Advances in Duchenne Muscular Dystrophy: Diagnostic Techniques and Dystrophin Domain Insights
Abstract
:1. Introduction
2. Structure and Function of the Dystrophin
2.1. Overview of the Dystrophin Isoforms
Dystrophin Isoform | Size and Length | Expression | Function |
---|---|---|---|
Dp427 [38,39] | ~427 kDa, 3685 amino acids. | Skeletal, cardiac muscle, the plasma membrane of muscle cells, and the brain. It plays a vital role in preserving the structural integrity of muscle cell membranes. | Maintaining the cytoskeleton of muscle cells and their connection to the extracellular matrix provides stability during muscle movement and contributes to brain function. |
Dp260 [40,41] | ~260 kDa, 2150 amino acids. | Retina. | Maintains the structural and functional integrity of the retina by preserving the connection between photoreceptor cells and the retinal pigment epithelium. |
Dp140 [42,43] | ~140 kDa, 1260 amino acids. | Brain and fetal tissues have less pronounced expression in skeletal muscle and are absent in the retina. Transcription of Dp140 begins upstream from exon 45. | Dp140’s exact function is less defined than other Dystrophin isoforms, but it is believed to contribute to cognitive functions and brain development in the central nervous system. |
Dp116 [44] | ~116 kDa, 1061 amino acids. | Schwann cells which are peripheral nervous systems. | Dp116 is important for the peripheral nervous system and Schwann cell integrity. It helps with cytoskeleton organization and cell membrane stability and provides mechanical support for muscle fibers during contraction and relaxation. Although not enough for normal muscle function on its own, its presence is critical for overall muscle health [45,46]. |
Dp71 [47] | ~71 kDa, 620 amino acids. | Various tissues include the brain, kidney, liver, lung, retina, and cardiac muscles. Transcription of Dp71 begins between exon 62 and exon 63. | Dp71 maintains cell membrane integrity in non-muscle tissues, is involved in synaptic function in the brain, and helps keep the structural integrity of retinal cells. |
Dp40 [48] | ~40 kDa, 365 amino acids. | The expression pattern of Dp40 is not as well characterized as other Dystrophin isoforms, but it is known to be present in various tissues, including the brain. | This isoform lacks the entire β-dystroglycan binding site and the C-terminal domain. Dp40 is involved in signal transduction and maintaining cell structure. It localizes neurons to synaptic vesicles and interacts with presynaptic proteins. The exact role of Dystrophin in the brain is still unclear despite high expression levels in the brain and muscles. |
2.2. Overview of the Dystrophin Domains
3. Dystrophin Detection and Regulation
3.1. Dystrophin Detection Issues and Perspectives
Method | Advantages | Disadvantages | References |
---|---|---|---|
Multiplex Ligation-dependent Probe Amplification (MLPA) |
|
| [177,178] |
Next-Generation Sequencing (NGS)/Whole-Exome Sequencing (WES) |
|
| [179,180] |
Whole-Genome Sequencing (WGS) |
|
| [181,182] |
Optical Genome Mapping (OGM) |
|
| [183,184] |
CRISPR-Based Detection Methods |
|
| [185,186] |
RNA Sequencing (RNA-seq) |
|
| [187,188,189] |
Immunohistochemistry (IHC)/Western blot |
|
| [10,33,190] |
3.2. Upregulation of Dystrophin
3.3. Autophagy and Its Role in DMD
3.4. Muscle Mass Research Aspects
3.5. Artificial Intelligence (AI) Integration in Duchenne Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABD | Actin-Binding Domain |
BMD | Becker muscular dystrophy |
CR | cysteine-rich |
cDNA | Complementary DNA |
CT | C-terminal |
DAPC | Dystrophin-Associated Protein Complex |
DGC | Dystrophin Glycoprotein Complex |
DMD | Duchenne muscular dystrophy |
DNA | Deoxyribonucleic Acid |
MAPK | Mitogen-Activated Protein Kinase |
nNOS | neuronal nitric oxide synthase |
NO | nitric oxide |
NT | N-terminal |
PKA | protein kinase A |
RNA | Ribonucleic Acid |
References
- de Boulogne, G.D. 1 Recherches sur la paralysie musculaire pseudo-hypertrophique, ou paralysie myosclérosique. Clin. Orthop. Relat. Res. 1965, 39, 3–5. [Google Scholar]
- Aartsma-Rus, A.; Morgan, J.; Lonkar, P. Report of a TREAT-NMD/world duchenne organisation meeting on dystrophin quantification methodology. J. Neuromuscul. Dis. 2019, 6, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Goemans, N.; Takeda, S.I.; Mercuri, E.; Aartsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers 2021, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Cai, Y.; Gao, Z.; Chen, X.; Liu, B.; Zhang, C.; Yu, W.; Cao, Q.; Shen, Y.; Yao, X.; et al. Duchenne muscular dystrophy: Pathogenesis and promising therapies. J. Neurol. 2023, 270, 3733–3749. [Google Scholar] [CrossRef]
- Emery, A.E.H.; Muntoni, F.; Quinlivan, R. Duchenne Muscular Dystrophy; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Yiu, E.M.; Kornberg, A.J. Duchenne muscular dystrophy. J. Paediatr. Child Health 2015, 51, 759–764. [Google Scholar] [CrossRef]
- Jollet, M.; Mariadassou, M.; Rué, O.; Pessemesse, L.; Ollendorff, V.; Ramdani, S.; Vernus, B.; Bonnieu, A.; Bertrand-Gaday, C.; Goustard, B.; et al. Insight into the Role of Gut Microbiota in Duchenne Muscular Dystrophy: An Age-Related Study in Mdx Mice. Am. J. Pathol. 2024, 194, 264–279. [Google Scholar] [CrossRef]
- Emery, A.E.H. Duchenne muscular dystrophy—Meryon’s disease. Neuromuscul. Disord. 1993, 3, 263–266. [Google Scholar] [CrossRef]
- Deconinck, N.; Dan, B. Pathophysiology of Duchenne Muscular Dystrophy: Current Hypotheses. Pediatr. Neurol. 2007, 36, 1–7. [Google Scholar] [CrossRef]
- Hoffman, E.P.; Brown, R.H.; Kunkel, L.M. Dystrophin: The protein product of the duchenne muscular dystrophy locus. Cell 1987, 51, 919–928. [Google Scholar] [CrossRef]
- Brown, M.J.; Song, K.; Vollmar, M.; Shelby, M.; Leshikar, H. Flexible Femoral Nailing of an Awake Adult Muscular Dystrophy Patient. JAAOS Glob. Res. Rev. 2019, 3, e19.00013. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, R.; Cai, X.; Fu, H.; Xu, K.; Yuan, W.; Song, Y.; Shi, K.; Fu, C.; Li, X.; et al. Association Between Myocardial Oxygenation and Fibrosis in Duchenne Muscular Dystrophy: Analysis by Rest Oxygenation-Sensitive Magnetic Resonance Imaging. J. Magn. Reson. Imaging 2024, 60, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Lechner, A.; Herzig, J.J.; Kientsch, J.G.; Kohler, M.; Bloch, K.E.; Ulrich, S.; Schwarz, E.I. Cardiomyopathy as cause of death in Duchenne muscular dystrophy: A longitudinal observational study. ERJ Open Res. 2023, 9, 00176–2023. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.J.; Davies, K.E. Duchenne muscular dystrophy and dystrophin: Pathogenesis and opportunities for treatment: Third in molecular medicine review series. EMBO Rep. 2004, 5, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Jindal, Y.; Arora, S.; Singh, R. Computational analysis of missense mutations in dystrophin protein: Insights into domain-specific effects and functional implications. Hum. Gene 2024, 40, 201289. [Google Scholar] [CrossRef]
- Mahdieh, N.; Rabbani, B.; Maleki, M. Genetics of Cardiovascular Disease and Applications of Genetic Testing. Pract. Cardiol. Princ. Approaches 2022, 665–674. [Google Scholar] [CrossRef]
- Consortium IHGS. Finishing the euchromatic sequence of the human genome. Nature 2004, 431, 931–945. [Google Scholar] [CrossRef]
- Su, N.; Sun, Q.; Li, C.; Lu, X.; Qi, H.; Chen, S.; Yang, J.; Du, X.; Zhao, L.; He, Q.; et al. Gain-of-function mutation in, FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis. Hum. Mol. Genet. 2010, 19, 1199–1210. [Google Scholar] [CrossRef]
- Richette, P.; Bardin, T. L’achondroplasie: Du génotype au phénotype. Rev. Du Rhum. 2008, 75, 405–411. [Google Scholar] [CrossRef]
- Hubscher, U.; Spadari, S.; Villani, G.; Maga, G. DNA Polymerases: Discovery, Characterization and Functions in Cellular DNA Transactions; World Scientific: Singapore, 2010. [Google Scholar]
- Catapano, F.; Alkharji, R.; Chambers, D.; Singh, S.; Aghaeipour, A.; Malhotra, J.; Ferretti, P.; Phadke, R.; Muntonia, F. Comprehensive spatiotemporal map of dystrophin isoform expression in the developing and adult human brain. bioRxiv 2024. [Google Scholar] [CrossRef]
- Verhaeg, M.; Adamzek, K.; van de Vijver, D.; Putker, K.; Engelbeen, S.; Wijnbergen, D.; Overzier, M.; Suidgeest, E.; van der Weerd, L.; Aartsma-Rus, A.; et al. Learning, memory and blood-brain barrier pathology in Duchenne muscular dystrophy mice lacking Dp427, or Dp427 and Dp140. Genes Brain Behav. 2024, 23, e12895. [Google Scholar] [CrossRef]
