Extracellular Vesicles and Their Role in Skin Inflammatory Diseases: From Pathogenesis to Therapy
Abstract
:1. Introduction
2. Background of Extracellular Vesicles: Biogenesis, Classification, and Functions
2.1. Biogenesis of Extracellular Vesicles and Classification
2.1.1. Properties of Exosomes
2.1.2. Properties of Microvesicles
2.1.3. Properties of Apoptotic Bodies
2.2. Isolation and Identification of Extracellular Vesicles
2.2.1. Isolation of Extracellular Vesicles
2.2.2. Identification of Extracellular Vesicles
2.2.3. Mechanisms of Extracellular Vesicle Uptake
2.2.4. Artificially Synthesized Extracellular Vesicles in Comparison to Natural Extracellular Vesicles
2.2.5. Modified Extracellular Vesicles and Applications in Drug Delivery
3. Extracellular Vesicles and Psoriasis
3.1. Pathology of Extracellular Vesicles in Psoriasis
3.1.1. Extracellular Vesicles Induce Release of Proinflammatory Molecules
3.1.2. Extracellular Vesicles Promote Th1/Th17 Polarization
3.1.3. Extracellular Vesicles Trigger Macrophage Polarization
3.1.4. Extracellular Vesicles and Psoriasis-Associated Conditions
3.2. Therapeutic Applications of Extracellular Vesicles in Psoriasis
3.2.1. Extracellular Vesicles as Diagnostic and Prognostic Biomarkers for Psoriasis
3.2.2. Immune Regulation and Anti-Inflammatory Actions
Naturally Derived Extracellular Vesicles
Engineered Extracellular Vesicles
4. Extracellular Vesicles and Atopic Dermatitis
4.1. Pathology of Extracellular Vesicles in Atopic Dermatitis
4.1.1. Genetic Abnormality
4.1.2. Microbial Influence
4.2. Therapeutic Applications of Extracellular Vesicles in Atopic Dermatitis
4.2.1. Stem Cell-Derived Extracellular Vesicles for Atopic Dermatitis Treatment
4.2.2. Bacteria-Derived Extracellular Vesicles for Atopic Dermatitis Treatment
4.2.3. Marine- and Plant-Derived Extracellular Vesicles for Atopic Dermatitis Treatment
5. EVs and Systemic Lupus Erythematosus
5.1. Pathology of Extracellular Vesicles in Systemic Lupus Erythematosus
5.1.1. Extracellular Vesicles as Providers of Autoantigens
5.1.2. Extracellular Vesicles Trigger Immune Response and Immune Complex Formation
5.1.3. Extracellular Vesicles Contribute to Damage to Other Organs in Systemic Lupus Erythematosus
5.2. Therapeutic Applications of Extracellular Vesicles in Systemic Lupus Erythematosus
5.2.1. Extracellular Vesicles as Diagnostic and Prognosis Biomarkers for SLE
5.2.2. Extracellular Vesicles Regulate Immune Response
6. EVs in Skin Wound
6.1. Pathology of Extracellular Vesicles in Skin Wound
6.2. Therapeutic Applications of Extracellular Vesicles in Skin Wound Healing
6.2.1. Extracellular Vesicles Enhance Cell Proliferation and Migration
6.2.2. Extracellular Vesicles Promote Angiogenesis
6.2.3. Extracellular Vesicles Exhibit Anti-Inflammatory Effects
7. Challenges for Clinical Application of Extracellular Vesicles and Future Direction
7.1. Production Efficiency and Purity
7.2. Quality Control and Standardization
7.3. Safety Concerns
8. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABs | Apoptotic bodies |
AD | Atopic dermatitis |
ApoEVs | Apoptotic extracellular vesicles |
BSA | Body surface area |
DGUC | Density gradient ultracentrifugation |
DUC | Differential ultracentrifugation |
ECs | Endothelial cells |
EPCs | Endothelial progenitor cells |
EVs | Extracellular vesicles |
FLG | Filaggrin |
HA | Hyaluronic acid |
HCs | Healthy controls |
HUVECs | Human umbilical vein endothelial cells |
IC | Immune complex |
LN | Lupus nephritis |
MalaEx | Malassezia releases extracellular vesicles |
MMPs | Matrix metalloproteinases |
MSC | Mesenchymal stem cells |
MVBs | Multivesicular bodies |
MVs | Microvesicles |
NET | Neutrophil extracellular traps |
NETosis | Neutrophil extracellular traps formation |
NTA | Nanoparticle tracking analysis |
PASI | Psoriasis area and severity index |
PHKs | Primary human keratinocytes |
PsA | Psoriatic arthritis |
S. aureus | Staphylococcus aureus |
SEC | Size-exclusion chromatography |
sEVs | Small extracellular vesicles |
SLE | Systemic lupus erythematosus |
TEM | Transmission electron microscopy |
TFF | Tangential flow filtration |
Treg | Regulatory T cells |
UCB | Umbilical cord blood |
PRP | Platelet-rich plasma |
References
- Wolf, P. The Nature and Significance of Platelet Products in Human Plasma. Br. J. Haematol. 1967, 13, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Webber, A.J.; Johnson, S.A. Platelet Participation in Blood Coagulation Aspects of Hemostasis. Am. J. Pathol. 1970, 60, 19–42. [Google Scholar]
- Crawford, N. The Presence of Contractile Proteins in Platelet Microparticles Isolated from Human and Animal Platelet-Free Plasma. Br. J. Haematol. 1971, 21, 53–69. [Google Scholar] [CrossRef]
- Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). J. Biol. Chem. 1987, 262, 9412–9420. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.-T.; Johnstone, R.M. Fate of the Transferrin Receptor during Maturation of Sheep Reticulocytes in Vitro: Selective Externalization of the Receptor. Cell 1983, 33, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.N. Lattice Structures and Osmiophilic Bodies in the Developing Respiratory Tissue of Rats. J. Ultrastruct. Res. 1966, 15, 380–388. [Google Scholar] [CrossRef]
- Raposo, G.; Nijman, H.W.; Stoorvogel, W.; Liejendekker, R.; Harding, C.V.; Melief, C.J.; Geuze, H.J. B Lymphocytes Secrete Antigen-Presenting Vesicles. J. Exp. Med. 1996, 183, 1161–1172. [Google Scholar] [CrossRef]
- Fafián-Labora, J.A.; Rodríguez-Navarro, J.A.; O’Loghlen, A. Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. Cell Metab. 2020, 32, 71–86.e5. [Google Scholar] [CrossRef]
- Moghassemi, S.; Dadashzadeh, A.; Sousa, M.J.; Vlieghe, H.; Yang, J.; León-Félix, C.M.; Amorim, C.A. Extracellular Vesicles in Nanomedicine and Regenerative Medicine: A Review over the Last Decade. Bioact. Mater. 2024, 36, 126–156. [Google Scholar] [CrossRef]
- Skog, J.; Würdinger, T.; Van Rijn, S.; Meijer, D.H.; Gainche, L.; Curry, W.T., Jr.; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma Microvesicles Transport RNA and Proteins That Promote Tumour Growth and Provide Diagnostic Biomarkers. Nat. Cell Biol. 2008, 10, 1470–1476. [Google Scholar] [CrossRef]
- O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. RNA Delivery by Extracellular Vesicles in Mammalian Cells and Its Applications. Nat. Rev. Mol. Cell Biol. 2020, 21, 585–606. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef]
