar] [CrossRef]
- D’Alessio, S.; Correale, C.; Tacconi, C.; Gandelli, A.; Pietrogrande, G.; Vetrano, S.; Genua, M.; Arena, V.; Spinelli, A.; Peyrin-Biroulet, L.; et al. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J. Clin. Investig. 2014, 124, 3863–3878. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, J.; Pan, Y.; Guo, Z.; Gao, Y.; Huang, L.; Zhou, D.; Ge, Y.; Guo, F.; Zhu, W.; et al. Chylomicrons-Simulating Sustained Drug Release in Mesenteric Lymphatics for the Treatment of Crohn’s-like Colitis. J. Crohns Colitis 2021, 15, 631–646. [Google Scholar] [CrossRef]
- Nanaware, P.P.; Khan, Z.N.; Clement, C.C.; Shetty, M.; Mota, I.; Seltzer, E.S.; Dzieciatkowska, M.; Gamboni, F.; D’Alessandro, A.; Ng, C.; et al. Role of the afferent lymph as an immunological conduit to analyze tissue antigenic and inflammatory load. Cell Rep. 2024, 43, 114311. [Google Scholar] [CrossRef] [PubMed]
- Kappel-Latif, S.; Kotagiri, P.; Schlager, L.; Schuld, G.; Walterskirchen, N.; Schimek, V.; Sewell, G.; Binder, C.; Jobst, J.; Murthy, S.; et al. Altered B-Cell Expansion and Maturation in Draining Mesenteric Lymph Nodes of Inflamed Gut in Crohn’s Disease. Cell Mol. Gastroenterol. Hepatol. 2024, 17, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Guedj, K.; Abitbol, Y.; Cazals-Hatem, D.; Morvan, M.; Maggiori, L.; Panis, Y.; Bouhnik, Y.; Caligiuri, G.; Corcos, O.; Nicoletti, A. Adipocytes orchestrate the formation of tertiary lymphoid organs in the creeping fat of Crohn’s disease affected mesentery. J. Autoimmun. 2019, 103, 102281. [Google Scholar] [CrossRef]
- Pararasa, C.; Zhang, N.; Tull, T.J.; Chong, M.H.A.; Siu, J.H.Y.; Guesdon, W.; Chavele, K.M.; Sanderson, J.D.; Langmead, L.; Kok, K.; et al. Reduced CD27(−)IgD(−) B Cells in Blood and Raised CD27(−)IgD(−) B Cells in Gut-Associated Lymphoid Tissue in Inflammatory Bowel Disease. Front. Immunol. 2019, 10, 361. [Google Scholar] [CrossRef]
- Leiper, K.; Martin, K.; Ellis, A.; Subramanian, S.; Watson, A.J.; Christmas, S.E.; Howarth, D.; Campbell, F.; Rhodes, J.M. Randomised placebo-controlled trial of rituximab (anti-CD20) in active ulcerative colitis. Gut 2011, 60, 1520–1526. [Google Scholar] [CrossRef]
- Kristjansson, V.B.; Lund, S.H.; Grondal, G.; Sveinsdottir, S.V.; Agnarsson, H.R.; Jonasson, J.G.; Bjornsson, E.S. Increased risk of inflammatory bowel disease among patients treated with rituximab in Iceland from 2001 to 2018. Scand. J. Gastroenterol. 2021, 56, 46–52. [Google Scholar] [CrossRef]
- Uzzan, M.; Ko, H.M.; Rosenstein, A.K.; Pourmand, K.; Colombel, J.F.; Mehandru, S. Efficient long-term depletion of CD20(+) B cells by rituximab does not affect gut-resident plasma cells. Ann. N. Y. Acad. Sci. 2018, 1415, 5–10. [Google Scholar] [CrossRef]
- Bishu, S.; El Zaatari, M.; Hayashi, A.; Hou, G.; Bowers, N.; Kinnucan, J.; Manoogian, B.; Muza-Moons, M.; Zhang, M.; Grasberger, H.; et al. CD4+ Tissue-resident Memory T Cells Expand and Are a Major Source of Mucosal Tumour Necrosis Factor alpha in Active Crohn’s Disease. J. Crohns Colitis 2019, 13, 905–915. [Google Scholar] [CrossRef]
- Gadjalova, I.; Heinze, J.M.; Goess, M.C.; Hofmann, J.; Buck, A.; Weber, M.C.; Blissenbach, B.; Kampick, M.; Krut, O.; Steiger, K.; et al. B cell-mediated CD4 T-cell costimulation via CD86 exacerbates pro-inflammatory cytokine production during autoimmune intestinal inflammation. Mucosal Immunol. 2024, 17, 67–80. [Google Scholar] [CrossRef]