- Bonet-Kerrache, A.; Fabbrizio, E.; Mornet, D. N-terminal domain of dystrophin. FEBS Lett. 1994, 355, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Fox, H.; Millington, L.; Mahabeer, I.; Van Ruiten, H. Duchenne muscular dystrophy. BMJ 2020, 368, L7012. [Google Scholar] [CrossRef] [PubMed]
- Bies, R.D.; Caskey, C.T.; Fenwick, R. An intact cysteine-rich domain is required for dystrophin function. J. Clin. Investig. 1992, 90, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.; Monaco, A.P.; Kunkel, L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988, 53, 219–228. [Google Scholar] [CrossRef]
- Ervasti, J.M. Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim. et Biophys. Acta Mol. Basis Dis. 2007, 1772, 108–117. [Google Scholar] [CrossRef]
- Chesshyre, M.; Ridout, D.; Hashimoto, Y.; Ookubo, Y.; Torelli, S.; Maresh, K.; Ricotti, V.; Abbott, L.; Gupta, V.A.; Main, M.; et al. Investigating the role of dystrophin isoform deficiency in motor function in Duchenne muscular dystrophy. J. Cachexia Sarcopenia Muscle 2022, 13, 1360–1372. [Google Scholar] [CrossRef]
- Wijekoon, N.; Gonawala, L.; Ratnayake, P.; Amaratunga, D.; Hathout, Y.; Mohan, C.; Steinbusch, H.W.M.; Dalal, A.; Hoffman, E.P.; de Silva, K.R.D. Duchenne Muscular Dystrophy from Brain to Muscle: The Role of Brain Dystrophin Isoforms in Motor Functions. J. Clin. Med. 2023, 12, 5637. [Google Scholar] [CrossRef]
- Hoogland, G.; Hendriksen, R.G.F.; Slegers, R.J.; Hendriks, M.P.H.; Schijns, O.E.M.G.; Aalbers, M.W.; Vles, J.S.H. The expression of the distal dystrophin isoforms Dp140 and Dp71 in the human epileptic hippocampus in relation to cognitive functioning. Hippocampus 2019, 29, 102–110. [Google Scholar] [CrossRef]
- Felisari, G.; Boneschi, F.M.; Bardoni, A.; Sironi, M.; Comi, G.; Robotti, M.; Turconi, A.; Lai, M.; Corrao, G.; Bresolin, N. Loss of Dp140 dystrophin isoform and intellectual impairment in Duchenne dystrophy. Neurology 2000, 55, 559–564. [Google Scholar] [CrossRef]
- de Feraudy, Y.; Yaou, R.B.; Wahbi, K.; Stalens, C.; Stantzou, A.; Laugel, V.; Desguerre, I.; Servais, L.; Leturcq, F.; Amthor, H. Very low residual dystrophin quantity is associated with milder dystrophinopathy. Ann. Neurol. 2021, 89, 280–292. [Google Scholar] [CrossRef]
- Angelini, C.; Marozzo, R.; Pegoraro, V. Current and emerging therapies in Becker muscular dystrophy (BMD). Acta Myol. 2019, 38, 172. [Google Scholar] [PubMed]
- Bergen, J.C.v.D.; Wokke, B.H.; Janson, A.A.; van Duinen, S.G.; Hulsker, M.A.; Ginjaar, H.B.; van Deutekom, J.C.; Aartsma-Rus, A.; Kan, H.E.; Verschuuren, J.J. Dystrophin levels and clinical severity in Becker muscular dystrophy patients. J. Neurol. Neurosurg. Psychiatry 2014, 85, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Beekman, C.; Sipkens, J.A.; Testerink, J.; Giannakopoulos, S.; Kreuger, D.; Van Deutekom, J.C.; Campion, G.V.; De Kimpe, S.J.; Lourbakos, A. A sensitive, reproducible and objective immunofluorescence analysis method of dystrophin in individual fibers in samples from patients with duchenne muscular dystrophy. PLoS ONE 2014, 9, e107494. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.; Hoffman, E.; Bertelson, C.; Monaco, A.; Feener, C.; Kunkel, L. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987, 50, 509–517. [Google Scholar] [CrossRef]
- Giafaglione, J.; Nandi, D.; Hayes, E.; Wright, L. Abstract 15152: Contributing Causes of Death in US Males With Muscular Dystrophy Across the Lifespan. Circulation 2022, 146 (Suppl. S1), A15152. [Google Scholar] [CrossRef]
- Psaras, Y.; Toepfer, C.N. Targeted genetic therapies for inherited disorders that affect both cardiac and skeletal muscle. Exp. Physiol. 2024, 109, 175–189. [Google Scholar] [CrossRef]
- Hoffman, E.P. The discovery of dystrophin, the protein product of the Duchenne muscular dystrophy gene. FEBS J. 2020, 287, 3879–3887. [Google Scholar] [CrossRef]
- Rodius, F.; Claudepierre, T.; Rosas-Vargas, H.; Cisneros, B.; Montanez, C.; Dreyfus, H.; Mornet, D.; Rendon, A. Dystrophins in developing retina: Dp260 expression correlates with synaptic maturation. Neuroreport 1997, 8, 2383–2387. [Google Scholar] [CrossRef]
- Warner, L.E.; DelloRusso, C.; Crawford, R.W.; Rybakova, I.N.; Patel, J.R.; Ervasti, J.M.; Chamberlain, J.S. Expression of Dp260 in muscle tethers the actin cytoskeleton to the dystrophin-glycoprotein complex and partially prevents dystrophy. Hum. Mol. Genet. 2002, 11, 1095–1105. [Google Scholar] [CrossRef]
- Naidoo, M.; Anthony, K. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy. Mol. Neurobiol. 2019, 57, 1748–1767. [Google Scholar] [CrossRef]
- Tadayoni, R.; Rendon, A.; Soria-Jasso, L.E.; Cisneros, B. Dystrophin Dp71: The smallest but multifunctional product of the duchenne muscular dystrophy gene. Mol. Neurobiol. 2012, 45, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.Q.M.; Maeta, K.; Kawaguchi, T.; Awano, H.; Nagai, M.; Nishio, H.; Matsuo, M. Schwann cell-specific Dp116 is expressed in glioblastoma cells, revealing two novel DMD gene splicing patterns. Biochem. Biophys. Rep. 2019, 20, 100703. [Google Scholar] [CrossRef]
- Judge, L.M.; Arnett, A.L.H.; Banks, G.B.; Chamberlain, J.S. Expression of the dystrophin isoform Dp116 preserves functional muscle mass and extends lifespan without preventing dystrophy in severely dystrophic mice. Hum. Mol. Genet. 2011, 20, 4978–4990. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Awano, H.; Matsumoto, M.; Nagai, M.; Kawaguchi, T.; Zhang, Z.; Nishio, H. Dystrophin Dp116: A Yet to Be Investigated Product of the Duchenne Muscular Dystrophy Gene. Genes 2017, 8, 251. [Google Scholar] [CrossRef]
- Lidov, H.G.W.; Kunkel, L.M. Dp140: Alternatively Spliced Isoforms in Brain and Kidney. Genomics 1997, 45, 132–139. [Google Scholar] [CrossRef]
- Tozawa, T.; Itoh, K.; Yaoi, T.; Tando, S.; Umekage, M.; Dai, H.; Hosoi, H.; Fushiki, S. The shortest isoform of dystrophin (Dp40) interacts with a group of presynaptic proteins to form a presumptive novel complex in the mouse brain. Mol. Neurobiol. 2012, 45, 287–297. [Google Scholar] [CrossRef]
- Nelson, D.M.; Ervasti, J.M. Structural Proteins | Dystrophin: A Multifaceted Protein Critical for Muscle Health. In Encyclopedia of Biological Chemistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 625–638. [Google Scholar] [CrossRef]
- Keep, N.H. Structural comparison of actin binding in utrophin and dystrophin. Neurol. Sci. 2000, 21, S929–S937. [Google Scholar] [CrossRef]
- Hammonds, R.G., Jr. Protein sequence of DMD gene is related to actin-binding domain of alpha-actinin. Cell 1987, 51, 1. [Google Scholar] [CrossRef]
- Byers, T.J.; Husain-Chishti, A.; Dubreuil, R.R.; Branton, D.; Goldstein, L.S. Sequence similarity of the amino-terminal domain of Drosophila beta spectrin to alpha actinin and dystrophin. J. Cell Biol. 1989, 109, 1633–1641. [Google Scholar] [CrossRef]
- Levine, B.A.; Moir, A.J.G.; Patchell, V.B.; Perry, S.V. Binding sites involved in the interaction of actin with the N-terminal region of dystrophin. FEBS Lett. 1992, 298, 44–48. [Google Scholar] [CrossRef]
- Renley, B.A.; Rybakova, I.N.; Amann, K.J.; Ervasti, J.M. Dystrophin binding to nonmuscle actin. Cell Motil. Cytoskelet. 1998, 41, 264–270. [Google Scholar] [CrossRef]
- Koenig, M.; Kunkel, L.M. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J. Biol. Chem. 1990, 265, 4560–4566. [Google Scholar] [CrossRef] [PubMed]
- Percival, J.M. Perspective: Spectrin-like repeats in dystrophin have unique binding preferences for syntrophin adaptors that explain the mystery of how nNOSμ localizes to the sarcolemma. Front. Physiol. 2018, 9, 409530. [Google Scholar] [CrossRef] [PubMed]
- Broderick, M.J.F.; Winder, S.J. Spectrin, α-Actinin, and Dystrophin. Adv. Protein Chem. 2005, 70, 203–246. [Google Scholar] [CrossRef]
- Ahn, A.H.; Kunkel, L.M. The structural and functional diversity of dystrophin. Nat. Genet. 1993, 3, 283–291. [Google Scholar] [CrossRef]
- Harper, S.Q.; Crawford, R.W.; Dellorusso, C.; Chamberlain, J.S. Spectrin-like repeats from dystrophin and a-actinin-2 are not functionally interchangeable. Hum. Mol. Genet. 2002, 11, 1807–1815. [Google Scholar] [CrossRef]
- Kahana, E.; Flood, G.; Gratzer, W.B. Physical properties of dystrophin rod domain. Cell Motil. Cytoskelet. 1997, 36, 246–252. [Google Scholar] [CrossRef]