- Zitvogel, L.; Regnault, A.; Lozier, A.; Wolfers, J.; Flament, C.; Tenza, D.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Eradication of Established Murine Tumors Using a Novel Cell-Free Vaccine: Dendritic Cell Derived Exosomes. Nat. Med. 1998, 4, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Davidson, S.M.; Boulanger, C.M.; Aikawa, E.; Badimon, L.; Barile, L.; Binder, C.J.; Brisson, A.; Buzas, E.; Emanueli, C.; Jansen, F.; et al. Methods for the Identification and Characterization of Extracellular Vesicles in Cardiovascular Studies: From Exosomes to Microvesicles. Cardiovasc. Res. 2023, 119, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Fahy, K.E.; Awoyemi, A.A.; Thapa, P.; Kelly, L.E.; Chen, J.; Bihl, J.C.; Cool, D.R.; Chen, Y.; Rapp, C.M.; et al. Thermal Burn Injury Generates Bioactive Microvesicles: Evidence for a Novel Transport Mechanism for the Lipid Mediator Platelet-Activating Factor (PAF) That Involves Subcellular Particles and the PAF Receptor. J. Immunol. 2020, 205, 193–201. [Google Scholar] [CrossRef]
- Thyagarajan, A.; Awasthi, K.; Rapp, C.M.; Johnson, R.M.; Chen, Y.; Miller, K.L.R.; Travers, J.B.; Sahu, R.P. Topical Application of Gemcitabine Generates Microvesicle Particles in Human and Murine Skin. BioFactors 2022, 48, 1295–1304. [Google Scholar] [CrossRef]
- Bose, R.J.C.; Tharmalingam, N.; Garcia Marques, F.J.; Sukumar, U.K.; Natarajan, A.; Zeng, Y.; Robinson, E.; Bermudez, A.; Chang, E.; Habte, F.; et al. Reconstructed Apoptotic Bodies as Targeted “Nano Decoys” to Treat Intracellular Bacterial Infections within Macrophages and Cancer Cells. ACS Nano 2020, 14, 5818–5835. [Google Scholar] [CrossRef]
- Ma, Q.; Liang, M.; Limjunyawong, N.; Dan, Y.; Xing, J.; Li, J.; Xu, J.; Dou, C. Osteoclast-Derived Apoptotic Bodies Show Extended Biological Effects of Parental Cell in Promoting Bone Defect Healing. Theranostics 2020, 10, 6825–6838. [Google Scholar] [CrossRef]
- Hristov, M.; Erl, W.; Linder, S.; Weber, P.C. Apoptotic Bodies from Endothelial Cells Enhance the Number and Initiate the Differentiation of Human Endothelial Progenitor Cells In Vitro. Blood 2004, 104, 2761–2766. [Google Scholar] [CrossRef]
- Ma, L.; Chen, C.; Liu, D.; Huang, Z.; Li, J.; Liu, H.; Kin Kwok, R.T.; Tang, B.; Sui, B.; Zhang, X.; et al. Apoptotic Extracellular Vesicles Are Metabolized Regulators Nurturing the Skin and Hair. Bioact. Mater. 2023, 19, 626–641. [Google Scholar] [CrossRef]
- Qu, Y.; He, Y.; Meng, B.; Zhang, X.; Ding, J.; Kou, X.; Teng, W.; Shi, S. Apoptotic Vesicles Inherit SOX2 from Pluripotent Stem Cells to Accelerate Wound Healing by Energizing Mesenchymal Stem Cells. Acta Biomater. 2022, 149, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, C.; Yang, Y.; Gao, Z.; Guo, Z.; Qi, F. Apoptotic Bodies Extracted from Adipose Mesenchymal Stem Cells Carry microRNA-21–5p to Induce M2 Polarization of Macrophages and Augment Skin Wound Healing by Targeting KLF6. Burns 2022, 48, 1893–1908. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
- Carnino, J.M.; Lee, H.; Jin, Y. Isolation and Characterization of Extracellular Vesicles from Broncho-Alveolar Lavage Fluid: A Review and Comparison of Different Methods. Respir. Res. 2019, 20, 240. [Google Scholar] [CrossRef]
- Crescitelli, R.; Lässer, C.; Lötvall, J. Isolation and Characterization of Extracellular Vesicle Subpopulations from Tissues. Nat. Protoc. 2021, 16, 1548–1580. [Google Scholar] [CrossRef]
- Zhang, Q.; Jeppesen, D.K.; Higginbotham, J.N.; Franklin, J.L.; Coffey, R.J. Comprehensive Isolation of Extracellular Vesicles and Nanoparticles. Nat. Protoc. 2023, 18, 1462–1487. [Google Scholar] [CrossRef]
- Böing, A.N.; van der Pol, E.; Grootemaat, A.E.; Coumans, F.A.W.; Sturk, A.; Nieuwland, R. Single-Step Isolation of Extracellular Vesicles by Size-Exclusion Chromatography. J. Extracell. Vesicles 2014, 3, 23430. [Google Scholar] [CrossRef]
- Coughlan, C.; Bruce, K.D.; Burgy, O.; Boyd, T.D.; Michel, C.R.; Garcia-Perez, J.E.; Adame, V.; Anton, P.; Bettcher, B.M.; Chial, H.J.; et al. Exosome Isolation by Ultracentrifugation and Precipitation and Techniques for Downstream Analyses. Curr. Protoc. Cell Biol. 2020, 88, e110. [Google Scholar] [CrossRef]
- Gardiner, C.; Di Vizio, D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques Used for the Isolation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey. J. Extracell. Vesicles 2016, 5, 32945. [Google Scholar] [CrossRef]
- Soares, M.; Pinto, M.M.; Nobre, R.J.; de Almeida, L.P.; da Graça Rasteiro, M.; Almeida-Santos, T.; Ramalho-Santos, J.; Sousa, A.P. Isolation of Extracellular Vesicles from Human Follicular Fluid: Size-Exclusion Chromatography versus Ultracentrifugation. Biomolecules 2023, 13, 278. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.; Kristensen, A.F.; Pedersen, S.; Christiansen, G.; Kristensen, S.R. Investigation of Procoagulant Activity in Extracellular Vesicles Isolated by Differential Ultracentrifugation. J. Extracell. Vesicles 2018, 7, 1454777. [Google Scholar] [CrossRef]
- Li, P.; Kumar, A.; Ma, J.; Kuang, Y.; Luo, L.; Sun, X. Density Gradient Ultracentrifugation for Colloidal Nanostructures Separation and Investigation. Sci. Bull. 2018, 63, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Arab, T.; Raffo-Romero, A.; Van Camp, C.; Lemaire, Q.; Le Marrec-Croq, F.; Drago, F.; Aboulouard, S.; Slomianny, C.; Lacoste, A.-S.; Guigon, I.; et al. Proteomic Characterisation of Leech Microglia Extracellular Vesicles (EVs): Comparison between Differential Ultracentrifugation and OptiprepTM Density Gradient Isolation. J. Extracell. Vesicles 2019, 8, 1603048. [Google Scholar] [CrossRef]
- Foers, A.D.; Chatfield, S.; Dagley, L.F.; Scicluna, B.J.; Webb, A.I.; Cheng, L.; Hill, A.F.; Wicks, I.P.; Pang, K.C. Enrichment of Extracellular Vesicles from Human Synovial Fluid Using Size Exclusion Chromatography. J. Extracell. Vesicles 2018, 7, 1490145. [Google Scholar] [CrossRef]
- Nordin, J.Z.; Lee, Y.; Vader, P.; Mäger, I.; Johansson, H.J.; Heusermann, W.; Wiklander, O.P.B.; Hällbrink, M.; Seow, Y.; Bultema, J.J.; et al. Ultrafiltration with Size-Exclusion Liquid Chromatography for High Yield Isolation of Extracellular Vesicles Preserving Intact Biophysical and Functional Properties. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Gong, M.; Hu, Y.; Liu, H.; Zhang, W.; Zhang, M.; Hu, X.; Aubert, D.; Zhu, S.; Wu, L.; et al. Quality and Efficiency Assessment of Six Extracellular Vesicle Isolation Methods by Nano-Flow Cytometry. J. Extracell. Vesicles 2020, 9, 1697028. [Google Scholar] [CrossRef]
