GWAS by Subtraction to Disentangle RBD Genetic Background from α-Synucleinopathies
Abstract
:1. Introduction
2. Results
2.1. F1
2.1.1. Genomic Risk Loci Definition, and Conditional and Joint Analysis
2.1.2. Colocalization
2.1.3. eQTL–sQTL Colocalization Analysis
2.2. F2
2.2.1. Genomic Risk Loci Definition and Conditional and Joint Analysis
2.2.2. Colocalization
2.2.3. eQTL–sQTL Colocalization Analysis
2.2.4. ASSET
2.2.5. LDSC
2.2.6. Mendelian Randomization
3. Discussion
Limitations
4. Materials and Methods
4.1. Data Accession and Pre-Processing
4.2. LDSC
4.3. GenomicSEM
4.4. Genomic Loci Definition
4.5. Fine-Mapping
4.6. Conditional Analysis
4.7. Colocalization
4.8. ASSET
4.9. eQTL–sQTL Colocalization Analysis
4.10. Mendelian Randomization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dauvilliers, Y.; Schenck, C.H.; Postuma, R.B.; Iranzo, A.; Luppi, P.-H.; Plazzi, G.; Montplaisir, J.; Boeve, B. REM Sleep Behaviour Disorder. Nat. Rev. Dis. Primers 2018, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, A.; Verga, L.; Giora, E.; Zucconi, M.; Ferini-Strambi, L. The Risk of Neurodegeneration in REM Sleep Behavior Disorder: A Systematic Review and Meta-Analysis of Longitudinal Studies. Sleep Med. Rev. 2019, 43, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Joza, S.; Hu, M.T.; Jung, K.; Kunz, D.; Arnaldi, D.; Lee, J.; Ferini-Strambi, L.; Antelmi, E.; Sixel-Döring, F.; De Cock, V.C.; et al. Prodromal Dementia with Lewy Bodies in REM Sleep Behavior Disorder: A Multicenter Study. Alzheimer’s Dement. 2024, 20, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Marchand, D.G.; Montplaisir, J.; Postuma, R.B.; Rahayel, S.; Gagnon, J.-F. Detecting the Cognitive Prodrome of Dementia with Lewy Bodies: A Prospective Study of REM Sleep Behavior Disorder. Sleep 2017, 40, zsw014. [Google Scholar] [CrossRef]
- Arnaldi, D.; Iranzo, A.; Nobili, F.; Postuma, R.B.; Videnovic, A. Developing Disease-Modifying Interventions in Idiopathic REM Sleep Behavior Disorder and Early Synucleinopathy. Park. Relat. Disord. 2024, 125, 107042. [Google Scholar] [CrossRef]
- Demange, P.A.; Malanchini, M.; Mallard, T.T.; Biroli, P.; Cox, S.R.; Grotzinger, A.D.; Tucker-Drob, E.M.; Abdellaoui, A.; Arseneault, L.; Van Bergen, E.; et al. Investigating the Genetic Architecture of Noncognitive Skills Using GWAS-by-Subtraction. Nat. Genet. 2021, 53, 35–44. [Google Scholar] [CrossRef]
- Bulik-Sullivan, B.; Finucane, H.K.; Anttila, V.; Gusev, A.; Day, F.R.; Loh, P.R.; ReproGen Consortium; Psychiatric Genomics Consortium; Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3; Duncan, L.; et al. An Atlas of Genetic Correlations across Human Diseases and Traits. Nat. Genet. 2015, 47, 1236–1241. [Google Scholar] [CrossRef]
- Loehlin, J.C. The Cholesky Approach: A Cautionary Note. Behav. Genet. 1996, 26, 65–69. [Google Scholar] [CrossRef]
- Grotzinger, A.D.; Rhemtulla, M.; De Vlaming, R.; Ritchie, S.J.; Mallard, T.T.; Hill, W.D.; Ip, H.F.; Marioni, R.E.; McIntosh, A.M.; Deary, I.J.; et al. Genomic Structural Equation Modelling Provides Insights into the Multivariate Genetic Architecture of Complex Traits. Nat. Hum. Behav. 2019, 3, 513–525. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Rajaraman, P.; Jacobs, K.B.; Wheeler, W.A.; Melin, B.S.; Hartge, P.; Yeager, M.; Chung, C.C.; Chanock, S.J.; Chatterjee, N. A Subset-Based Approach Improves Power and Interpretation for the Combined Analysis of Genetic Association Studies of Heterogeneous Traits. Am. J. Hum. Genet. 