- Zhao, J.; Kodippili, K.; Yue, Y.; Hakim, C.H.; Wasala, L.; Pan, X.; Zhang, K.; Yang, N.N.; Duan, D.; Lai, Y. Dystrophin contains multiple independent membrane-binding domains. Hum. Mol. Genet. 2016, 25, 3647–3653. [Google Scholar] [CrossRef]
- Sato, O.; Nonomura, Y.; Kimura, S.; Maruyama, K. Molecular Shape of Dystrophin. J. Biochem. 1992, 112, 631–636. [Google Scholar] [CrossRef]
- Rybakova, I.; Amann, K.; Ervasti, J.M. A new model for the interaction of dystrophin with F-actin. J. Cell Biol. 1996, 135, 661–672. [Google Scholar] [CrossRef]
- Rybakova, I.N.; Ervasti, J.M. Dystrophin-glycoprotein complex is monomeric and stabilizes actin filaments in vitro through a lateral association. J. Biol. Chem. 1997, 272, 28771–28778. [Google Scholar] [CrossRef]
- DeWolf, C.; McCauley, P.; Sikorski, A.; Winlove, C.; Bailey, A.; Kahana, E.; Pinder, J.; Gratzer, W. Interaction of dystrophin fragments with model membranes. Biophys. J. 1997, 72, 2599–2604. [Google Scholar] [CrossRef] [PubMed]
- Le Rumeur, E.; Fichou, Y.; Pottier, S.; Gaboriau, F.; Rondeau-Mouro, C.; Vincent, M.; Gallay, J.; Bondon, A. Interaction of dystrophin rod domain with membrane phospholipids: Evidence of a close proximity between tryptophan residues and lipids. J. Biol. Chem. 2003, 278, 5993–6001. [Google Scholar] [CrossRef] [PubMed]
- Amann, K.J.; Renley, B.A.; Ervasti, J.M. A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J. Biol. Chem. 1998, 273, 28419–28423. [Google Scholar] [CrossRef] [PubMed]
- Ervasti, J.M.; Campbell, K.P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 1993, 122, 809–823. [Google Scholar] [CrossRef]
- Belanto, J.J.; Mader, T.L.; Eckhoff, M.D.; Strandjord, D.M.; Banks, G.B.; Gardner, M.K.; Lowe, D.A.; Ervasti, J.M. Microtubule binding distinguishes dystrophin from utrophin. Proc. Natl. Acad. Sci. USA 2014, 111, 5723–5728. [Google Scholar] [CrossRef]
- Kerr, J.P.; Robison, P.; Shi, G.; Bogush, A.I.; Kempema, A.M.; Hexum, J.K.; Becerra, N.; Harki, D.A.; Martin, S.S.; Raiteri, R.; et al. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat. Commun. 2015, 6, 8526. [Google Scholar] [CrossRef]
- Mias-Lucquin, D.; Morais, R.D.S.; Chéron, A.; Lagarrigue, M.; Winder, S.J.; Chenuel, T.; Pérez, J.; Appavou, M.-S.; Martel, A.; Alviset, G.; et al. How the central domain of dystrophin acts to bridge F-actin to sarcolemmal lipids. J. Struct. Biol. 2020, 209, 107411. [Google Scholar] [CrossRef]
- Le Rumeur, E.; Winder, S.J.; Hubert, J.-F. Dystrophin: More than just the sum of its parts. Biochim. et Biophys. Acta Proteins Proteom. 2010, 1804, 1713–1722. [Google Scholar] [CrossRef]
- Kahana, E.; Marsh, P.; Henry, A.; Way, M.; Gratzer, W. Conformation and Phasing of Dystrophin Structural Repeats. J. Mol. Biol. 1994, 235, 1271–1277. [Google Scholar] [CrossRef]
- Ayalon, G.; Davis, J.Q.; Scotland, P.B.; Bennett, V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 2008, 135, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Andre, M.S.; Johnson, M.; Bansal, P.N.; Wellen, J.; Robertson, A.; Opsahl, A.; Burch, P.M.; Bialek, P.; Morris, C.; Owens, J. A Mouse Anti-Myostatin Antibody Increases Muscle Mass and Improves Muscle Strength and Contractility in the Mdx Mouse Model of Duchenne Muscular Dystrophy and Its Humanized Equivalent, Domagrozumab (PF-06252616), Increases Muscle Volume in Cynomolgus Monkeys. Skelet Muscle 2017, 7, 1–12. [Google Scholar]
- Nelson, D.M.; Lindsay, A.; Judge, L.M.; Duan, D.; Chamberlain, J.S.; A Lowe, D.; Ervasti, J.M. Variable rescue of microtubule and physiological phenotypes in mdx muscle expressing different miniaturized dystrophins. Hum. Mol. Genet. 2018, 27, 2090–2100. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.P.; Kahl, S.D. Association of dystrophin and an integral membrane glycoprotein. Nature 1989, 338, 259–262. [Google Scholar] [CrossRef]
- Jung, D.; Yang, B.; Meyer, J.; Chamberlain, J.S. Identification and characterization of the dystrophin anchoring site on β-dystroglycan. J. Biol. Chem. 1995, 270, 27305–27310. [Google Scholar] [CrossRef]
- Huang, X.; Poy, F.; Zhang, R.; Joachimiak, A. Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan. Nat. Struct. 2000, 7, 634–638. [Google Scholar] [CrossRef]
- Ervasti, J.M.; Ohlendieck, K.; Kahl, S.D.; Gaver, M.G.; Campbell, K.P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 1990, 345, 315–319. [Google Scholar] [CrossRef]
- Winder, S.J. Molecular Mechanisms of Muscular Dystrophies; Taylor & Francis: London, UK, 2006. [Google Scholar] [CrossRef]
- Acsadi, G.; Moore, S.A.; Chéron, A.; Delalande, O.; Bennett, L.; Kupsky, W.; El-Baba, M.; Le Rumeur, E.; Hubert, J.-F. Novel Mutation in Spectrin-like Repeat 1 of Dystrophin Central Domain Causes Protein Misfolding and Mild Becker Muscular Dystrophy. J. Biol. Chem. 2012, 287, 18153–18162. [Google Scholar] [CrossRef]
- Maconochie, M.K.; Simpkins, A.H.; Damien, E.; Coulton, G.; Greenfield, A.J.; Brown, S.D.M. The cysteine-rich and C-terminal domains of dystrophin are not required for normal costameric localization in the mouse. Transgenic Res. 1996, 5, 123–130. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, J.; Shi, K.; Liu, Z. Drug Development Progress in Duchenne Muscular Dystrophy. Front Pharmacol 2022, 13, 950651. [Google Scholar] [CrossRef]
- Verhaart, I.E.C.; Aartsma-Rus, A. Therapeutic developments for Duchenne muscular dystrophy. Nat. Rev. Neurol. 2019, 15, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Bolhuis, P.A. Duchenne muscular dystrophy. J. Neurol. Sci. 1987, 80, 118–119. [Google Scholar] [CrossRef]
- Ashton, E.J.; Yau, S.C.; Deans, Z.C.; Abbs, S.J. Simultaneous mutation scanning for gross deletions, duplications and point mutations in the DMD gene. Eur. J. Hum. Genet. 2007, 16, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Sansović, I.; Barišić, I.; Dumić, K. Improved detection of deletions and duplications in the DMD gene using the multiplex ligation-dependent probe amplification (MLPA) method. Biochem. Genet. 2013, 51, 189–201. [Google Scholar] [CrossRef]
- Hegde, M.R.; Chin, E.L.; Mulle, J.G.; Okou, D.T.; Warren, S.T.; Zwick, M.E. Microarray-based mutation detection in the dystrophin gene. Hum. Mutat. 2008, 29, 1091–1099. [Google Scholar] [CrossRef]
- Magri, F.; Govoni, A.; D’angelo, M.G.; Del Bo, R.; Ghezzi, S.; Sandra, G.; Turconi, A.C.; Sciacco, M.; Ciscato, P.; Bordoni, A.; et al. Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. J. Neurol. 2011, 258, 1610–1623. [Google Scholar] [CrossRef]
- Garcia, S.; de Haro, T.; Zafra-Ceres, M.; Poyatos, A.; Gomez-Capilla, J.A.; Gomez-Llorente, C. Identification of de novo Mutations of Duchénnè/Becker Muscular Dystrophies in Southern Spain. Int. J. Med. Sci. 2014, 11, 988–993. [Google Scholar] [CrossRef]
- Kesari, A.; Pirra, L.N.; Bremadesam, L.; McIntyre, O.; Gordon, E.; Dubrovsky, A.L.; Viswanathan, V.; Hoffman, E.P. Integrated DNA, cDNA, and protein studies in Becker muscular dystrophy show high exception to the reading frame rule. Hum. Mutat. 2008, 29, 728–737. [Google Scholar] [CrossRef]
- Nakamura, A.; Fueki, N.; Shiba, N.; Motoki, H.; Miyazaki, D.; Nishizawa, H.; Echigoya, Y.; Yokota, T.; Aoki, Y.; Takeda, S. Deletion of exons 3−9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy. J. Hum. Genet. 2016, 61, 663–667. [Google Scholar] [CrossRef]
- Komaki, H.; Takeshima, Y.; Matsumura, T.; Ozasa, S.; Funato, M.; Takeshita, E.; Iwata, Y.; Yajima, H.; Egawa, Y.; Toramoto, T.; et al. Viltolarsen in Japanese Duchenne muscular dystrophy patients: A phase 1/2 study. Ann. Clin. Transl. Neurol. 2020, 7, 2393–2408. [Google Scholar] [CrossRef]
- Farrokhi, V.; Walsh, J.; Palandra, J.; Brodfuehrer, J. Dystrophin and mini-dystrophin quantification by mass spectrometry in skeletal muscle for gene therapy development in Duchenne muscular dystrophy. Gene Ther. 2021, 29, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Anthony, K.; Arechavala-Gomeza, V.; Taylor, L.E.; Vulin, A.; Kaminoh, Y.; Torelli, S.; Feng, L.; Janghra, N.; Bonne, G.; Beuvin, M.; et al. Dystrophin quantification: Biological and translational research implications. Neurology 2014, 83, 2062–2069. [Google Scholar] [CrossRef] [PubMed]
- Hamed, S.A.; Hoffman, E.P. Automated sequence screening of the entire dystrophin cdna in Duchenne dystrophy: Point mutation detection. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2006, 141, 44–50. [Google Scholar] [CrossRef] [PubMed]