- Filipović, L.; Spasojević, M.; Prodanović, R.; Korać, A.; Matijaševic, S.; Brajušković, G.; De Marco, A.; Popović, M. Affinity-Based Isolation of Extracellular Vesicles by Means of Single-Domain Antibodies Bound to Macroporous Methacrylate-Based Copolymer. New Biotechnol. 2022, 69, 36–48. [Google Scholar] [CrossRef]
- Visan, K.S.; Lobb, R.J.; Ham, S.; Lima, L.G.; Palma, C.; Edna, C.P.Z.; Wu, L.-Y.; Gowda, H.; Datta, K.K.; Hartel, G.; et al. Comparative Analysis of Tangential Flow Filtration and Ultracentrifugation, Both Combined with Subsequent Size Exclusion Chromatography, for the Isolation of Small Extracellular Vesicles. J. Extracell. Vesicles 2022, 11, 12266. [Google Scholar] [CrossRef]
- Ryu, K.J.; Lee, J.Y.; Park, C.; Cho, D.; Kim, S.J. Isolation of Small Extracellular Vesicles from Human Serum Using a Combination of Ultracentrifugation with Polymer-Based Precipitation. Ann. Lab. Med. 2020, 40, 253–258. [Google Scholar] [CrossRef]
- Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal Experimental Requirements for Definition of Extracellular Vesicles and Their Functions: A Position Statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Zaborowski, M.P.; Balaj, L.; Breakefield, X.O.; Lai, C.P. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. BioScience 2015, 65, 783–797. [Google Scholar] [CrossRef]
- Vaiaki, E.M.; Falasca, M. Comparative Analysis of the Minimal Information for Studies of Extracellular Vesicles Guidelines: Advancements and Implications for Extracellular Vesicle Research. Semin. Cancer Biol. 2024, 101, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Osteikoetxea, X.; Sódar, B.; Németh, A.; Szabó-Taylor, K.; Pálóczi, K.; Vukman, K.V.; Tamási, V.; Balogh, A.; Kittel, Á.; Pállinger, É.; et al. Differential Detergent Sensitivity of Extracellular Vesicle Subpopulations. Org. Biomol. Chem. 2015, 13, 9775–9782. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, J.-W.; Xu, H.; Chen, X.; Gao, Y.; Jiang, H.-G.; Wang, Y.; Wu, H.; Yang, L.; Wang, W.-B.; et al. Therapy-Induced Senescent Tumor Cell-Derived Extracellular Vesicles Promote Colorectal Cancer Progression through SERPINE1-Mediated NF-κB P65 Nuclear Translocation. Mol. Cancer 2024, 23, 70. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, L.; Mao, J.; Liu, W.; Ma, W.; Zhao, B. Rab27a-Mediated Extracellular Vesicle Secretion Contributes to Osteogenesis in Periodontal Ligament-Bone Niche Communication. Sci. Rep. 2023, 13, 8479. [Google Scholar] [CrossRef]
- Kotrbová, A.; Štěpka, K.; Maška, M.; Pálenik, J.J.; Ilkovics, L.; Klemová, D.; Kravec, M.; Hubatka, F.; Dave, Z.; Hampl, A.; et al. TEM ExosomeAnalyzer: A Computer-Assisted Software Tool for Quantitative Evaluation of Extracellular Vesicles in Transmission Electron Microscopy Images. J. Extracell. Vesicles 2019, 8, 1560808. [Google Scholar] [CrossRef]
- Rikkert, L.G.; Nieuwland, R.; Terstappen, L.W.M.M.; Coumans, F.A.W. Quality of Extracellular Vesicle Images by Transmission Electron Microscopy Is Operator and Protocol Dependent. J. Extracell. Vesicles 2019, 8, 1555419. [Google Scholar] [CrossRef]
- Jin, J.; Ou, Q.; Wang, Z.; Tian, H.; Xu, J.-Y.; Gao, F.; Hu, S.; Chen, J.; Wang, J.; Zhang, J.; et al. BMSC-Derived Extracellular Vesicles Intervened the Pathogenic Changes of Scleroderma in Mice through miRNAs. Stem Cell Res. Ther. 2021, 12, 327. [Google Scholar] [CrossRef]
- Dabrowska, S.; Del Fattore, A.; Karnas, E.; Frontczak-Baniewicz, M.; Kozlowska, H.; Muraca, M.; Janowski, M.; Lukomska, B. Imaging of Extracellular Vesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Using Fluorescent and Magnetic Labels. Int. J. Nanomed. 2018, 13, 1653–1664. [Google Scholar] [CrossRef]
- Kowkabany, G.; Bao, Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules 2024, 29, 4672. [Google Scholar] [CrossRef]
- Andreu, Z.; Yáñez-Mó, M. Tetraspanins in Extracellular Vesicle Formation and Function. Front. Immunol. 2014, 5, 422. [Google Scholar] [CrossRef]
- Nguyen, V.V.T.; Welsh, J.A.; Tertel, T.; Choo, A.; van de Wakker, S.I.; Defourny, K.A.Y.; Giebel, B.; Vader, P.; Padmanabhan, J.; Lim, S.K.; et al. Inter-Laboratory Multiplex Bead-Based Surface Protein Profiling of MSC-Derived EV Preparations Identifies MSC-EV Surface Marker Signatures. J. Extracell. Vesicles 2024, 13, e12463. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The Exosome Journey: From Biogenesis to Uptake and Intracellular Signalling. Cell Commun. Signal. 2021, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; O’Dea, K.P.; Abe, E.; Khamdan, M.; Shah, S.V.; Sarathchandra, P.; Wilson, M.R.; Takata, M. Microvesicle-Mediated Communication within the Alveolar Space: Mechanisms of Uptake by Epithelial Cells and Alveolar Macrophages. Front. Immunol. 2022, 13, 853769. [Google Scholar] [CrossRef] [PubMed]
- Doran, A.C.; Yurdagul, A.; Tabas, I. Efferocytosis in Health and Disease. Nat. Rev. Immunol. 2020, 20, 254–267. [Google Scholar] [CrossRef]
- de Abreu, R.C.; Fernandes, H.; da Costa Martins, P.A.; Sahoo, S.; Emanueli, C.; Ferreira, L. Native and Bioengineered Extracellular Vesicles for Cardiovascular Therapeutics. Nat. Rev. Cardiol. 2020, 17, 685–697. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Gu, J.; Zhang, J.; Shi, H.; Qian, H.; Wang, D.; Xu, W.; Pan, J.; Santos, H.A. Engineered Extracellular Vesicles for Cancer Therapy. Adv. Mater. 2021, 33, 2005709. [Google Scholar] [CrossRef]
- Nasiri Kenari, A.; Cheng, L.; Hill, A.F. Methods for Loading Therapeutics into Extracellular Vesicles and Generating Extracellular Vesicles Mimetic-Nanovesicles. Methods 2020, 177, 103–113. [Google Scholar] [CrossRef]
- García-Manrique, P.; Gutiérrez, G.; Blanco-López, M.C. Fully Artificial Exosomes: Towards New Theranostic Biomaterials. Trends Biotechnol. 2018, 36, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, K.; Ritzmann, N.; Fichtler, J.; Nitschke, A.; Dreher, Y.; Abele, T.; Hofhaus, G.; Platzman, I.; Schröder, R.R.; Müller, D.J.; et al. Proton Gradients from Light-Harvesting E. Coli Control DNA Assemblies for Synthetic Cells. Nat. Commun. 2021, 12, 3967. [Google Scholar] [CrossRef]
- Tao, S.-C.; Rui, B.-Y.; Wang, Q.-Y.; Zhou, D.; Zhang, Y.; Guo, S.-C. Extracellular Vesicle-Mimetic Nanovesicles Transport LncRNA-H19 as Competing Endogenous RNA for the Treatment of Diabetic Wounds. Drug Deliv. 2018, 25, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Staufer, O.; Dietrich, F.; Rimal, R.; Schröter, M.; Fabritz, S.; Boehm, H.; Singh, S.; Möller, M.; Platzman, I.; Spatz, J.P. Bottom-up Assembly of Biomedical Relevant Fully Synthetic Extracellular Vesicles. Sci. Adv. 2021, 7, eabg6666. [Google Scholar] [CrossRef] [PubMed]