2012, 90, 821–835. [Google Scholar] [CrossRef]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium; Bulik-Sullivan, B.K.; Loh, P.-R.; Finucane, H.K.; Ripke, S.; Yang, J.; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M. LD Score Regression Distinguishes Confounding from Polygenicity in Genome-Wide Association Studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, E.; Glymour, M.M.; Holmes, M.V.; Kang, H.; Morrison, J.; Munafò, M.R.; Palmer, T.; Schooling, C.M.; Wallace, C.; Zhao, Q.; et al. Mendelian Randomization. Nat. Rev. Methods Primers 2022, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taskesen, E.; Van Bochoven, A.; Posthuma, D. Functional Mapping and Annotation of Genetic Associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef] [PubMed]
- Benner, C.; Spencer, C.C.A.; Havulinna, A.S.; Salomaa, V.; Ripatti, S.; Pirinen, M. FINEMAP: Efficient Variable Selection Using Summary Data from Genome-Wide Association Studies. Bioinformatics 2016, 32, 1493–1501. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-Wide Complex Trait Analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Chan, P.-C.; Lee, H.-H.; Hong, C.-T.; Hu, C.-J.; Wu, D. REM Sleep Behavior Disorder (RBD) in Dementia with Lewy Bodies (DLB). Behav. Neurol. 2018, 2018, 9421098. [Google Scholar] [CrossRef]
- Prahl, J.D.; Pierce, S.E.; Van Der Schans, E.J.C.; Coetzee, G.A.; Tyson, T. The Parkinson’s Disease Variant Rs356182 Regulates Neuronal Differentiation Independently from Alpha-Synuclein. Hum. Mol. Genet. 2023, 32, 1–14. [Google Scholar] [CrossRef]
- Cooper, C.A.; Jain, N.; Gallagher, M.D.; Weintraub, D.; Xie, S.X.; Berlyand, Y.; Espay, A.J.; Quinn, J.; Edwards, K.L.; Montine, T.; et al. Common Variant Rs356182 near SNCA Defines a Parkinson’s Disease Endophenotype. Ann. Clin. Transl. Neurol. 2017, 4, 15–25. [Google Scholar] [CrossRef]
- Krohn, L.; Wu, R.Y.J.; Heilbron, K.; Ruskey, J.A.; Laurent, S.B.; Blauwendraat, C.; Alam, A.; Arnulf, I.; Hu, M.T.M.; Dauvilliers, Y.; et al. Fine-Mapping of SNCA in Rapid Eye Movement Sleep Behavior Disorder and Overt Synucleinopathies. Ann. Neurol. 2020, 87, 584–598. [Google Scholar] [CrossRef]
- Mizuta, I.; Takafuji, K.; Ando, Y.; Satake, W.; Kanagawa, M.; Kobayashi, K.; Nagamori, S.; Shinohara, T.; Ito, C.; Yamamoto, M.; et al. YY1 Binds to α-Synuclein 3′-Flanking Region SNP and Stimulates Antisense Noncoding RNA Expression. J. Hum. Genet. 2013, 58, 711–719. [Google Scholar] [CrossRef]
- FANTOM Consortium; Zucchelli, S.; Fedele, S.; Vatta, P.; Calligaris, R.; Heutink, P.; Rizzu, P.; Itoh, M.; Persichetti, F.; Santoro, C.; et al. Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases. Mol. Neurobiol. 2019, 56, 5392–5415. [Google Scholar] [CrossRef] [PubMed]
- Giambartolomei, C.; Vukcevic, D.; Schadt, E.E.; Franke, L.; Hingorani, A.D.; Wallace, C.; Plagnol, V. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet. 2014, 10, e1004383. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C. Eliciting Priors and Relaxing the Single Causal Variant Assumption in Colocalisation Analyses. PLoS Genet. 2020, 16, e1008720. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C. A More Accurate Method for Colocalisation Analysis Allowing for Multiple Causal Variants. PLoS Genet. 2021, 17, e1009440. [Google Scholar] [CrossRef]