- England, S.B.; Nicholson, L.V.B.; Johnson, M.A.; Forrest, S.M.; Love, D.R.; Zubrzycka-Gaarn, E.E.; Bulman, D.E.; Harris, J.B.; Davies, K. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 1990, 343, 180–182. [Google Scholar] [CrossRef]
- Bennett, R.R.; Dunnen, J.D.; O’Brien, K.F.; Darras, B.T.; Kunkel, L.M. Detection of mutations in the dystrophin gene via automated, D.H.PLC screening and direct sequencing. BMC Genet. 2001, 2, 17. [Google Scholar] [CrossRef]
- Chen, C.; Ma, H.; Zhang, F.; Chen, L.; Xing, X.; Wang, S.; Zhang, X.; Luo, Y. Screening of Duchenne Muscular Dystrophy (DMD) Mutations and Investigating Its Mutational Mechanism in Chinese Patients. PLoS ONE 2014, 9, e108038. [Google Scholar] [CrossRef]
- Torella, A.; Trimarco, A.; Blanco, F.D.V.; Cuomo, A.; Aurino, S.; Piluso, G.; Minetti, C.; Politano, L.; Nigro, V. One Hundred Twenty-One Dystrophin Point Mutations Detected from Stored DNA Samples by Combinatorial Denaturing High-Performance Liquid Chromatography. J. Mol. Diagn. 2010, 12, 65–73. [Google Scholar] [CrossRef]
- Hung, C.-C.; Su, Y.-N.; Lin, C.-Y.; Yang, C.-C.; Lee, W.-T.; Chien, S.-C.; Lin, W.-L.; Lee, C.-N. Denaturing HPLC Coupled with Multiplex PCR for Rapid Detection of Large Deletions in Duchenne Muscular Dystrophy Carriers. Clin. Chem. 2005, 51, 1252–1256. [Google Scholar] [CrossRef]
- Buzin, C.; Wen, C.; Nguyen, V.; Nozari, G.; Mengos, A.; Li, X.; Chen, J.; Liu, Q.; Gatti, R.; Fujimura, F.; et al. Scanning by DOVAM-S detects all unique sequence changes in blinded analyses: Evidence that the scanning conditions are generic. Biotechniques 2000, 28, 746–753. [Google Scholar] [CrossRef]
- Mendell, J.R.; Buzin, C.H.; Feng, J.; Yan, J.; Serrano, C.; Sangani, D.S.; Wall, C.; Prior, T.W.; Sommer, S.S. Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology 2001, 57, 645–650. [Google Scholar] [CrossRef]
- Feng, J.; Yan, J.; Buzin, C.H.; Sommer, S.S.; A Towbin, J. Comprehensive mutation scanning of the dystrophin gene in patients with nonsyndromic X-linked dilated cardiomyopathy. J. Am. Coll. Cardiol. 2002, 40, 1120–1124. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yan, J.; Buzin, C.H.; A Towbin, J.; Sommer, S.S. Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol. Genet. Metab. 2002, 77, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Stockley, T.L.; Akber, S.; Bulgin, N.; Ray, P.N. Strategy for comprehensive molecular testing for Duchenne and Becker muscular dystrophies. Genet. Test. 2006, 10, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Hiraishi, Y.; Kato, S.; Ishihara, T.; Takano, T. Quantitative Southern blot analysis in the dystrophin gene of Japanese patients with Duchenne or Becker muscular dystrophy: A high frequency of duplications. J. Med. Genet. 1992, 29, 897–901. [Google Scholar] [CrossRef]
- Chelly, J.; Gilgenkrantz, H.; Lambert, M.; Hamard, G.; Chafey, P.; Récan, D.; Katz, P.; de la Chapelle, A.; Koenig, M.; Ginjaar, I.B.; et al. Effect of dystrophin gene deletions on mRNA levels and processing in Duchenne and Becker muscular dystrophies. Cell 1990, 63, 1239–1248. [Google Scholar] [CrossRef]
- Kumari, D.; Mital, A.; Gupta, M.; Goyle, S. Deletion analysis of the dystrophin gene in Duchenne and Becker muscular dystrophy patients: Use in carrier diagnosis. Neurol. India 2003, 51, 223–226. [Google Scholar]
- Chi, M.M.-Y.; Hintz, C.S.; McKee, D.; Felder, S.; Grant, N.; Kaiser, K.K.; Lowry, O.H. Effect of Duchenne muscular dystrophy on enzymes of energy metabolism in individual muscle fibers. Metabolism 1987, 36, 761–767. [Google Scholar] [CrossRef]
- Curley, P.; Abbott, R.; Vallance, D. Clinical application of a new enzyme-linked assay for the estimation of brain-specific creatine kinase in head injured patients. Br. J. Neurosurg. 1989, 3, 655–658. [Google Scholar] [CrossRef]
- Chiu, A.; Chan, W.-K.; Cheng, S.-H.; Leung, C.-K.; Choi, C.-H. Troponin-I, myoglobin, and mass concentration of creatine kinase-MB in acute myocardial infarction. Qjm Int. J. Med. 1999, 92, 711–718. [Google Scholar] [CrossRef]
- Fonong, T. Immobilized enzyme assay of creatine kinase with amperometric detection. Anal. Biochem. 1989, 176, 234–238. [Google Scholar] [CrossRef]
- Davis, G.; Green, M.J.; Hill, H.A.O. Detection of ATP and creatine kinase using an enzyme electrode. Enzym. Microb Technol 1986, 8, 349–352. [Google Scholar] [CrossRef]
- Sönnichsen, B.; Koski, L.B.; Walsh, A.; Marschall, P.; Neumann, B.; Brehm, M.; Alleaume, A.-M.; Artelt, J.; Bettencourt, P.; Cassin, E.; et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 2005, 434, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, S.M. DNA structures, repeat expansions and human hereditary disorders. Curr. Opin. Struct. Biol. 2006, 16, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Tayeh, M.K.; Chin, E.L.; Miller, V.R.; Bean, L.J.; Coffee, B.; Hegde, M. Targeted comparative genomic hybridization array for the detection of single-and multiexon gene deletions and duplications. Genet. Med. 2009, 11, 232–240. [Google Scholar] [CrossRef]
- Karti, O.; Abali, S.; Ayhan, Z.; Gokmeydan, E.; Nalcaci, S.; Yaman, A.; Saatci, A.O. CDH3 gene related hypotrichosis and juvenile macular dystrophy—A case with a novel mutation. Am. J. Ophthalmol. Case Rep. 2017, 7, 129–133. [Google Scholar] [CrossRef]
- Dent, K.; Dunn, D.; von Niederhausern, A.; Aoyagi, A.; Kerr, L.; Bromberg, M.; Hart, K.; Tuohy, T.; White, S.; Dunnen, J.D.; et al. Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am. J. Med. Genet. A 2005, 134, 295–298. [Google Scholar] [CrossRef]
- Murugan, S.S.M.; Chandramohan, A.; Lakshmi, B.R. Use of multiplex ligation-dependent probe amplification (MLPA) for Duchenne muscular dystrophy (DMD) gene mutation analysis. Indian J. Med. Res. 2010, 132, 303–311. [Google Scholar]
- Ansar, Z.; Nasir, A.; Moatter, T.; Khan, S.; Kirmani, S.; Ibrahim, S.; Imam, K.; Ather, A.; Samreen, A.; Hasan, Z. MLPA analyses reveal a spectrum of dystrophin gene deletions/duplications in Pakistani patients suspected of having Duchenne/Becker muscular dystrophy: A retrospective study. Genet. Test. Mol. Biomarkers 2019, 23, 468–472. [Google Scholar] [CrossRef]
- Janssen, B.; Hartmann, C.; Scholz, V.; Jauch, A.; Zschocke, J. MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene: Potential and pitfalls. Neurogenetics 2005, 6, 29–35. [Google Scholar] [CrossRef]
- Zhang, P.; Chu, X.; Xu, X.; Shen, G.; Yu, R. Electrochemical detection of point mutation based on surface ligation reaction and biometallization. Biosens. Bioelectron. 2008, 23, 1435–1441. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, J.; Li, G.; Chen, Z.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q. Electrochemical detection of point mutation based on surface hybridization assay conjugated allele-specific polymerase chainreaction. Biosens. Bioelectron. 2013, 42, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.-T.; Cheng, J.-T.; Li, C.-L.; Liu, R.-T.; Huang, H.-J. Ultra-sensitive detection of mutated papillary thyroid carcinoma DNA using square wave stripping voltammetry method and amplified gold nanoparticle biomarkers. Biosens. Bioelectron. 2009, 24, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
- Tyner, S.D.; Venkatachalam, S.; Choi, J.; Jones, S.; Ghebranious, N.; Igelmann, H.; Lu, X.; Soron, G.; Cooper, B.; Brayton, C.; et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002, 415, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Ratautaite, V.; Boguzaite, R.; Mickeviciute, M.B.; Mikoliunaite, L.; Samukaite-Bubniene, U.; Ramanavicius, A.; Ramanaviciene, A. Evaluation of Electrochromic Properties of Polypyrrole/Poly (Methylene Blue) Layer Doped by Polysaccharides. Sensors 2021, 22, 232. [Google Scholar] [CrossRef]
- Murugan, S.S.; Arthi, C.; Thilothammal, N.; Lakshmi, B.R. Carrier detection in Duchenne muscular dystrophy using molecular methods. Indian J. Med. Res. 2013, 137, 1102–1110. [Google Scholar]
- Dubertret, B.; Liu, S.; Ouyang, Q.; Libchaber, A. Dynamics of DNA-Protein Interaction Deduced from in vitro DNA Evolution. Phys. Rev. Lett. 2001, 86, 6022. [Google Scholar] [CrossRef]
- Qin, W.J.; Yung, L.Y.L. Nanoparticle carrying a single probe for target DNA detection and single nucleotide discrimination. Biosens. Bioelectron. 2009, 25, 313–319. [Google Scholar] [CrossRef]
- Blok, L.S.; Madsen, E.; Juusola, J.; Gilissen, C.; Baralle, D.; Reijnders, M.R.; Venselaar, H.; Helsmoortel, C.; Cho, M.T.; Hoischen, A.; et al. REPORT Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. Am. J. Hum. Genet. 2015, 97, 343–352. [Google Scholar] [CrossRef]