- Grangier, A.; Branchu, J.; Volatron, J.; Piffoux, M.; Gazeau, F.; Wilhelm, C.; Silva, A.K.A. Technological Advances towards Extracellular Vesicles Mass Production. Adv. Drug Deliv. Rev. 2021, 176, 113843. [Google Scholar] [CrossRef]
- Mathlouthi, S.; Kuryk, L.; Prygiel, M.; Lupo, M.G.; Zasada, A.A.; Pesce, C.; Ferri, N.; Rinner, B.; Salmaso, S.; Garofalo, M. Extracellular Vesicles Powered Cancer Immunotherapy: Targeted Delivery of Adenovirus-Based Cancer Vaccine in Humanized Melanoma Model. J. Control. Release 2024, 376, 777–793. [Google Scholar] [CrossRef]
- Sancho-Albero, M.; Decio, A.; Akpinar, R.; De Luigi, A.; Giavazzi, R.; Terracciano, L.M.; De Cola, L. Melanoma Extracellular Vesicles Membrane Coated Nanoparticles as Targeted Delivery Carriers for Tumor and Lungs. Mater. Today Bio 2025, 30, 101433. [Google Scholar] [CrossRef]
- Zhou, X.; Tang, B.; Huang, Q.; Yang, S.; Jiang, Y.; Xu, L.; Chen, W.; Shan, G.; Liao, X.; Hou, C.; et al. Engineered Mesenchymal Stem Cell-Derived Extracellular Vesicles Scavenge Self-Antigens for Psoriasis Therapy via Modulating Metabolic and Immunological Disorders. Adv. Sci. 2025, 12, 2410067. [Google Scholar] [CrossRef]
- Lv, Q.; Deng, J.; Chen, Y.; Wang, Y.; Liu, B.; Liu, J. Engineered Human Adipose Stem-Cell-Derived Exosomes Loaded with miR-21-5p to Promote Diabetic Cutaneous Wound Healing. Mol. Pharm. 2020, 17, 1723–1733. [Google Scholar] [CrossRef]
- Lim, G.T.; You, D.G.; Han, H.S.; Lee, H.; Shin, S.; Oh, B.H.; Kumar, E.K.P.; Um, W.; Kim, C.H.; Han, S.; et al. Bioorthogonally Surface-Edited Extracellular Vesicles Based on Metabolic Glycoengineering for CD44-Mediated Targeting of Inflammatory Diseases. J. Extracell. Vesicles 2021, 10, e12077. [Google Scholar] [CrossRef]
- Mahnke, K.; Qian, Y.; Fondel, S.; Brueck, J.; Becker, C.; Enk, A.H. Targeting of Antigens to Activated Dendritic Cells in Vivo Cures Metastatic Melanoma in Mice. Cancer Res. 2005, 65, 7007–7012. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945. [Google Scholar] [CrossRef]
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef]
- Jiang, M.; Fang, H.; Dang, E.; Zhang, J.; Qiao, P.; Yu, C.; Yang, A.; Wang, G. Small Extracellular Vesicles Containing miR-381-3p from Keratinocytes Promote T Helper Type 1 and T Helper Type 17 Polarization in Psoriasis. J. Investig. Dermatol. 2021, 141, 563–574. [Google Scholar] [CrossRef]
- Deng, M.; Yu, T.Z.; Li, D.; Wang, X.; Zhou, G.; Liu, W.; Cao, Y.; Xia, W.; Li, W.; Zhang, W.J. Human Umbilical Cord Mesenchymal Stem Cell-Derived and Dermal Fibroblast-Derived Extracellular Vesicles Protect Dermal Fibroblasts from Ultraviolet Radiation-Induced Photoaging in Vitro. Photochem. Photobiol. Sci. 2020, 19, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Oh, S.-J.; Gim, J.-A.; Shin, O.S. miR-10a, miR-30c, and miR-451a Encapsulated in Small Extracellular Vesicles Are Prosenescence Factors in Human Dermal Fibroblasts. J. Investig. Dermatol. 2022, 142, 2570–2579.e6. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Zhang, Y.; Zhang, H.; Meng, Y.; Qian, M.; Zhang, G. Epidermal Stem Cell-Derived Exosomes Promote Skin Regeneration by Downregulating Transforming Growth Factor-Β1 in Wound Healing. Stem Cell Res. Ther. 2020, 11, 452. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.; Liu, S.; Guo, J.; Lu, Y.; Cheng, J.; Liu, J. Macrophage-Derived Extracellular Vesicles: Diverse Mediators of Pathology and Therapeutics in Multiple Diseases. Cell Death Dis. 2020, 11, 924. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Z.; Chen, Y.; Peng, S.; Yang, J.; Chen, C.; Wang, J.; Shang, R.; Tang, Y.; Huang, Y.; et al. Dendritic Epidermal T Cells Secreting Exosomes Promote the Proliferation of Epidermal Stem Cells to Enhance Wound Re-Epithelialization. Stem Cell Res. Ther. 2022, 13, 121. [Google Scholar] [CrossRef]
- Russell, A.E.; Liao, Z.; Tkach, M.; Tarwater, P.M.; Ostrowski, M.; Théry, C.; Witwer, K.W. Cigarette Smoke-Induced Extracellular Vesicles from Dendritic Cells Alter T-Cell Activation and HIV Replication. Toxicol. Lett. 2022, 360, 33–43. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, T.; Qiu, Y.; Liu, Q.; Chen, X.; Wang, Q.; Min, X.; Ouyang, L.; Jia, S.; Lu, Q.; et al. Keratinocyte-to-Macrophage Communication Exacerbate Psoriasiform Dermatitis via LRG1-Enriched Extracellular Vesicles. Theranostics 2024, 14, 1049–1064. [Google Scholar] [CrossRef] [PubMed]
- Mangino, G.; Iuliano, M.; Carlomagno, S.; Bernardini, N.; Rosa, P.; Chiantore, M.V.; Skroza, N.; Calogero, A.; Potenza, C.; Romeo, G. Interleukin-17A Affects Extracellular Vesicles Release and Cargo in Human Keratinocytes. Exp. Dermatol. 2019, 28, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, L.; Iuliano, M.; Lande, R.; Frasca, L.; Falchi, M.; Rosa, P.; Mangino, G.; Romeo, G. Potential Pathogenetic Role of Antimicrobial Peptides Carried by Extracellular Vesicles in an in Vitro Psoriatic Model. J. Inflamm. Res. 2022, 15, 5387–5399. [Google Scholar] [CrossRef]
- Kainulainen, K.; Takabe, P.; Heikkinen, S.; Aaltonen, N.; de la Motte, C.; Rauhala, L.; Durst, F.C.; Oikari, S.; Hukkanen, T.; Rahunen, E.; et al. M1 Macrophages Induce Protumor Inflammation in Melanoma Cells through TNFR–NF-κB Signaling. J. Investig. Dermatol. 2022, 142, 3041–3051.e10. [Google Scholar] [CrossRef] [PubMed]
- Abbes, A.; Zayani, Y.; Zidi, W.; Hammami, M.B.; Mebazaa, A.; El Euch, D.; Ben Ammar, A.; Sanhaji, H.; El May, M.V.; Mokni, M.; et al. Matrix Metalloproteinase-7 Could Be a Predictor for Acute Inflammation in Psoriatic Patients. Cytokine 2020, 134, 155195. [Google Scholar] [CrossRef]
- Alves-Filho, J.C.; Marcel Silva Melo, B.; Ryffel, B. MMP-9 Mediates Cross-Talk between Neutrophils and Endothelial Cells in Psoriasis. J. Investing. Dermatol. 2021, 141, 716–718. [Google Scholar] [CrossRef]
- Pasquali, L.; Svedbom, A.; Srivastava, A.; Rosén, E.; Lindqvist, U.; Ståhle, M.; Pivarcsi, A.; Sonkoly, E. Circulating microRNAs in Extracellular Vesicles as Potential Biomarkers for Psoriatic Arthritis in Patients with Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1248–1256. [Google Scholar] [CrossRef]
- Lättekivi, F.; Guljavina, I.; Midekessa, G.; Viil, J.; Heath, P.R.; Bæk, R.; Jørgensen, M.M.; Andronowska, A.; Kingo, K.; Fazeli, A. Profiling Blood Serum Extracellular Vesicles in Plaque Psoriasis and Psoriatic Arthritis Patients Reveals Potential Disease Biomarkers. Int. J. Mol. Sci. 2022, 23, 4005. [Google Scholar] [CrossRef]