- Barbeira, A.N.; Dickinson, S.P.; Bonazzola, R.; Zheng, J.; Wheeler, H.E.; Torres, J.M.; Torstenson, E.S.; Shah, K.P.; Garcia, T.; Edwards, T.L.; et al. Exploring the Phenotypic Consequences of Tissue Specific Gene Expression Variation Inferred from GWAS Summary Statistics. Nat. Commun. 2018, 9, 1825. [Google Scholar] [CrossRef]
- Barbeira, A.N.; Pividori, M.; Zheng, J.; Wheeler, H.E.; Nicolae, D.L.; Im, H.K. Integrating Predicted Transcriptome from Multiple Tissues Improves Association Detection. PLoS Genet. 2019, 15, e1007889. [Google Scholar] [CrossRef]
- Kulminski, A.M.; Huang, J.; Wang, J.; He, L.; Loika, Y.; Culminskaya, I. Apolipoprotein E Region Molecular Signatures of Alzheimer’s Disease. Aging Cell 2018, 17, e12779. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome. eLife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Hemani, G.; Tilling, K.; Davey Smith, G. Orienting the Causal Relationship between Imprecisely Measured Traits Using GWAS Summary Data. PLoS Genet. 2017, 13, e1007081. [Google Scholar] [CrossRef]
- Krohn, L.; Heilbron, K.; Blauwendraat, C.; Reynolds, R.H.; Yu, E.; Senkevich, K.; Rudakou, U.; Estiar, M.A.; Gustavsson, E.K.; Brolin, K.; et al. Genome-Wide Association Study of REM Sleep Behavior Disorder Identifies Polygenic Risk and Brain Expression Effects. Nat. Commun. 2022, 13, 7496. [Google Scholar] [CrossRef]
- Chia, R.; Sabir, M.S.; Bandres-Ciga, S.; Saez-Atienzar, S.; Reynolds, R.H.; Gustavsson, E.; Walton, R.L.; Ahmed, S.; Viollet, C.; Ding, J.; et al. Genome Sequencing Analysis Identifies New Loci Associated with Lewy Body Dementia and Provides Insights into Its Genetic Architecture. Nat. Genet. 2021, 53, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of Novel Risk Loci, Causal Insights, and Heritable Risk for Parkinson’s Disease: A Meta-Analysis of Genome-Wide Association Studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Chia, R.; Ray, A.; Shah, Z.; Ding, J.; Ruffo, P.; Fujita, M.; Menon, V.; Saez-Atienzar, S.; Reho, P.; Kaivola, K.; et al. Genome Sequence Analyses Identify Novel Risk Loci for Multiple System Atrophy. Neuron 2024, 112, 2142–2156.e5. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Y.; Real, R.; Martinez-Carrasco, A.; Chia, R.; Lawton, M.A.; Shoai, M.; Bresner, C.; Blauwendraat, C.; Singleton, A.B.; Ryten, M.; et al. Investigation of the Genetic Aetiology of Lewy Body Diseases with and without Dementia. Brain Commun. 2024, 6, fcae190. [Google Scholar] [CrossRef]
- Guella, I.; Evans, D.M.; Szu-Tu, C.; Nosova, E.; Bortnick, S.F.; SNCA Cognition Study Group; Goldman, J.G.; Dalrymple-Alford, J.C.; Geurtsen, G.J.; Litvan, I.; et al. A-synuclein Genetic Variability: A Biomarker for Dementia in Parkinson Disease. Ann. Neurol. 2016, 79, 991–999. [Google Scholar] [CrossRef]
- Guerreiro, R.; Ross, O.A.; Kun-Rodrigues, C.; Hernandez, D.G.; Orme, T.; Eicher, J.D.; Shepherd, C.E.; Parkkinen, L.; Darwent, L.; Heckman, M.G.; et al. Investigating the Genetic Architecture of Dementia with Lewy Bodies: A Two-Stage Genome-Wide Association Study. Lancet Neurol. 2018, 17, 64–74. [Google Scholar] [CrossRef]
- Pihlstrøm, L.; Blauwendraat, C.; Cappelletti, C.; Berge-Seidl, V.; Langmyhr, M.; Henriksen, S.P.; Van De Berg, W.D.J.; Gibbs, J.R.; Cookson, M.R.; the International Parkinson Disease Genomics Consortium; et al. A Comprehensive Analysis of SNCA -related Genetic Risk in Sporadic Parkinson Disease. Ann. Neurol. 2018, 84, 117–129. [Google Scholar] [CrossRef]