- Tatton-Brown, K.; Murray, A.; Hanks, S.; Douglas, J.; Armstrong, R.; Banka, S.; Bird, L.M.; Clericuzio, C.L.; Cormier-Daire, V.; Cushing, T.; et al. Weaver syndrome and, E.Z.H2 mutations: Clarifying the clinical phenotype. Am. J. Med. Genet. A 2013, 161, 2972–2980. [Google Scholar] [CrossRef]
- Taton, M.; Husselstein, T.; Benveniste, P.; Rahier, A. Role of highly conserved residues in the reaction catalyzed by recombinant Δ7-sterol-c5(6)-desaturase studied by site-directed mutagenesis. Biochemistry 2000, 39, 701–711. [Google Scholar] [CrossRef]
- Lee, H.; Kang, T.; Yoon, K.-A.; Lee, S.Y.; Joo, S.-W.; Lee, K. Colorimetric detection of mutations in epidermal growth factor receptor using gold nanoparticle aggregation. Biosens. Bioelectron. 2010, 25, 1669–1674. [Google Scholar] [CrossRef] [PubMed]
- Storhoff, J.J.; Marla, S.S.; Bao, P.; Hagenow, S.; Mehta, H.; Lucas, A.; Garimella, V.; Patno, T.; Buckingham, W.; Cork, W.; et al. Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens. Bioelectron. 2004, 19, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.P.; Huber, M.; Wei, T.F.; Marla, S.S.; Storhoff, J.J.; Muller, U.R. SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res. 2005, 33, e15. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-H.; Sengupta, K.; Li, C.; Kim, H.-S.; Cao, L.; Xiao, C.; Kim, S.; Xu, X.; Zheng, Y.; Chilton, B.; et al. Cancer Cell Article Impaired DNA Damage Response, Genome Instability, and Tumorigenesis in SIRT1 Mutant Mice. Cancer Cell 2008, 14, 312–323. [Google Scholar] [CrossRef]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef]
- Riely, G.J.; Kris, M.G.; Rosenbaum, D.; Marks, J.; Li, A.; Chitale, D.A.; Nafa, K.; Riedel, E.R.; Hsu, M.; Pao, W.; et al. Frequency and Distinctive Spectrum of KRAS Mutations in Never Smokers with Lung Adenocarcinoma. Clin. Cancer Res. 2008, 14, 5731–5734. [Google Scholar] [CrossRef]
- Muntoni, F.; Torelli, S.; Ferlini, A. Dystrophin and mutations: One gene, several proteins, multiple phenotypes. Lancet Neurol. 2003, 2, 731–740. [Google Scholar] [CrossRef]
- Steinberg, E.K.; Lindner, K.R.; Gallea, J.; Maxwell, A.; Meng, J.; Allendorf, F.W. Rates and Patterns of Microsatellite Mutations in Pink Salmon. Mol. Biol. Evol. 2002, 19, 1198–1202. [Google Scholar] [CrossRef]
- Xiong, Y.; Bai, Y.; Leong, N.; Laughlin, T.S.; Rothberg, P.G.; Xu, H.; Nong, L.; Zhao, J.; Dong, Y.; Li, T. Immunohistochemical detection of mutations in the epidermal growth factor receptor gene in lung adenocarcinomas using mutation-specific antibodies. Diagn. Pathol. 2013, 8, 27. [Google Scholar] [CrossRef]
- O’Dell, M.R.; Huang, J.L.; Whitney-Miller, C.L.; Deshpande, V.; Rothberg, P.; Grose, V.; Rossi, R.M.; Zhu, A.X.; Land, H.; Bardeesy, N.; et al. Kras G12Dand p53 mutation cause primary intrahepatic cholangiocarcinoma. Cancer Res. 2012, 72, 1557–1567. [Google Scholar] [CrossRef]
- Xie, R.; Zhuang, M.; Ross, L.S.; Gomez, I.; Oltean, D.I.; Bravo, A.; Soberon, M.; Gill, S.S. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. J. Biol. Chem. 2005, 280, 8416–8425. [Google Scholar] [CrossRef] [PubMed]
- Bowen, S.; Gill, M.; Lee, D.A.; Fisher, G.; Geronemus, R.G.; Vazquez, M.E.; Celebi, J.T. Mutations in the CYLD gene in Brooke-Spiegler Syndrome, Familial Cylindromatosis, and Multiple Familial Trichoepithelioma: Lack of Genotype-Phenotype Correlation. J. Investig. Dermatol. 2005, 124, 919–920. [Google Scholar] [CrossRef] [PubMed]
- Roest, P.A.; Roberts, R.G.; Sugino, S.; van Ommen, G.J.B.; den Dunnen, J.T. Protein truncation test (PTT) for rapid detection of translation-terminating mutations. Hum. Mol. Genet. 1993, 2, 1719–1721. [Google Scholar] [CrossRef] [PubMed]
- Tuffery-Giraud, S.; Chambert, S.; Demaille, J.; Claustres, M. Point mutations in the dystrophin gene: Evidence for frequent use of cryptic splice sites as a result of splicing defects. Hum. Mutat. 1999, 14, 359–368. [Google Scholar] [CrossRef]
- Norwood, F.L.; Sutherland-Smith, A.J.; Keep, N.H.; Kendrick-Jones, J. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure 2000, 8, 481–491. [Google Scholar] [CrossRef]
- Gao, Q.; McNally, E.M. The Dystrophin Complex: Structure, function and implications for therapy. Compr. Physiol. 2015, 5, 1223. [Google Scholar] [CrossRef]
- Xiao, W.; Oefner, P.J. Denaturing high-performance liquid chromatography: A review. Hum. Mutat. 2001, 17, 439–474. [Google Scholar] [CrossRef]
- Ishii, M.N.; Quinton, M.; Kamiguchi, H. A highly sensitive and quantitative assay for dystrophin protein using Single Molecule Count Technology. Neuromuscul. Disord. 2023, 33, 737–743. [Google Scholar] [CrossRef]
- Doris, T.E.; Bowron, A.; Armstrong, A.; Messer, B. Ketoacidosis in Duchenne muscular dystrophy: A report on 4 cases. Neuromuscul. Disord. 2018, 28, 665–670. [Google Scholar] [CrossRef]
- Storey, E.C.; Holt, I.; Brown, S.; Synowsky, S.; Shirran, S.; Fuller, H.R. Proteomic characterisation of human, L.M.NA-related congenital muscular dystrophy muscle cells. Neuromuscul. Disord. 2024, 38, 26–41. [Google Scholar] [CrossRef]
- Han, G.; Lin, C.; Ning, H.; Gao, X.; Yin, H. Long-Term Morpholino Oligomers in Hexose Elicits Long-Lasting Therapeutic Improvements in mdx Mice. Mol. Ther. Nucleic. Acids 2018, 12, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Hintz, C.S.; Lowry, C.V.; Kaiser, K.K. Enzyme levels in individual rat muscle fibres. Am. J. Physiol. Cell Physiol. 1980, 239, C58–C65. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Mandal, P.; Panda, S.; Mitra, S.; Subba, A. Pharmacognosy and Phytochemical Screening of some Plant Derived Medicine to Treat Dysmenorrheal Pain by the Rajbanshi Community. Pharmacogn. J. 2018, 10, 738–746. [Google Scholar] [CrossRef]
- Nart, L.; Desikan, M.; Emmanuel, A.; Quinlivan, R. Life-threatening bowel complications in adults with Duchenne muscular dystrophy: A case series. Neuromuscul. Disord. 2023, 33, 873–876. [Google Scholar] [CrossRef]
- Emery, A.E.H. The muscular dystrophies. Lancet 2002, 359, 687–695. [Google Scholar] [CrossRef]
- Ciapaite, J.; Berg, S.A.v.D.; Houten, S.M.; Nicolay, K.; van Dijk, K.W.; Jeneson, J.A. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice. J. Nutr. Biochem. 2015, 26, 155–164. [Google Scholar] [CrossRef]
- Hiramuki, Y.; Abe, S.; Uno, N.; Kazuki, K.; Takata, S.; Miyamoto, H.; Takayama, H.; Morimoto, K.; Takehara, S.; Osaki, M.; et al. Full-length human dystrophin on human artificial chromosome compensates for mouse dystrophin deficiency in a Duchenne muscular dystrophy mouse model. Sci. Rep. 2023, 13, 4360. [Google Scholar] [CrossRef]
- Goemans, N.M.; Tulinius, M.; van den Akker, J.T.; Burm, B.E.; Ekhart, P.F.; Heuvelmans, N.; Holling, T.; Janson, A.A.; Platenburg, G.J.; Sipkens, J.A.; et al. Systemic Administration of PRO051 in Duchenne’s Muscular Dystrophy. New Engl. J. Med. 2011, 364, 1513–1522. [Google Scholar] [CrossRef]
- Kodippili, K.; Vince, L.; Shin, J.-H.; Yue, Y.; Morris, G.E.; McIntosh, M.A.; Duan, D. Characterization of 65 Epitope-Specific Dystrophin Monoclonal Antibodies in Canine and Murine Models of Duchenne Muscular Dystrophy by Immunostaining and Western Blot. PLoS ONE 2014, 9, e88280. [Google Scholar] [CrossRef]
- Sardone, V.; Ellis, M.; Torelli, S.; Feng, L.; Chambers, D.; Eastwood, D.; Sewry, C.; Phadke, R.; Morgan, J.E.; Muntoni, F. A novel high-throughput immunofluorescence analysis method for quantifying dystrophin intensity in entire transverse sections of Duchenne muscular dystrophy muscle biopsy samples. PLoS ONE 2018, 13, e0194540. [Google Scholar] [CrossRef]
- Koeks, Z.; Janson, A.A.; Beekman, C.; Signorelli, M.; van Duyvenvoorde, H.A.; Bergen, J.C.v.D.; Hooijmans, M.T.; Alleman, I.; Hegeman, I.M.; Verschuuren, J.J.G.M.; et al. Low dystrophin variability between muscles and stable expression over time in Becker muscular dystrophy using capillary Western immunoassay. Sci. Rep. 2021, 11, 5952. [Google Scholar] [CrossRef] [PubMed]
- Thanh, L.T.; Nguyen, T.M.; Helliwell, T.R.; Morris, G.E. Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin. Am. J. Hum. Genet. 1995, 56, 725. [Google Scholar] [PubMed]