- Jacquin-Porretaz, C.; Cordonnier, M.; Nardin, C.; Boullerot, L.; Chanteloup, G.; Vautrot, V.; Adotevi, O.; Garrido, C.; Gobbo, J.; Aubin, F. Increased Levels of Interleukin-17A Exosomes in Psoriasis. Acta Derm. Venereol. 2019, 99, 1143–1147. [Google Scholar] [CrossRef]
- Leal, B.; Carvalho, C.; Ferreira, A.M.; Nogueira, M.; Brás, S.; Silva, B.M.; Selores, M.; Costa, P.P.; Torres, T. Serum Levels of miR-146a in Patients with Psoriasis. Mol. Diagn. Ther. 2021, 25, 475–485. [Google Scholar] [CrossRef]
- Ganguly, T.; Laha, S.; Senapati, S.; Chatterjee, G.; Chatterjee, R. Serum miRNA Profiling Identified miRNAs Associated with Disease Severity in Psoriasis. Exp. Dermatol. 2024, 33, e14973. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Kim, D.C.; Lee, S.-J.; Kim, H.S.; Pak, J.Y.; Kim, J.; Cheong, J.Y.; Lee, E.-S. Keratinocyte-Derived Circulating microRNAs in Extracellular Vesicles: A Novel Biomarker of Psoriasis Severity and Potential Therapeutic Target. J. Transl. Med. 2024, 22, 235. [Google Scholar] [CrossRef]
- Zhang, M.; Niu, Z.; Huang, Q.; Han, L.; Du, J.; Liang, J.; Cheng, Y.; Cao, R.; Yawalkar, N.; Zhang, Z.; et al. Identification of an Exosomal miRNA-mRNA Regulatory Network Contributing to Methotrexate Efficacy. Int. Immunopharmacol. 2024, 135, 112280. [Google Scholar] [CrossRef] [PubMed]
- Mohseni Meybodi, M.A.; Nilforoushzadeh, M.A.; KhandanDezfully, N.; Mansouri, P. The Safety and Efficacy of Adipose Tissue-Derived Exosomes in Treating Mild to Moderate Plaque Psoriasis: A Clinical Study. Life Sci. 2024, 353, 122915. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lin, J.; Shi, P.; Su, D.; Cheng, X.; Yi, W.; Yan, J.; Chen, H.; Cheng, F. Small Extracellular Vesicles Derived from MSCs Have Immunomodulatory Effects to Enhance Delivery of ASO-210 for Psoriasis Treatment. Front. Cell Dev. Biol. 2022, 10, 842813. [Google Scholar] [CrossRef]
- Rodrigues, S.C.; Cardoso, R.M.S.; Freire, P.C.; Gomes, C.F.; Duarte, F.V.; Neves, R.P.d.; Simões-Correia, J. Immunomodulatory Properties of Umbilical Cord Blood-Derived Small Extracellular Vesicles and Their Therapeutic Potential for Inflammatory Skin Disorders. Int. J. Mol. Sci. 2021, 22, 9797. [Google Scholar] [CrossRef]
- Su, D.; Li, M.; Xie, Y.; Xu, Z.; Lv, G.; Jiu, Y.; Lin, J.; Chang, C.-J.; Chen, H.; Cheng, F. Gut Commensal Bacteria Parabacteroides Goldsteinii-Derived Outer Membrane Vesicles Suppress Skin Inflammation in Psoriasis. J. Control. Release 2024, 377, 127–145. [Google Scholar] [CrossRef]
- Xu, Y.; Gan, Y.; Qi, F.; Lu, X.; Zhang, X.; Zhang, J.; Wang, H.; Li, Y.; Zhou, Z.; Wang, X.; et al. Innate Lymphoid Cell-Based Immunomodulatory Hydrogel Microspheres Containing Cutibacterium Acnes Extracellular Vesicles for the Treatment of Psoriasis. Acta Biomater. 2024, 184, 296–312. [Google Scholar] [CrossRef]
- Jia, H.; Liu, T.; Yang, Q.; Zheng, H.; Fu, S.; Hong, J.; Zhou, Z.; Huang, Q.; Zhang, Z.; Zhang, H.; et al. Tumor-Derived PD-L1+ Exosomes with Natural Inflammation Tropism for Psoriasis-Targeted Treatment. Bioconjug. Chem. 2023, 34, 809–824. [Google Scholar] [CrossRef]
- Yew, Y.W.; Thyssen, J.P.; Silverberg, J.I. A Systematic Review and Meta-Analysis of the Regional and Age-Related Differences in Atopic Dermatitis Clinical Characteristics. J. Am. Acad. Dermatol. 2019, 80, 390–401. [Google Scholar] [CrossRef]
- Schuler, C.F.; Tsoi, L.C.; Billi, A.C.; Harms, P.W.; Weidinger, S.; Gudjonsson, J.E. Genetic and Immunological Pathogenesis of Atopic Dermatitis. J. Investig. Dermatol. 2024, 144, 954–968. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, W. Genome-Wide Integration of Genetic and Genomic Studies of Atopic Dermatitis: Insights into Genetic Architecture and Pathogenesis. J. Investig. Dermatol. 2022, 142, 2958–2967.e8. [Google Scholar] [CrossRef]
- Bieber, T. Atopic Dermatitis. N. Engl. J. Med. 2008, 358, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Virolainen, S.J.; Satish, L.; Biagini, J.M.; Chaib, H.; Chang, W.C.; Dexheimer, P.J.; Dixon, M.R.; Dunn, K.; Fletcher, D.; Forney, C.; et al. Filaggrin Loss-of-Function Variants Are Associated with Atopic Dermatitis Phenotypes in a Diverse, Early-Life Prospective Cohort. JCI Insight 2024, 9, e178258. [Google Scholar] [CrossRef]
- Barker, J.N.W.N.; Palmer, C.N.A.; Zhao, Y.; Liao, H.; Hull, P.R.; Lee, S.P.; Allen, M.H.; Meggitt, S.J.; Reynolds, N.J.; Trembath, R.C.; et al. Null Mutations in the Filaggrin Gene (FLG) Determine Major Susceptibility to Early-Onset Atopic Dermatitis That Persists into Adulthood. J. Investig. Dermatol. 2007, 127, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Kobiela, A.; Hewelt-Belka, W.; Frąckowiak, J.E.; Kordulewska, N.; Hovhannisyan, L.; Bogucka, A.; Etherington, R.; Piróg, A.; Dapic, I.; Gabrielsson, S.; et al. Keratinocyte-Derived Small Extracellular Vesicles Supply Antigens for CD1a-Resticted T Cells and Promote Their Type 2 Bias in the Context of Filaggrin Insufficiency. Front. Immunol. 2024, 15, 1369238. [Google Scholar] [CrossRef]
- Jun, S.H.; Lee, J.H.; Kim, S.I.; Choi, C.W.; Park, T.I.; Jung, H.R.; Cho, J.W.; Kim, S.H.; Lee, J.C. Staphylococcus Aureus-Derived Membrane Vesicles Exacerbate Skin Inflammation in Atopic Dermatitis. Clin. Exp. Allergy 2017, 47, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-W.; Kim, M.-R.; Lee, E.-Y.; Kim, J.H.; Kim, Y.-S.; Jeon, S.G.; Yang, J.-M.; Lee, B.-J.; Pyun, B.-Y.; Gho, Y.S.; et al. Extracellular Vesicles Derived from Staphylococcus Aureus Induce Atopic Dermatitis-like Skin Inflammation. Allergy 2011, 66, 351–359. [Google Scholar] [CrossRef]
- Kim, J.; Bin, B.; Choi, E.; Lee, H.G.; Lee, T.R.; Cho, E. Staphylococcus Aureus -derived Extracellular Vesicles Induce Monocyte Recruitment by Activating Human Dermal Microvascular Endothelial Cells in Vitro. Clin. Exp. Allergy 2019, 49, 68–81. [Google Scholar] [CrossRef]
- Staudenmaier, L.; Focken, J.; Schlatterer, K.; Kretschmer, D.; Schittek, B. Bacterial Membrane Vesicles Shape Staphylococcus Aureus Skin Colonization and Induction of Innate Immune Responses. Exp. Dermatol. 2022, 31, 349–361. [Google Scholar] [CrossRef]
- Hong, S.-W.; Choi, E.-B.; Min, T.-K.; Kim, J.-H.; Kim, M.-H.; Jeon, S.G.; Lee, B.-J.; Gho, Y.S.; Jee, Y.-K.; Pyun, B.-Y.; et al. An Important Role of α-Hemolysin in Extracellular Vesicles on the Development of Atopic Dermatitis Induced by Staphylococcus Aureus. PLoS ONE 2014, 9, e100499. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, E.-Y.; Kim, S.-H.; Kim, D.-K.; Park, K.-S.; Kim, K.P.; Kim, Y.-K.; Roh, T.-Y.; Gho, Y.S. Staphylococcus Aureus Extracellular Vesicles Carry Biologically Active β-Lactamase. Antimicrob. Agents Chemother. 2013, 57, 2589–2595. [Google Scholar] [CrossRef]