- Mishima, Y.; Liu, B.; Hansen, J.J.; Sartor, R.B. Resident bacteria-stimulated IL-10-secreting B cells ameliorate T cell-mediated colitis by inducing Tr-1 cells that require IL-27-signaling. Cell Mol. Gastroenterol. Hepatol. 2015, 1, 295–310. [Google Scholar] [CrossRef]
- Basic, M.; Buettner, M.; Keubler, L.M.; Smoczek, A.; Bruesch, I.; Buchheister, S.; Bleich, A. Loss of CD14 leads to disturbed epithelial-B cell crosstalk and impairment of the intestinal barrier after E. coli Nissle monoassociation. Sci. Rep. 2018, 8, 719. [Google Scholar] [CrossRef] [PubMed]
- Cupi, M.L.; Sarra, M.; Marafini, I.; Monteleone, I.; Franze, E.; Ortenzi, A.; Colantoni, A.; Sica, G.; Sileri, P.; Rosado, M.M.; et al. Plasma cells in the mucosa of patients with inflammatory bowel disease produce granzyme B and possess cytotoxic activities. J. Immunol. 2014, 192, 6083–6091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Z.; Zhao, Q.; Liu, Y.; Huang, Q.; Zhang, M.; Li, S.; Wang, D.; Li, N.; Chi, Y.; et al. Mesenteric Lymphatic B Cells Migrate to the Intestine and Aggravate DSS-Induced Colitis via the CXCR5-CXCL13 Axis. Biology 2024, 13, 322. [Google Scholar] [CrossRef]
- Ansel, K.M.; Ngo, V.N.; Hyman, P.L.; Luther, S.A.; Forster, R.; Sedgwick, J.D.; Browning, J.L.; Lipp, M.; Cyster, J.G. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000, 406, 309–314. [Google Scholar] [CrossRef]
- Pan, Z.; Zhu, T.; Liu, Y.; Zhang, N. Role of the CXCL13/CXCR5 Axis in Autoimmune Diseases. Front. Immunol. 2022, 13, 850998. [Google Scholar] [CrossRef]
- Randhawa, P.K.; Singh, K.; Singh, N.; Jaggi, A.S. A review on chemical-induced inflammatory bowel disease models in rodents. Korean J. Physiol. Pharmacol. 2014, 18, 279–288. [Google Scholar] [CrossRef]
- Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef]
- Khor, B.; Gardet, A.; Xavier, R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011, 474, 307–317. [Google Scholar] [CrossRef]
- Mizoguchi, A. Animal models of inflammatory bowel disease. Prog. Mol. Biol. Transl. Sci. 2012, 105, 263–320. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, Q.; Wu, Z.; Chen, N.; Li, N.; Liu, J.; Zhang, M.; Li, S.; Chi, Y.; Liu, Y. Mesenteric Lymphatic B Cells Migrate to the Gut and Aggravate TNBS-Induced Rat Colitis via Regulating Intestinal T Cells. Int. J. Mol. Sci. 2025, 26, 3519. https://doi.org/10.3390/ijms26083519
Zhang Y, Zhao Q, Wu Z, Chen N, Li N, Liu J, Zhang M, Li S, Chi Y, Liu Y. Mesenteric Lymphatic B Cells Migrate to the Gut and Aggravate TNBS-Induced Rat Colitis via Regulating Intestinal T Cells. International Journal of Molecular Sciences. 2025; 26(8):3519. https://doi.org/10.3390/ijms26083519
Chicago/Turabian StyleZhang, Yu, Qinghe Zhao, Zhe Wu, Ning Chen, Na Li, Jiao Liu, Menglei Zhang, Shuolei Li, Yujing Chi, and Yulan Liu. 2025. "Mesenteric Lymphatic B Cells Migrate to the Gut and Aggravate TNBS-Induced Rat Colitis via Regulating Intestinal T Cells" International Journal of Molecular Sciences 26, no. 8: 3519. https://doi.org/10.3390/ijms26083519
APA StyleZhang, Y., Zhao, Q., Wu, Z., Chen, N., Li, N., Liu, J., Zhang, M., Li, S., Chi, Y., & Liu, Y. (2025). Mesenteric Lymphatic B Cells Migrate to the Gut and Aggravate TNBS-Induced Rat Colitis via Regulating Intestinal T Cells. International Journal of Molecular Sciences, 26(8), 3519. https://doi.org/10.3390/ijms26083519