- Cirak, S.; Arechavala-Gomeza, V.; Guglieri, M.; Feng, L.; Torelli, S.; Anthony, K.; Abbs, S.; Garralda, M.E.; Bourke, J.; Wells, D.J.; et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: An open-label, phase 2, dose-escalation study. Lancet 2011, 378, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Thanh, L.T.; Man, N.T.; Hori, S.; Sewry, C.A.; Dubowitz, V.; Morris, G.E. Characterization of genetic deletions in becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin. Am. J. Med. Genet. 1995, 58, 177–186. [Google Scholar] [CrossRef]
- Dhillon, S. Viltolarsen: First Approval. Drugs 2020, 80, 1027–1031. [Google Scholar] [CrossRef]
- Syed, Y.Y. Eteplirsen: First Global Approval. Drugs 2016, 76, 1699–1704. [Google Scholar] [CrossRef]
- Lai, K.K.; Lo, I.F.; Tong, T.M.; Cheng, L.Y.; Lam, S.T. Detecting exon deletions and duplications of the DMD gene using Multiplex Ligation-dependent Probe Amplification (MLPA). Clin. Biochem. 2006, 39, 367–372. [Google Scholar] [CrossRef]
- Gatta, V.; Scarciolla, O.; Gaspari, A.R.; Palka, C.; De Angelis, M.V.; Di Muzio, A.; Guanciali-Franchi, P.; Calabrese, G.; Uncini, A.; Stuppia, L. Identification of deletions and duplications of the DMD gene in affected males and carrier females by multiple ligation probe amplification (MLPA). Hum. Genet. 2005, 117, 92–98. [Google Scholar] [CrossRef]
- Lalic, T.; Vossen, R.H.; Coffa, J.; Schouten, J.P.; Guc-Scekic, M.; Radivojevic, D.; Djurisic, M.; Breuning, M.H.; White, S.J.; den Dunnen, J.T. Deletion and duplication screening in the DMD gene using MLPA. Eur. J. Hum. Genet. 2005, 13, 1231–1234. [Google Scholar] [CrossRef]
- Deepha, S.; Vengalil, S.; Preethish-Kumar, V.; Polavarapu, K.; Nalini, A.; Gayathri, N.; Purushottam, M. MLPA identification of dystrophin mutations and in silico evaluation of the predicted protein in dystrophinopathy cases from India. BMC Med. Genet. 2017, 18, 67. [Google Scholar] [CrossRef]
- Prior, T.W.; Bridgeman, S.J. Experience and strategy for the molecular testing of Duchenne muscular dystrophy. J. Mol. Diagn. 2005, 7, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Angappan, D.; Finanger, E. Dystrophinopathies in Children with Normal Creatinine Kinase Levels: A Case Series (P4-8.006). Neurology 2024, 102, 5881. [Google Scholar] [CrossRef]
- Okubo, M.; Minami, N.; Goto, K.; Goto, Y.; Noguchi, S.; Mitsuhashi, S.; Nishino, I. Genetic Diagnosis of Duchenne/Becker Muscular Dystrophy Using next-Generation Sequencing: Validation Analysis of DMD Mutations. J. Hum. Genet. 2016, 61, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Aartsma-Rus, A. FDA Approval of Nusinersen for Spinal Muscular Atrophy Makes 2016 the Year of Splice Modulating Oligonucleotides. Nucleic Acid Ther. 2017, 27, 67–69. [Google Scholar] [CrossRef]
- Bladen, C.L.; Salgado, D.; Monges, S.; Foncuberta, M.E.; Kekou, K.; Kosma, K.; Dawkins, H.; Lamont, L.; Roy, A.J.; Chamova, T.; et al. The TREAT-NMD DMD global database: Analysis of more than 7,000 duchenne muscular dystrophy mutations. Hum. Mutat. 2015, 36, 395–402. [Google Scholar] [CrossRef]
- Niba, P.T.N.; Nji, A.M.; Evehe, M.S.; Ali, I.M.; Netongo, P.M.; Ngwafor, R.; Moyeh, M.N.; Ngum, L.N.; Ndum, O.E.; Acho, F.A.; et al. Drug Resistance Markers within an Evolving Efficacy of Anti-Malarial Drugs in Cameroon: A Systematic Review and Meta-Analysis (1998–2020). Malar J. 2021, 20, 1–20. [Google Scholar] [CrossRef]
- Rodríguez, A.A.; Martínez, Ó.; Amayra, I.; López-Paz, J.F.; Al-Rashaida, M.; Lázaro, E.; Caballero, P.; Pérez, M.; Berrocoso, S.; García, M.; et al. Diseases Costs and Impact of the Caring Role on Informal Carers of Children with Neuromuscular Disease. Int. J. Environ. Res. Public Health 2021, 18, 2991. [Google Scholar] [CrossRef]
- Nicolau, S.; Waldrop, M.A.; Connolly, A.M.; Mendell, J.R. Spinal Muscular Atrophy. Semin. Pediatr. Neurol. 2021, 37, 100878. [Google Scholar] [CrossRef]
- Rodino-Klapac, L.R.; Janssen, P.M.L.; Shontz, K.M.; Canan, B.; Montgomery, C.L.; Griffin, D.; Heller, K.; Schmelzer, L.; Handy, C.; Clark, K.R.; et al. Micro-Dystrophin and Follistatin Co-Delivery Restores Muscle Function in Aged DMD Model. Hum. Mol. Genet. 2013, 22, 4929–4937. [Google Scholar] [CrossRef]
- Geng, C.; Tong, Y.; Zhang, S.; Ling, C.; Wu, X.; Wang, D.; Dai, Y. Sequence and Structure Characteristics of 22 Deletion Breakpoints in Intron 44 of the DMD Gene Based on Long-Read Sequencing. Front Genet. 2021, 12, 638220. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, J.; Zhong, J.; Zeng, D.; Lan, D. Novel MiRNA Biomarkers for Patients with Duchenne Muscular Dystrophy. Front Neurol. 2022, 13, 921785. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, K.; Zhang, Y.; Qi, T.; Yuan, J.; Zhang, L.; Qiu, H.; Wang, J.; Yang, H.T.; Dai, Y.; et al. Therapeutic Exon Skipping Through a CRISPR-Guided Cytidine Deaminase Rescues Dystrophic Cardiomyopathy in Vivo. Circulation 2021, 144, 1760–1776. [Google Scholar] [CrossRef] [PubMed]
- Gonorazky, H.D.; Naumenko, S.; Ramani, A.K.; Nelakuditi, V.; Mashouri, P.; Wang, P.; Kao, D.; Ohri, K.; Viththiyapaskaran, S.; Tarnopolsky, M.A.; et al. Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease. Am. J. Hum. Genet. 2019, 104, 466–483. [Google Scholar] [CrossRef] [PubMed]
- Waddell, L.B.; Bryen, S.J.; Cummings, B.B.; Bournazos, A.; Evesson, F.J.; Joshi, H.; Marshall, J.L.; Tukiainen, T.; Valkanas, E.; Weisburd, B.; et al. WGS and RNA Studies Diagnose Noncoding DMD Variants in Males with High Creatine Kinase. Neurol. Genet. 2021, 7, 1. [Google Scholar] [CrossRef]
- Phung, K.; McAdam, L.; Ma, J.; McMillan, H.J.; Jackowski, S.; Scharke, M.; Matzinger, M.A.; Shenouda, N.; Koujok, K.; Jaremko, J.L.; et al. Risk Factors Associated with Prevalent Vertebral Fractures in Duchenne Muscular Dystrophy. Osteoporos. Int. 2023, 34, 147–160. [Google Scholar] [CrossRef]
- Angelini, C.; Pinzan, E. Advances in Imaging of Brain Abnormalities in Neuromuscular Disease. Ther. Adv. Neurol. Disord. 2019, 12. [Google Scholar] [CrossRef]
- Ozawa, E.; Yoshida, M.; Suzuki, A.; Mizuno, Y.; Hagiwara, Y.; Noguchi, S. Dystrophin-associated proteins in muscular dystrophy. Hum. Mol. Genet. 1995, 4, 1711–1716. [Google Scholar] [CrossRef]
- Pillers, D.-A.M.; Fitzgerald, K.; Duncan, N.; Rash, S.; White, R.; Dwinnell, S.; Powell, B.; Schnur, R.; Ray, P.; Cibis, G.; et al. Duchenne/Becker muscular dystrophy: Correlation of phenotype by electroretinography with sites of dystrophin mutations. Hum. Genet. 1999, 105, 2–9. [Google Scholar] [CrossRef]
- Hildyard, J.C.W.; Crawford, A.H.; Rawson, F.; Riddell, D.O.; Harron, R.C.M.; Piercy, R.J. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res. 2020, 5, 76. [Google Scholar] [CrossRef]
- Bucher, F.; Friedlander, M.S.; Aguilar, E.; Kurihara, T.; Krohne, T.U.; Usui, Y.; Friedlander, M. The long dystrophin gene product Dp427 modulates retinal function and vascular morphology in response to age and retinal ischemia. Neurochem. Int. 2019, 129, 104489. [Google Scholar] [CrossRef]
- Taylor, P.J.; Betts, G.A.; Maroulis, S.; Gilissen, C.; Pedersen, R.L.; Mowat, D.R.; Johnston, H.M.; Buckley, M.F. Dystrophin gene mutation location and the risk of cognitive impairment in duchenne muscular dystrophy. PLoS ONE 2010, 5, e8803. [Google Scholar] [CrossRef] [PubMed]
- Barboni, M.T.S.; Joachimsthaler, A.; Roux, M.J.; Nagy, Z.Z.; Ventura, D.F.; Rendon, A.; Kremers, J.; Vaillend, C. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog. Retin. Eye Res. 2023, 95, 101137. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, F.; Rossi, R.; Falzarano, M.S. Innovative therapeutic approaches for Duchenne muscular dystrophy. J. Clin. Med. 2021, 10, 820. [Google Scholar] [CrossRef] [PubMed]
- Spinazzola, J.M.; Kunkel, L.M. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy. Expert Opin. Orphan Drugs 2016, 4, 1179–1194. [Google Scholar] [CrossRef]
- Duan, D. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol. Ther. 2018, 26, 2337–2356. [Google Scholar] [CrossRef]
- Duan, D. Micro-Dystrophin Gene Therapy Goes Systemic in Duchenne Muscular Dystrophy Patients. Hum. Gene Ther. 2018, 29, 733–736. [Google Scholar] [CrossRef]
- Wasala, L.P.; Watkins, T.B.; Wasala, N.B.; Burke, M.J.; Yue, Y.; Lai, Y.; Yao, G.; Duan, D. The Implication of Hinge 1 and Hinge 4 in Micro-Dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Hum. Gene Ther. 2023, 34, 459–470. [Google Scholar] [CrossRef]
- Salabarria, S.; Nair, J.; Clement, N.; Smith, B.; Raben, N.; Fuller, D.; Byrne, B.; Corti, M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J. Neuromuscul. Dis. 2020, 7, 15–31. [Google Scholar] [CrossRef]