- Johansson, H.J.; Vallhov, H.; Holm, T.; Gehrmann, U.; Andersson, A.; Johansson, C.; Blom, H.; Carroni, M.; Lehtiö, J.; Scheynius, A. Extracellular Nanovesicles Released from the Commensal Yeast Malassezia Sympodialis Are Enriched in Allergens and Interact with Cells in Human Skin. Sci. Rep. 2018, 8, 9182. [Google Scholar] [CrossRef] [PubMed]
- Vallhov, H.; Johansson, C.; Veerman, R.E.; Scheynius, A. Extracellular Vesicles Released from the Skin Commensal Yeast Malassezia Sympodialis Activate Human Primary Keratinocytes. Front. Cell. Infect. Microbiol. 2020, 10, 6. [Google Scholar] [CrossRef]
- Gehrmann, U.; Qazi, K.R.; Johansson, C.; Hultenby, K.; Karlsson, M.; Lundeberg, L.; Gabrielsson, S.; Scheynius, A. Nanovesicles from Malassezia Sympodialis and Host Exosomes Induce Cytokine Responses—Novel Mechanisms for Host-Microbe Interactions in Atopic Eczema. PLoS ONE 2011, 6, e21480. [Google Scholar] [CrossRef]
- Dutra, J.d.M.F.; Dantas, F.M.L.; Winck, C.P.; Alberto, A.V.P.; Way, D.V.; Motta, A.C.; de Oliveira, E.d.S.; Nápole, M.L.d.O.; da Silveira, J.C.; Turco, E.G.L. Exploring Extracellular Vesicles Nanocapsules in Hydrogel Delivery for Canine Atopic Dermatitis: An Anti-Inflammatory Approach. Adv. Nano Res. 2025, 8, 1–17. [Google Scholar] [CrossRef]
- Yang, J.W.; Seo, Y.; Shin, T.-H.; Ahn, J.-S.; Oh, S.-J.; Shin, Y.Y.; Kang, M.-J.; Lee, B.-C.; Lee, S.; Kang, K.-S.; et al. Extracellular Vesicles from SOD3-Transduced Stem Cells Exhibit Improved Immunomodulatory Abilities in the Murine Dermatitis Model. Antioxidants 2020, 9, 1165. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, S.J.; Choi, H.I.; Choi, J.P.; Park, H.K.; Kim, E.K.; Kim, M.J.; Moon, B.S.; Min, T.K.; Rho, M.; et al. Lactobacillus Plantarum-Derived Extracellular Vesicles Protect Atopic Dermatitis Induced by Staphylococcus Aureus-Derived Extracellular Vesicles. Allergy Asthma Immunol. Res. 2018, 10, 516–532. [Google Scholar] [CrossRef]
- Choi, H.; Kwak, M.-J.; Choi, Y.; Kang, A.N.; Mun, D.; Eor, J.Y.; Park, M.R.; Oh, S.; Kim, Y. Extracellular Vesicles of Limosilactobacillus Fermentum SLAM216 Ameliorate Skin Symptoms of Atopic Dermatitis by Regulating Gut Microbiome on Serotonin Metabolism. Gut Microbes 2025, 17, 2474256. [Google Scholar] [CrossRef]
- Wu, Z.; He, L.; Yan, L.; Tan, B.; Ma, L.; He, G.; Dai, Z.; Sun, R.; Li, C. Hydrogels Treat Atopic Dermatitis by Transporting Marine-Derived miR-100-5p-Abundant Extracellular Vesicles. ACS Biomater. Sci. Eng. 2024, 10, 7667–7682. [Google Scholar] [CrossRef]
- Siegel, C.H.; Sammaritano, L.R. Systemic Lupus Erythematosus: A Review. JAMA 2024, 331, 1480–1491. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, J.K.; Lee, E.Y.; Lee, E.B.; Song, Y.W. Circulating Exosomes from Patients with Systemic Lupus Erythematosus Induce a Proinflammatory Immune Response. Arthritis Res. Ther. 2016, 18, 264. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.T.; Østergaard, O.; Stener, L.; Iversen, L.V.; Truedsson, L.; Gullstrand, B.; Jacobsen, S.; Heegaard, N.H.H. Increased IgG on Cell-Derived Plasma Microparticles in Systemic Lupus Erythematosus Is Associated with Autoantibodies and Complement Activation. Arthritis Rheum. 2012, 64, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.; Wetterö, J.; Potempa, L.A.; Fernandez-Botran, R.; O’Neill, Y.; Wirestam, L.; Mobarrez, F.; Sjöwall, C. Extracellular Vesicles Opsonized by Monomeric C-Reactive Protein (CRP) Are Accessible as Autoantigens in Patients with Systemic Lupus Erythematosus and Associate with Autoantibodies against CRP. J. Autoimmun. 2023, 139, 103073. [Google Scholar] [CrossRef] [PubMed]
- Pisetsky, D.S. Anti-DNA Antibodies—Quintessential Biomarkers of SLE. Nat. Rev. Rheumatol. 2016, 12, 102–110. [Google Scholar] [CrossRef]
- Nielsen, C.T.; Østergaard, O.; Johnsen, C.; Jacobsen, S.; Heegaard, N.H.H. Distinct Features of Circulating Microparticles and Their Relationship to Clinical Manifestations in Systemic Lupus Erythematosus: Plasma Microparticles in SLE. Arthritis Rheum. 2011, 63, 3067–3077. [Google Scholar] [CrossRef]
- Ding, Z.; Qi, F.; Liu, L.; Wang, Z.; Zhang, N.; Lyu, X.; Sun, W.; Du, J.; Song, H.; Hou, H.; et al. Circulating Extracellular Vesicles as Novel Biomarkers for Pulmonary Arterial Hypertension in Patients with Systemic Lupus Erythematosus. Front. Immunol. 2024, 15, 1374100. [Google Scholar] [CrossRef]
- Zhou, Z.-R.; Chen, X.; Lv, J.; Li, D.-W.; Yang, C.-D.; Liu, H.-L.; Qian, R.-C. A Plasmonic Nanoparticle-Embedded Polydopamine Substrate for Fluorescence Detection of Extracellular Vesicle Biomarkers in Serum and Urine from Patients with Systemic Lupus Erythematosus. Talanta 2022, 247, 123620. [Google Scholar] [CrossRef]
- Losada, P.X.; Serrato, L.; Daza, A.M.; Vanegas-García, A.; Muñoz, C.H.; Rodriguez, D.; Diaz, J.C.; Pineda, R.; Rojas Lopez, M.; Vásquez, G. Circulating Extracellular Vesicles in Systemic Lupus Erythematosus: Physicochemical Properties and Phenotype. Lupus Sci. Med. 2024, 11, e001243. [Google Scholar] [CrossRef]
- Zhang, M.; Johnson-Stephenson, T.K.; Wang, W.; Wang, Y.; Li, J.; Li, L.; Zen, K.; Chen, X.; Zhu, D. Mesenchymal Stem Cell-Derived Exosome-Educated Macrophages Alleviate Systemic Lupus Erythematosus by Promoting Efferocytosis and Recruitment of IL-17+ Regulatory T Cell. Stem Cell Res. Ther. 2022, 13, 484. [Google Scholar] [CrossRef]
- Dou, R.; Zhang, X.; Xu, X.; Wang, P.; Yan, B. Mesenchymal Stem Cell Exosomal tsRNA-21109 Alleviate Systemic Lupus Erythematosus by Inhibiting Macrophage M1 Polarization. Mol. Immunol. 2021, 139, 106–114. [Google Scholar] [CrossRef]
- Tu, J.; Zheng, N.; Mao, C.; Liu, S.; Zhang, H.; Sun, L. UC-BSCs Exosomes Regulate Th17/Treg Balance in Patients with Systemic Lupus Erythematosus via miR-19b/KLF13. Cells 2022, 11, 4123. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hao, M.; Kou, X.; Sui, B.; Sanmillan, M.L.; Zhang, X.; Liu, D.; Tian, J.; Yu, W.; Chen, C.; et al. Apoptotic Vesicles Ameliorate Lupus and Arthritis via Phosphatidylserine-Mediated Modulation of T Cell Receptor Signaling. Bioact. Mater. 2023, 25, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, S.; Murata, S.; Kato, H.; Zakaria, F.; Kyumoto-Nakamura, Y.; Uehara, N.; Yamaza, H.; Kukita, T.; Yamaza, T. Targeting of Deciduous Tooth Pulp Stem Cell–Derived Extracellular Vesicles on Telomerase-Mediated Stem Cell Niche and Immune Regulation in Systemic Lupus Erythematosus. J. Immunol. 2021, 206, 3053–3063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yan, Z.; Zhu, J.; Li, Z.; Chen, L.; Zheng, W.; Dai, Z.; Yang, J.; Yun, X.; Wang, Y.; et al. Extracellular Mitochondrial-Derived Vesicles Affect the Progression of Diabetic Foot Ulcer by Regulating Oxidative Stress and Mitochondrial Dysfunction. Adv. Sci. 2025, 12, 2407574. [Google Scholar] [CrossRef]