- Arnaldi, D.; Mattioli, P.; Raffa, S.; Pardini, M.; Massa, F.; Iranzo, A.; Perissinotti, A.; Niñerola-Baizán, A.; Gaig, C.; Serradell, M.; et al. Presynaptic Dopaminergic Imaging Characterizes Patients with REM Sleep Behavior Disorder Due to Synucleinopathy. Ann. Neurol. 2024, 95, 1178–1192. [Google Scholar] [CrossRef]
- Sahay, A.; Molliver, M.E.; Ginty, D.D.; Kolodkin, A.L. Semaphorin 3F Is Critical for Development of Limbic System Circuitry and Is Required in Neurons for Selective CNS Axon Guidance Events. J. Neurosci. 2003, 23, 6671–6680. [Google Scholar] [CrossRef]
- Fraigne, J.J.; Torontali, Z.A.; Snow, M.B.; Peever, J.H. REM Sleep at Its Core €“ Circuits, Neurotransmitters, and Pathophysiology. Front. Neurol. 2015, 6, 123. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Tybjærg-Hansen, A.; Nordestgaard, B.G.; Frikke-Schmidt, R. APOE and Dementia—Resequencing and Genotyping in 105,597 Individuals. Alzheimer’s Dement. 2020, 16, 1624–1637. [Google Scholar] [CrossRef] [PubMed]
- Marioni, R.E.; Harris, S.E.; Zhang, Q.; McRae, A.F.; Hagenaars, S.P.; Hill, W.D.; Davies, G.; Ritchie, C.W.; Gale, C.R.; Starr, J.M.; et al. GWAS on Family History of Alzheimer’s Disease. Transl. Psychiatry 2018, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Rantalainen, V.; Lahti, J.; Kajantie, E.; Tienari, P.; Eriksson, J.G.; Raikkonen, K. APOE Ɛ4, Rs405509, and Rs440446 Promoter and Intron-1 Polymorphisms and Dementia Risk in a Cohort of Elderly Finns—Helsinki Birth Cohort Study. Neurobiol. Aging 2019, 73, 230.e5–230.e8. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.W.; Heckman, M.G.; Murray, M.E.; Soto, A.I.; Walton, R.L.; Diehl, N.N.; Van Gerpen, J.A.; Uitti, R.J.; Wszolek, Z.K.; Ertekin-Taner, N.; et al. APOE Ε4 Is Associated with Severity of Lewy Body Pathology Independent of Alzheimer Pathology. Neurology 2018, 91, e1182–e1195. [Google Scholar] [CrossRef]
- Yoon, E.J.; Lee, J.-Y.; Woo, K.A.; Kim, S.; Kim, H.; Park, H.; Kim, R.; Jin, B.; Lee, S.; Nam, H.; et al. Mild Behavioral Impairment and Its Relation to Amyloid Load in Isolated REM Sleep Behavior Disorder. Park. Relat. Disord. 2025, 132, 107267. [Google Scholar] [CrossRef]
- Jin, B.; Yoon, E.J.; Woo, K.A.; Kim, S.; Lee, S.; Kim, R.; Shin, J.H.; Kim, Y.K.; Lee, J.-Y. Mild Behavioral Impairment in Idiopathic REM Sleep Behavior Disorder and Lewy Body Disease Continuum. J. Neural Transm. 2025. [Google Scholar] [CrossRef]
- Guo, P.; Gong, W.; Li, Y.; Liu, L.; Yan, R.; Wang, Y.; Zhang, Y.; Yuan, Z. Pinpointing Novel Risk Loci for Lewy Body Dementia and the Shared Genetic Etiology with Alzheimer’s Disease and Parkinson’s Disease: A Large-Scale Multi-Trait Association Analysis. BMC Med. 2022, 20, 214. [Google Scholar] [CrossRef]
- Matias, I.; Diniz, L.P.; Damico, I.V.; Araujo, A.P.B.; Neves, L.D.S.; Vargas, G.; Leite, R.E.P.; Suemoto, C.K.; Nitrini, R.; Jacob-Filho, W.; et al. Loss of lamin-B1 and Defective Nuclear Morphology Are Hallmarks of Astrocyte Senescence In Vitro and in the Aging Human Hippocampus. Aging Cell 2022, 21, e13521. [Google Scholar] [CrossRef]
- Kristiani, L.; Kim, M.; Kim, Y. Role of the Nuclear Lamina in Age-Associated Nuclear Reorganization and Inflammation. Cells 2020, 9, 718. [Google Scholar] [CrossRef]
- Vardarajan, B.N.; Tosto, G.; Lefort, R.; Yu, L.; Bennett, D.A.; De Jager, P.L.; Barral, S.; Reyes-Dumeyer, D.; Nagy, P.L.; Lee, J.H.; et al. Ultra-Rare Mutations in SRCAP Segregate in Caribbean Hispanic Families with Alzheimer Disease. Neurol. Genet. 2017, 3, e178. [Google Scholar] [CrossRef]