- Mendell, J.R.; Sahenk, Z.; Lehman, K.; Nease, C.; Lowes, L.P.; Miller, N.F.; Iammarino, M.A.; Alfano, L.N.; Nicholl, A.; Al-Zaidy, S.; et al. Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children with Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol. 2020, 77, 1122–1131. [Google Scholar] [CrossRef]
- Bostick, B.; Shin, J.-H.; Yue, Y.; Wasala, N.B.; Lai, Y.; Duan, D. AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in > 21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy. J. Mol. Cell. Cardiol. 2012, 53, 217–222. [Google Scholar] [CrossRef]
- Wasala, N.B.; Yue, Y.; Hu, B.; Shin, J.-H.; Srivastava, A.; Yao, G.; Duan, D. Lifelong Outcomes of Systemic Adeno-Associated Virus Micro-Dystrophin Gene Therapy in a Murine Duchenne Muscular Dystrophy Model. Hum. Gene Ther. 2023, 34, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Hart, C.C.; il Lee, Y.; Xie, J.; Gao, G.; Lin, B.L.; Hammers, D.W.; Sweeney, H.L. Potential limitations of micro-dystrophin gene therapy for Duchenne muscular dystrophy. JCI Insight 2024, 9, e165869. [Google Scholar] [CrossRef] [PubMed]
- Piepho, A.B.; Lowe, J.; Cumby, L.R.; Dorn, L.E.; Lake, D.M.; Rastogi, N.; Gertzen, M.D.; Sturgill, S.L.; Odom, G.L.; Ziolo, M.T.; et al. Micro-dystrophin gene therapy demonstrates long-term cardiac efficacy in a severe Duchenne muscular dystrophy model. Mol. Ther. Methods Clin. Dev. 2023, 28, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Howell, K.; Place, A.; Long, K.; Rossello, J.; Kertesz, N.; Nomikos, G. Advances and limitations for the treatment of spinal muscular atrophy. BMC Pediatr. 2022, 22, 632. [Google Scholar] [CrossRef]
- Cao, L.; Ledeboer, A.; Pan, Y.; Lu, Y.; Meyer, K. Clinical enrollment assay to detect preexisting neutralizing antibodies to, A.A.V6 with demonstrated transgene expression in gene therapy trials. Gene Ther. 2022, 30, 150–159. [Google Scholar] [CrossRef]
- Muhuri, M.; Levy, D.I.; Schulz, M.; McCarty, D.; Gao, G. Durability of transgene expression after rAAV gene therapy. Mol. Ther. 2022, 30, 1364. [Google Scholar] [CrossRef]
- Muhuri, M.; Maeda, Y.; Ma, H.; Ram, S.; Fitzgerald, K.A.; Tai, P.W.; Gao, G. Overcoming innate immune barriers that impede AAV gene therapy vectors. J. Clin. Investig. 2021, 131, e143780. [Google Scholar] [CrossRef]
- Saad, F.A.; Saad, J.F.; Siciliano, G.; Merlini, L.; Angelini, C. Duchenne Muscular Dystrophy Gene Therapy. Curr. Gene Ther. 2022, 24, 17–28. [Google Scholar] [CrossRef]
- Tidball, J.; Wehling-Henricks, M. Evolving therapeutic strategies for Duchenne muscular dystrophy: Targeting downstream events. Pediatr. Res. 2004, 56, 831–841. [Google Scholar] [CrossRef]
- Kole, R.; Krainer, A.; Altman, S. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 2012, 11, 125–140. [Google Scholar] [CrossRef]
- Khan, T.; Weber, H.; DiMuzio, J.; Matter, A.; Dogdas, B.; Shah, T.; Thankappan, A.; Disa, J.; Jadhav, V.; Lubbers, L.; et al. Silencing myostatin using cholesterol-conjugated siRNAs induces muscle growth. Mol. Ther. Nucleic Acids 2016, 5, e342. [Google Scholar] [CrossRef] [PubMed]
- Engelbeen, S.; Pasteuning-Vuhman, S.; der Meulen, J.B.-V.; Parmar, R.; Charisse, K.; Sepp-Lorenzino, L.; Manoharan, M.; Aartsma-Rus, A.; van Putten, M. Efficient Downregulation of Alk4 in Skeletal Muscle After Systemic Treatment with Conjugated siRNAs in a Mouse Model for Duchenne Muscular Dystrophy. Nucleic Acid Ther. 2023, 33, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.; Barohn, R.J.; Bertini, E.; Chabrol, B.; Comi, G.P.; Darras, B.T.; Finkel, R.S.; Flanigan, K.M.; Goemans, N.; Iannaccone, S.T.; et al. Meta-analyses of ataluren randomized controlled trials in nonsense mutation Duchenne muscular dystrophy. J. Comp. Eff. Res. 2020, 9, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Hufton, M.; Roper, H. Variations in Duchenne muscular dystrophy course in a multi-ethnic UK population: Potential influence of socio-economic factors. Dev. Med. Child Neurol. 2017, 59, 837–842. [Google Scholar] [CrossRef]
- Shimizu-Motohashi, Y.; Komaki, H.; Motohashi, N. Restoring dystrophin expression in Duchenne muscular dystrophy: Current status of therapeutic approaches. J. Pers. Med. 2019, 9, 1. [Google Scholar] [CrossRef]
- Vincik, L.Y.; Dautel, A.D.; Staples, A.A.; Lauck, L.V.; Armstrong, C.J.; Howard, J.T.; McGregor, D.; Ahmadzadeh, S.; Shekoohi, S.; Kaye, A.D. Evolving Role of Viltolarsen for Treatment of Duchenne Muscular Dystrophy. Adv. Ther. 2024, 41, 1338–1350. [Google Scholar] [CrossRef]
- Aartsma-Rus, A.; Fokkema, I.; Verschuuren, J.; Ginjaar, I.; Van Deutekom, J.; Van Ommen, G.-J.; Den Dunnen, J.T. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum. Mutat. 2009, 30, 293–299. [Google Scholar] [CrossRef]
- Anthony, K.; Cirak, S.; Torelli, S.; Tasca, G.; Feng, L.; Arechavala-Gomeza, V.; Armaroli, A.; Guglieri, M.; Straathof, C.S.; Verschuuren, J.J.; et al. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: Implications for clinical trials. Brain 2011, 134, 3547–3559. [Google Scholar] [CrossRef]
- Birnkrant, D.J.; Bushby, K.; Bann, C.M.; Apkon, S.D.; Blackwell, A.; Brumbaugh, D.; Case, L.E.; Weber, D.R. Diagnosis and management of Duchenne muscular dystrophy, part 1: Diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional. Lancet Neurol. 2018, 17, 251–267. [Google Scholar] [CrossRef]
- Aartsma-Rus, A. Applying Lessons Learned from Developing Exon Skipping for Duchenne to Developing Individualized Exon Skipping Therapy for Patients with Neurodegenerative Diseases. Synlett 2024, 35, 1247–1252. [Google Scholar] [CrossRef]
- Gorokhova, S.; Schessl, J.; Zou, Y.; Yang, M.L.; Heydemann, P.T.; Sufit, R.L.; Meilleur, K.; Donkervoort, S.; Medne, L.; Finkel, R.S.; et al. Unusually severe muscular dystrophy upon in-frame deletion of the dystrophin rod domain and lack of compensation by membrane-localized utrophin. Med 2023, 4, 245–251.e3. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.; Tinsley, J.; Phelps, S.; Squire, E. Non-Toxic Ubiquitous Over-Expression of Utrophin in the Mdx Mouse; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Tinsley, J.; Deconinck, N.; Fisher, R.; Kahn, D.; Phelps, S.; Gillis, J.-M.; Davies, K. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat. Med. 1998, 4, 1441–1444. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, N.; Tinsley, J.; De Backer, F.; Fisher, R.; Kahn, D.; Phelps, S.; Davies, K.; Gillis, J.-M. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat. Med. 1997, 3, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, N.; Tasfaout, H.; Therapy, S.H.-M. Dystrophin gene-editing stability is dependent on dystrophin levels in skeletal but not cardiac muscles. Mol. Ther. 2021, 29, 1070–1085. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, C.; Li, H.; Wang, P.; Gao, Y.; Mokadam, N.A.; Ma, J.; Arnold, W.D.; Han, R. Efficient precise in vivo base editing in adult dystrophic mice. Nat. Commun. 2021, 12, 3719. [Google Scholar] [CrossRef]
- Xiang, X.; Zhao, X.; Pan, X.; Dong, Z.; Yu, J.; Li, S.; Liang, X.; Han, P.; Qu, K.; Jensen, J.B.; et al. Efficient correction of Duchenne muscular dystrophy mutations by SpCas9 and dual gRNAs. Mol. Ther. Nucleic Acids 2021, 24, 403–415. [Google Scholar] [CrossRef]
- Long, C.; McAnally, J.R.; Shelton, J.M.; Mireault, A.A.; Bassel-Duby, R.; Olson, E.N. Prevention of muscular dystrophy in mice by, C.R.ISPR/Cas9-mediated editing of germline DNA. Science 2014, 345, 1184–1188. [Google Scholar] [CrossRef]
- Duchêne, B.L.; Cherif, K.; Iyombe-Engembe, J.-P.; Guyon, A.; Rousseau, J.; Ouellet, D.L.; Barbeau, X.; Lague, P.; Tremblay, J.P. CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo. Mol. Ther. 2018, 26, 2604–2616. [Google Scholar] [CrossRef]
- Pickar-Oliver, A.; Gough, V.; Bohning, J.; Liu, S. Full-length dystrophin restoration via targeted exon integration by AAV-CRISPR in a humanized mouse model of Duchenne muscular dystrophy. Mol. Ther. 2021, 29, 3243–3257. [Google Scholar] [CrossRef]
- Dhoke, N.R.; Kim, H.; Azzag, K.; Crist, S.B.; Kiley, J.; Perlingeiro, R.C.R. A Novel CRISPR-Cas9 Strategy to Target DYSTROPHIN Mutations Downstream of Exon 44 in Patient-Specific DMD iPSCs. Cells 2024, 13, 972. [Google Scholar] [CrossRef]