- Lee, J.H.; Won, Y.J.; Kim, H.; Choi, M.; Lee, E.; Ryoou, B.; Lee, S.-G.; Cho, B.S. Adipose Tissue-Derived Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing and Tissue Regeneration. Int. J. Mol. Sci. 2023, 24, 10434. [Google Scholar] [CrossRef]
- Park, D.J.; Choi, W.; Sayeed, S.; Dorschner, R.A.; Rainaldi, J.; Ho, K.; Kezios, J.; Nolan, J.P.; Mali, P.; Costantini, T.; et al. Defining the Activity of Pro-Reparative Extracellular Vesicles in Wound Healing Based on miRNA Payloads and Cell Type-Specific Lineage Mapping. Mol. Ther. 2024, 32, 3059–3079. [Google Scholar] [CrossRef]
- Johnson, J.; Law, S.Q.K.; Shojaee, M.; Hall, A.S.; Bhuiyan, S.; Lim, M.B.L.; Silva, A.; Kong, K.J.W.; Schoppet, M.; Blyth, C.; et al. First-in-Human Clinical Trial of Allogeneic, Platelet-Derived Extracellular Vesicles as a Potential Therapeutic for Delayed Wound Healing. J. Extracell. Vesicles 2023, 12, e12332. [Google Scholar] [CrossRef]
- Wu, X.; Yuan, P.; Wei, N.; Ma, C.; Fu, M.; Wu, W. Extracellular Vesicles Derived from “Serum and Glucose” Deprived HUCMSCs Promoted Skin Wound Healing through Enhanced Angiogenesis. Mol. Cell. Biochem. 2024, 480, 1255–1273. [Google Scholar] [CrossRef]
- Long, X.; Yuan, Q.; Tian, R.; Zhang, W.; Liu, L.; Yang, M.; Yuan, X.; Deng, Z.; Li, Q.; Sun, R.; et al. Efficient Healing of Diabetic Wounds by MSC-EV-7A Composite Hydrogel via Suppression of Inflammation and Enhancement of Angiogenesis. Biomater. Sci. 2024, 12, 1750–1760. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Wei, Q.; Ma, K.; Hu, W.; Huang, Q.; Su, J.; Li, H.; Zhang, C.; Fu, X. VH298-Loaded Extracellular Vesicles Released from Gelatin Methacryloyl Hydrogel Facilitate Diabetic Wound Healing by HIF-1α-Mediated Enhancement of Angiogenesis. Acta Biomater. 2022, 147, 342–355. [Google Scholar] [CrossRef]
- Yao, W.-D.; Zhou, J.-N.; Tang, C.; Zhang, J.-L.; Chen, Z.-Y.; Li, Y.; Gong, X.-J.; Qu, M.-Y.; Zeng, Q.; Jia, Y.-L.; et al. Hydrogel Microneedle Patches Loaded with Stem Cell Mitochondria-Enriched Microvesicles Boost the Chronic Wound Healing. ACS Nano 2024, 18, 26733–26750. [Google Scholar] [CrossRef] [PubMed]
- Bianza, M.B.; Qaed Ahmed, A.A.; Lamboni, L.; Shi, Z.; Mutu Mukole, B.; Zheng, R.; Pierre Mbang, M.; Zhang, B.; Gauthier, M.; Yang, G. Engineering Homologous Platelet-Rich Plasma, Platelet-Rich Plasma-Derived Exosomes, and Mesenchymal Stem Cell-Derived Exosomes-Based Dual-Crosslinked Hydrogels as Bioactive Diabetic Wound Dressings. Bioact. Mater. 2023, 28, 74–94. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Y.; Yang, N.; Zhang, H.; Zhang, X.; Geng, Y.; Zhao, J.; Chen, Z.; Dong, C.; Lin, L.; et al. Apoptotic Bodies Derived from Fibroblast-like Cells in Subcutaneous Connective Tissue Inhibit Ferroptosis in Ischaemic Flaps via the miR-339-5p/KEAP1/Nrf2 Axis. Adv. Sci. 2024, 11, 2307238. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Yang, S.; Lee, J.; Park, B.; Park, K.; Jung, J.; Bae, Y.; Park, G. Combination Treatment with Human Adipose Tissue Stem Cell-Derived Exosomes and Fractional CO2 Laser for Acne Scars: A 12-Week Prospective, Double-Blind, Randomized, Split-Face Study. Acta Derm. Venereol. 2020, 100, adv00310. [Google Scholar] [CrossRef]
- Jakl, V.; Ehmele, M.; Winkelmann, M.; Ehrenberg, S.; Eiseler, T.; Friemert, B.; Rojewski, M.T.; Schrezenmeier, H. A Novel Approach for Large-Scale Manufacturing of Small Extracellular Vesicles from Bone Marrow-Derived Mesenchymal Stromal Cells Using a Hollow Fiber Bioreactor. Front. Bioeng. Biotechnol. 2023, 11, 1107055. [Google Scholar] [CrossRef]
- Rocha, S.; Carvalho, J.; Oliveira, P.; Voglstaetter, M.; Schvartz, D.; Thomsen, A.R.; Walter, N.; Khanduri, R.; Sanchez, J.-C.; Keller, A.; et al. 3D Cellular Architecture Affects MicroRNA and Protein Cargo of Extracellular Vesicles. Adv. Sci. 2019, 6, 1800948. [Google Scholar] [CrossRef]
- Guo, S.; Debbi, L.; Zohar, B.; Samuel, R.; Arzi, R.S.; Fried, A.I.; Carmon, T.; Shevach, D.; Redenski, I.; Schlachet, I.; et al. Stimulating Extracellular Vesicles Production from Engineered Tissues by Mechanical Forces. Nano Lett. 2021, 21, 2497–2504. [Google Scholar] [CrossRef]
- Debbi, L.; Guo, S.; Safina, D.; Levenberg, S. Boosting Extracellular Vesicle Secretion. Biotechnol. Adv. 2022, 59, 107983. [Google Scholar] [CrossRef]
- Salmond, N.; Williams, K.C. Isolation and Characterization of Extracellular Vesicles for Clinical Applications in Cancer—Time for Standardization? Nanoscale Adv. 2021, 3, 1830–1852. [Google Scholar] [CrossRef]
- van de Wakker, S.I.; Meijers, F.M.; Sluijter, J.P.G.; Vader, P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol. Rev. 2023, 75, 1043–1061. [Google Scholar] [CrossRef] [PubMed]
- Nieuwland, R.; Falcón-Pérez, J.M.; Théry, C.; Witwer, K.W. Rigor and Standardization of Extracellular Vesicle Research: Paving the Road towards Robustness. J. Extracell. Vesicles 2020, 10, e12037. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, J.; Liu, G.; Wolfram, J. Immunogenicity of Extracellular Vesicles. Adv. Mater. 2024, 36, 2403199. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; To, K.K.W.; Zeng, Q.; Fu, L. Effect of Extracellular Vesicles Derived from Tumor Cells on Immune Evasion. Adv. Sci. 2025, 12, 2417357. [Google Scholar] [CrossRef]
Diseases | EVs Derived From | Function | Reference |
---|---|---|---|
Psoriasis | Exosomes derived from autologous adipose-derived MSCs | ↓ Skin thickness, erythema, and inflammatory markers (IL-23, TNFα, IL-17, and IFNγ) ↑ Anti-inflammatory factor IL-10 and FOXP3 | [94] |
Psoriasis | IFNγ-sEVs derived from HUCMSCs | ↓ Immune cell proliferation and activation ↓ Psoriasis symptoms by modulating Th17/Th2 balance ↓ Inflammatory cytokines ↑ Delivery of ASO-210 (which alleviates psoriasis) | [95] |
Psoriasis | EV derived from umbilical cord blood mononuclear cell | ↑ Macrophages to an anti-inflammatory phenotype ↓ CD4+ and CD8+ T cell proliferation and inflammatory markers ↑ Treg | [96] |