- Bartolotti, N.; Lazarov, O. CREB Signals as PBMC-Based Biomarkers of Cognitive Dysfunction: A Novel Perspective of the Brain-Immune Axis. Brain Behav. Immun. 2019, 78, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of Neuroinflammation in Neurodegeneration Development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Rémillard-Pelchat, D.; Rahayel, S.; Gaubert, M.; Postuma, R.B.; Montplaisir, J.; Pelletier, A.; Monchi, O.; Brambati, S.M.; Carrier, J.; Gagnon, J.-F. Comprehensive Analysis of Brain Volume in REM Sleep Behavior Disorder with Mild Cognitive Impairment. J. Park. Dis. 2022, 12, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.L.; Reddick, W.E.; Glass, J.O.; Gajjar, A.; Goloubeva, O.; Mulhern, R.K. Decline in Corpus Callosum Volume among Pediatric Patients with Medulloblastoma: Longitudinal MR Imaging Study. AJNR Am. J. Neuroradiol. 2002, 23, 1088–1094. [Google Scholar]
- Mangia, S.; Svatkova, A.; Mascali, D.; Nissi, M.J.; Burton, P.C.; Bednarik, P.; Auerbach, E.J.; Giove, F.; Eberly, L.E.; Howell, M.J.; et al. Multi-Modal Brain MRI in Subjects with PD and iRBD. Front. Neurosci. 2017, 11, 709. [Google Scholar] [CrossRef]
- Tang, S.; Huang, B.; Wang, J.; Zhou, L.; Chau, S.W.H.; Chan, J.; Liu, Y.; Wing, Y.K. 0912 Striatal Atrophy and Clinical Correlates in REM Sleep Behavior Disorder. Sleep 2023, 46 (Suppl. 1), A402–A403. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chen, C.-H.; Tom, S.E.; Kuo, S.-H.; for the Alzheimer’s Disease Neuroimaging Initiative. Cerebellar Volume Is Associated with Cognitive Decline in Mild Cognitive Impairment: Results from ADNI. Cerebellum 2020, 19, 217–225. [Google Scholar] [CrossRef]
- Draganova, R.; Pfaffenrot, V.; Steiner, K.M.; Göricke, S.L.; Elangovan, N.; Timmann, D.; Konczak, J. Neurostructural Changes and Declining Sensorimotor Function Due to Cerebellar Cortical Degeneration. J. Neurophysiol. 2021, 125, 1735–1745. [Google Scholar] [CrossRef]
- Song, B.; Zhu, J.-C. A Narrative Review of Cerebellar Malfunctions and Sleep Disturbances. Front. Neurosci. 2021, 15, 590619. [Google Scholar] [CrossRef]
- Jackson, A.; Xu, W. Role of Cerebellum in Sleep-Dependent Memory Processes. Front. Syst. Neurosci. 2023, 17, 1154489. [Google Scholar] [CrossRef]
- Benarroch, E. What Is the Involvement of the Cerebellum During Sleep? Neurology 2023, 100, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Wang, S.; Li, Z.; Xu, P.; Bai, Y.; Zhou, Y.; Zhang, X.; Li, Y.; Zhang, J.; Zhang, H. Resting-State Functional Network Topology Alterations of the Occipital Lobe Associated With Attention Impairment in Isolated Rapid Eye Movement Behavior Disorder. Front. Aging Neurosci. 2022, 14, 844483. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.K.L.; Chang, R.C.-C.; Pearce, R.K.B.; Gentleman, S.M. Nucleus Basalis of Meynert Revisited: Anatomy, History and Differential Involvement in Alzheimer’s and Parkinson’s Disease. Acta Neuropathol. 2015, 129, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.-I.; Cha, K.S.; Kim, M.; Lee, W.-J.; Lee, H.S.; Sunwoo, J.-S.; Shin, J.-W.; Kim, T.-J.; Jun, J.-S.; Kim, H.-J.; et al. Association of Nucleus Basalis of Meynert Functional Connectivity and Cognition in Idiopathic Rapid-Eye-Movement Sleep Behavior Disorder. J. Clin. Neurol. 2022, 18, 562. [Google Scholar] [CrossRef]
- Matsuoka, T.; Imai, A.; Fujimoto, H.; Kato, Y.; Shibata, K.; Nakamura, K.; Yokota, H.; Yamada, K.; Narumoto, J. Neural Correlates of Sleep Disturbance in Alzheimer’s Disease: Role of the Precuneus in Sleep Disturbance. J. Alzheimer’s Dis. 2018, 63, 957–964. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, C. The Function and Structure of Precuneus Is Associated with Subjective Sleep Quality in Major Depression. Front. Psychiatry 2022, 12, 831524. [Google Scholar] [CrossRef]