- Alnassar, N.; Borczyk, M.; Tsagkogeorga, G.; Korostynski, M.; Han, N.; Górecki, D.C. Downregulation of Dystrophin Expression Occurs across Diverse Tumors, Correlates with the Age of Onset, Staging and Reduced Survival of Patients. Cancers 2023, 15, 1378. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, E.L.; Lacey, E.; Le, L.T.; Feng, L.; Sciandra, F.; Morris, C.R.; Hewitt, J.E.; Holt, I.; Brancaccio, A.; Barresi, R.; et al. A new monoclonal antibody DAG-6F4 against human alpha-dystroglycan reveals reduced core protein in some, but not all, dystroglycanopathy patients. Neuromuscul. Disord. 2015, 25, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Belgrad, J.; Fakih, H.H.; Khvorova, A. Nucleic Acid Therapeutics: Successes, Milestones, and Upcoming Innovation. Nucleic Acid Ther. 2024, 34, 52–72. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Li, C.; Zhang, D.; Liu, Y.; Zhang, J.; Guan, S.; Ding, X.; Xiao, Q. The current perspective and opportunities of small nucleic acid-based therapeutics. Drug Dev. Res. 2024, 85, e22164. [Google Scholar] [CrossRef]
- Huayamares, S.G.; Loughrey, D.; Kim, H.; Dahlman, J.E.; Sorscher, E.J. Nucleic acid-based drugs for patients with solid tumours. Nat. Rev. Clin. Oncol. 2024, 21, 407–427. [Google Scholar] [CrossRef]
- De Palma, C.; Morisi, F.; Cheli, S.; Pambianco, S.; Cappello, V.; Vezzoli, M.; Rovere-Querini, P.; Moggio, M.; Ripolone, M.; Francolini, M.; et al. Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis. 2012, 3, e418. [Google Scholar] [CrossRef]
- Nakashima, R.; Hosoda, R.; Tatekoshi, Y.; Iwahara, N.; Saga, Y.; Kuno, A. Transcriptional dysregulation of autophagy in the muscle of a mouse model of Duchenne muscular dystrophy. Sci. Rep. 2024, 14, 1365. [Google Scholar] [CrossRef]
- You, J.-S.; Karaman, K.; Reyes-Ordoñez, A.; Lee, S.; Kim, Y.; Bashir, R.; Chen, J. Leucyl-tRNA Synthetase Contributes to Muscle Weakness through Mammalian Target of Rapamycin Complex 1 Activation and Autophagy Suppression in a Mouse Model of Duchenne Muscular Dystrophy. Am. J. Pathol. 2024, 194, 1571–1580. [Google Scholar] [CrossRef]
- Han, X.; Goh, K.Y.; Lee, W.X.; Choy, S.M.; Tang, H.-W. The Importance of mTORC1-Autophagy Axis for Skeletal Muscle Diseases. Int. J. Mol. Sci. 2022, 24, 297. [Google Scholar] [CrossRef]
- Goh, K.Y.; Lee, W.X.; Choy, S.M.; Priyadarshini, G.K.; Chua, K.; Tan, Q.H.; Low, S.Y.; Chin, H.S.; Wong, C.S.; Huang, S.-Y.; et al. FOXO-regulated DEAF1 controls muscle regeneration through autophagy. Autophagy 2024, 20, 2632–2654. [Google Scholar] [CrossRef]
- Baylot, V.; Le, T.K.; Taïeb, D.; Rocchi, P.; Colleaux, L. Between hope and reality: Treatment of genetic diseases through nucleic acid-based drugs. Commun. Biol. 2024, 7, 489. [Google Scholar] [CrossRef] [PubMed]
- Khorkova, O.; Stahl, J.; Joji, A.; Volmar, C.-H.; Wahlestedt, C. Amplifying gene expression with RNA-targeted therapeutics. Nat. Rev. Drug Discov. 2023, 22, 539–561. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, T.; Rodriguez, H.M.; Betz, A.; Sproule, D.M.; Sinha, U. Validation of a novel western blot assay to monitor patterns and levels of alpha dystroglycan in skeletal muscle of patients with limb girdle muscular dystrophies. J. Muscle Res. Cell Motil. 2024, 45, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Shelton, G.D.; Tucciarone, F.; Guo, L.T.; Coghill, L.M.; Lyons, L.A. Precision medicine using whole genome sequencing identifies a novel dystrophin (DMD) variant for X-linked muscular dystrophy in a cat. J. Vet. Intern Med. 2024, 38, 135–144. [Google Scholar] [CrossRef]
- Hendriksen, J.G.; Thangarajh, M.; Kan, H.E.; Muntoni, F. 249th ENMC International Workshop: The role of brain dystrophin in muscular dystrophy: Implications for clinical care and translational research, Hoofddorp, The Netherlands, November 29th–December 1st 2019. Neuromuscul. Disord. 2020, 30, 782–794. [Google Scholar] [CrossRef]
- Taha, M.A.; Morren, J.A. The role of artificial intelligence in electrodiagnostic and neuromuscular medicine: Current state and future directions. Muscle Nerve 2024, 69, 260–272. [Google Scholar] [CrossRef]
- Pillen, S.; van Keimpema, M.; Nievelstein, R.A.J.; Verrips, A.; van Kruijsbergen-Raijmann, W.; Zwarts, M.J. Skeletal muscle ultrasonography: Visual versus quantitative evaluation. Ultrasound Med. Biol. 2006, 32, 1315–1321. [Google Scholar] [CrossRef]
- Noda, Y.; Sekiguchi, K.; Matoba, S.; Suehiro, H.; Nishida, K.; Matsumoto, R. Real-time artificial intelligence-based texture analysis of muscle ultrasound data for neuromuscular disorder assessment. Clin. Neurophysiol. Pract. 2024, 9, 242–248. [Google Scholar] [CrossRef]
- Chianca, V.; Vincenzo, B.; Cuocolo, R.; Zappia, M.; Guarino, S.; Di Pietto, F.; Del Grande, F. MRI Quantitative Evaluation of Muscle Fatty Infiltration. Magnetochemistry 2023, 9, 111. [Google Scholar] [CrossRef]
- Iwasa, M.; Takao, M.; Soufi, M.; Uemura, K.; Otake, Y.; Hamada, H.; Sato, Y.; Sugano, N.; Okada, S. Artificial intelligence-based volumetric analysis of muscle atrophy and fatty degeneration in patients with hip osteoarthritis and its correlation with health-related quality of life. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 71–78. [Google Scholar] [CrossRef]
- Bolano-Diaz, C.; Verdú-Díaz, J.; Gonzalez-Chamorro, A.; Fitzsimmons, S.; Veeranki, G.; Straub, V.; Diaz-Manera, J. Magnetic resonance imaging-based criteria to differentiate dysferlinopathy from other genetic muscle diseases. Neuromuscul. Disord. 2024, 34, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Riem, L.; DuCharme, O.; Cousins, M.; Feng, X.; Kenney, A.; Morris, J.; Tapscott, S.J.; Tawil, R.; Statland, J.; Shaw, D.; et al. AI driven analysis of MRI to measure health and disease progression in FSHD. Sci. Rep. 2024, 14, 15462. [Google Scholar] [CrossRef] [PubMed]
- Peruzzo, D.; Ciceri, T.; Mascheretti, S.; Lampis, V.; Arrigoni, F.; Agarwal, N.; Giubergia, A.; Villa, F.M.; Crippa, A.; Nobile, M.; et al. Brain Alteration Patterns in Children with Duchenne Muscular Dystrophy: A Machine Learning Approach to Magnetic Resonance Imaging. J. Neuromuscul. Dis. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Herzog, N.J.; Celik, D.; Sulaiman, R.B. Artificial Intelligence in Healthcare and Medical Records Security. Adv. Sci. Technol. Secur. Appl. Part F 2024, 2564, 35–57. [Google Scholar] [CrossRef]
- Vera, C.D.; Zhang, A.; Pang, P.D.; Wu, J.C. Treating Duchenne Muscular Dystrophy: The Promise of Stem Cells, Artificial Intelligence, and Multi-Omics. Front. Cardiovasc. Med. 2022, 9, 851491. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Rajkomar, A.; Lingam, S.; Taylor, A.G.; Blum, M.; Mongan, J. High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks. J. Digit Imaging 2017, 30, 95–101. [Google Scholar] [CrossRef]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackerman, Z.; et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020, 180, 688–702.e13. [Google Scholar] [CrossRef]
- Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Brownlee, W.J.; Altmann, D.R.; Prados, F.; Miszkiel, K.A.; Eshaghi, A.; Gandini Wheeler-Kingshott, C.A.M.; Barkhof, F.; Ciccarelli, O. Early Imaging Predictors of Long-Term Outcomes in Relapse-Onset Multiple Sclerosis. Brain 2019, 142, 2276–2287. [Google Scholar] [CrossRef]
- Eshaghi, A.; Marinescu, R.V.; Young, A.L.; Firth, N.C.; Prados, F.; Jorge Cardoso, M.; Tur, C.; De Angelis, F.; Cawley, N.; Brownlee, W.J.; et al. Progression of Regional Grey Matter Atrophy in Multiple Sclerosis. Brain 2018, 141, 1665–1677. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarvutiene, J.; Ramanavicius, A.; Ramanavicius, S.; Prentice, U. Advances in Duchenne Muscular Dystrophy: Diagnostic Techniques and Dystrophin Domain Insights. Int. J. Mol. Sci. 2025, 26, 3579. https://doi.org/10.3390/ijms26083579
Sarvutiene J, Ramanavicius A, Ramanavicius S, Prentice U. Advances in Duchenne Muscular Dystrophy: Diagnostic Techniques and Dystrophin Domain Insights. International Journal of Molecular Sciences. 2025; 26(8):3579. https://doi.org/10.3390/ijms26083579
Chicago/Turabian StyleSarvutiene, Julija, Arunas Ramanavicius, Simonas Ramanavicius, and Urte Prentice. 2025. "Advances in Duchenne Muscular Dystrophy: Diagnostic Techniques and Dystrophin Domain Insights" International Journal of Molecular Sciences 26, no. 8: 3579. https://doi.org/10.3390/ijms26083579
APA StyleSarvutiene, J., Ramanavicius, A., Ramanavicius, S., & Prentice, U. (2025). Advances in Duchenne Muscular Dystrophy: Diagnostic Techniques and Dystrophin Domain Insights. International Journal of Molecular Sciences, 26(8), 3579. https://doi.org/10.3390/ijms26083579