- Oltra, J.; Campabadal, A.; Segura, B.; Uribe, C.; Marti, M.J.; Compta, Y.; Valldeoriola, F.; Bargallo, N.; Iranzo, A.; Junque, C. Disrupted Functional Connectivity in PD with Probable RBD and Its Cognitive Correlates. Sci. Rep. 2021, 11, 24351. [Google Scholar] [CrossRef]
- Byun, J.-I.; Cha, K.S.; Kim, M.; Lee, W.-J.; Lee, H.S.; Sunwoo, J.-S.; Shin, J.-W.; Kim, T.-J.; Moon, J.; Lee, S.-T.; et al. Altered Insular Functional Connectivity in Isolated REM Sleep Behavior Disorder: A Data-Driven Functional MRI Study. Sleep Med. 2021, 79, 88–93. [Google Scholar] [CrossRef]
- Wang, Z.; Fei, X.; Liu, X.; Wang, Y.; Hu, Y.; Peng, W.; Wang, Y.; Zhang, S.; Xu, M. REM Sleep Is Associated with Distinct Global Cortical Dynamics and Controlled by Occipital Cortex. Nat. Commun. 2022, 13, 6896. [Google Scholar] [CrossRef]
- Orso, B.; Mattioli, P.; Yoon, E.-J.; Kim, Y.K.; Kim, H.; Shin, J.H.; Kim, R.; Famà, F.; Brugnolo, A.; Massa, F.; et al. Progression Trajectories from Prodromal to Overt Synucleinopathies: A Longitudinal, Multicentric Brain [18F]FDG-PET Study. NPJ Park. Dis. 2024, 10, 200. [Google Scholar] [CrossRef]
- ReproGen Consortium; Schizophrenia Working Group of the Psychiatric Genomics Consortium; The RACI Consortium; Finucane, H.K.; Bulik-Sullivan, B.; Gusev, A.; Trynka, G.; Reshef, Y.; Loh, P.-R.; Anttila, V.; et al. Partitioning Heritability by Functional Annotation Using Genome-Wide Association Summary Statistics. Nat. Genet. 2015, 47, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Giusti-Rodriguez, P.M.; Sullivan, P.F. Using three-dimensional regulatory chromatin interactions from adult and fetal cortex to interpret genetic results for psychiatric disorders and cognitive traits. Genetics 2019. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Elliott, L.T.; Sharp, K.; Alfaro-Almagro, F.; Shi, S.; Miller, K.L.; Douaud, G.; Marchini, J.; Smith, S.M. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 2018, 562, 210–216. [Google Scholar] [CrossRef]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; Van Der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole Brain Segmentation. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaudio, A.; Gotta, F.; Ponti, C.; Geroldi, A.; La Barbera, A.; Mandich, P. GWAS by Subtraction to Disentangle RBD Genetic Background from α-Synucleinopathies. Int. J. Mol. Sci. 2025, 26, 3578. https://doi.org/10.3390/ijms26083578
Gaudio A, Gotta F, Ponti C, Geroldi A, La Barbera A, Mandich P. GWAS by Subtraction to Disentangle RBD Genetic Background from α-Synucleinopathies. International Journal of Molecular Sciences. 2025; 26(8):3578. https://doi.org/10.3390/ijms26083578
Chicago/Turabian StyleGaudio, Andrea, Fabio Gotta, Clarissa Ponti, Alessandro Geroldi, Andrea La Barbera, and Paola Mandich. 2025. "GWAS by Subtraction to Disentangle RBD Genetic Background from α-Synucleinopathies" International Journal of Molecular Sciences 26, no. 8: 3578. https://doi.org/10.3390/ijms26083578
APA StyleGaudio, A., Gotta, F., Ponti, C., Geroldi, A., La Barbera, A., & Mandich, P. (2025). GWAS by Subtraction to Disentangle RBD Genetic Background from α-Synucleinopathies. International Journal of Molecular Sciences, 26(8), 3578. https://doi.org/10.3390/ijms26083578