Psoriasis | Gut microbiota-derived OMVs from Parabacteroides goldsteinii | ↓ Psoriasis-like skin inflammation by targeting affected areas On macrophage: ↓ ROS level and M1 phenotype macrophage polarization On T cells: ↓ Differentiation of CD4+ T cells into Th1 and Th17 cells On DCs: ↓ Maturation of LPS-induced BMDCs and inflammatory cytokine On keratinocytes: ↓ Proliferation rate | [97] |
Psoriasis | EVs from Cutibacterium acnes, encapsulated in a sustained-release hydrogel (CA-EVs@GHM) | ↓ Psoriasis symptoms Restore skin microbiota balance: ↓ Staphylococcus colonization, ↑ microbial diversity ↓ Conversion of ILC2 to pathological ILC3 | [98] |
Psoriasis | PD-L1+ exosomes derived from melanoma cells carrying pristimerin (anti-inflammatory compound) | ↓ Psoriasis by targeting CD4+ T cells and keratinocytes. ↓ Th17 proliferation ↑ Treg differentiation ↓ Inflammation and ferroptosis-related changes | [99] |
Diseases | EVs Derived From | Function | Reference |
---|---|---|---|
AD | Nanoencapsulated EVs derived from canine MSCs | ↓ Inflammatory cytokine expression (IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, and IL-31) in human keratinocytes Nanoencapsulation with calcium alginate: ↑ EV delivery, stability, and therapeutic efficacy | [116] |
AD | EVs derived from MSC overexpressing extracellular SOD3 | Deliver SOD3 protein, improving therapeutic efficacy: ↓ AD symptoms by modulating immune cell activation and differentiation | [117] |
AD | EVs derived from Lactobacillus plantarum | ↓ IL-6 secretion in keratinocytes and macrophages ↑ Cell viability ↓ SA-EV-induced skin inflammation ↓ Epidermal thickness ↓ IL-4 levels | [118] |
AD | EVs derived from Limosilactobacillus fermentum SLAM216 | ↓ Immunoregulatory cytokines ↓ Epidermal thickness and mast cell infiltration ↑ Skin barrier function ↑ Serotonin synthesis ↓ Scratching and depression-related behaviors | [119] |
AD | EVs derived from Pinctada martensii mucus | ↓ Inflammation by inhibiting the FOXO3/NLRP3 signaling pathway miR-100-5p in EVs involved in anti-inflammatory effects | [120] |
Diseases | EVs Derived From | Function | Reference |
---|---|---|---|
SLE | Exosomes derived from bone marrow mesenchymal stem cells | ↑ Anti-inflammatory polarization of macrophages (↑ CD206, B7H4, CD138, Arg-1, CCL20, and anti-inflammatory cytokines secretion) ↓ T cell infiltration in the kidney ↑ IL-17+ Tregs ↑ Macrophage efferocytosis | [130] |
SLE | Exosomes derived from MSCs containing tsRNA-21109 | ↓ Macrophage M1 polarization markers (CD80, NOS2, MCP-1) ↑ Macrophage M2 polarization markers (CD206, ARG1, MRC-2) ↓ TNF-α and IL-1β | [131] |
SLE | Exosomes derived from UC-BSCs | ↓ Th17 cell differentiation ↑ Treg cells ↓ Pro-inflammatory cytokines (TNF-α, IL-6, and IL-17) ↑ Anti-inflammatory cytokines (IL-10 and TGF-β) | [132] |
SLE | Apoptotic vesicles derived from BMMSCs | ↓ Lymphoproliferation ↓ IFN-γ+ CD4+ T cells ↑ Foxp3+ regulatory T cells ↓ T cell activation (via direct contact, independent of macrophages) ↓ Th1 and Th17 cells | [133] |
SLE | EVs derived from stem cells of human exfoliated deciduous teeth | ↓ SLE-like symptoms ↑ Hematopoietic niche formation and immunoregulation | [134] |
Diseases | EVs Derived From | Function | Reference |
---|---|---|---|
Wound Healing | Exosomes derived from ASC (ASC-EXOs) | ↑ Dermal fibroblast proliferation, migration, and collagen production ↑ Wound healing and tissue regeneration Combination of ASC-EXOs and hyaluronic acid: ↑ Wound closure rates and tissue remodeling | [136] |
Wound Healing | EVs derived from macrophage | ↑ Wound healing in diabetic obese mice ↑ Expression of adiponectin (insulin-sensitizing properties) ↑ Intercellular signaling, ↓ inflammation, ↑ wound closure ↑ Dermal fibroblast proliferation and basal keratinocyte activation | [137] |
Wound Healing | EVs derived from platelets | ↑ Dermal fibroblast proliferation, migration, and angiogenesis | [138] |
Wound Healing | EVs derived from serum- and glucose-deprived HUCMSCs | ↑ Angiogenesis and skin wound healing ↑ Migration, proliferation, and tube formation of endothelial cells ↑ VEGFA production (contributes to tissue regeneration) Pathway: ↑ miR-29a-3p, ↓ CTNNBIP1, and ↑ Wnt/β-catenin signaling pathway | [139] |
Wound Healing | EVs derived from MSC combined with the HDAC7-derived peptide 7A in a hydrogel | Anti-inflammatory, pro-angiogenic, and pro-proliferative effects ↑ Diabetic wound healing ↑ Fibroblast migration and proliferation ↑ Anti-inflammatory macrophages ↓ NF-κB signaling pathway; ↑ TGF-β expression | [140] |
Wound Healing | EVs derived from epidermal stem cells containing VH298 (a HIF-1α stabilizer) | ↑ Angiogenesis-related protein (HIF-1α and VEGFA) ↑ Endothelial cell function Commination with GelMA hydrogel: ↑ Wound healing via↑ local blood supply and HIF-1α/VEGFA signaling | [141] |
Wound Healing | Mitochondria-rich EVs from metformin-treated stem cells | ↑ Mitochondrial function: Restoring membrane potential, ↑ ATP levels, ↓ oxidative stress Combination with hydrogel microneedle patch: ↑ M2 macrophage polarization and healing in radiation-induced chronic wounds | [142] |
Wound Healing | Exosomes derived from platelet-rich plasma and MSCs combined with silk protein hydrogel | Hydrogels enable sustained release of growth factors and exosomes ↓ Matrix metalloproteinase-9 expression ↑ Anti-NETotic effect, angiogenesis, and re-epithelialization | [143] |
Wound Healing | ABs derived from fibroblast-like cell | ↑ Ischemic flap survival ↓ Ferroptosis and oxidative stress in endothelial cells and macrophages ↑ M2 macrophage polarization through the miR-339-5p/KEAP1/Nrf2 axis | [144] |
Wound Healing | Exosomes derived from ASC | ↓ The ECCA scores (a tool for evaluating the severity of atrophic acne scars) of acne patients ↓ Volume of atrophic scars, mean volume of skin pores, and skin surface roughness | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.; Ring, S.; Jin, S.; Singh, S.; Mahnke, K. Extracellular Vesicles and Their Role in Skin Inflammatory Diseases: From Pathogenesis to Therapy. Int. J. Mol. Sci. 2025, 26, 3827. https://doi.org/10.3390/ijms26083827
Lei X, Ring S, Jin S, Singh S, Mahnke K. Extracellular Vesicles and Their Role in Skin Inflammatory Diseases: From Pathogenesis to Therapy. International Journal of Molecular Sciences. 2025; 26(8):3827. https://doi.org/10.3390/ijms26083827
Chicago/Turabian StyleLei, Xuan, Sabine Ring, Shiying Jin, Sonali Singh, and Karsten Mahnke. 2025. "Extracellular Vesicles and Their Role in Skin Inflammatory Diseases: From Pathogenesis to Therapy" International Journal of Molecular Sciences 26, no. 8: 3827. https://doi.org/10.3390/ijms26083827
APA StyleLei, X., Ring, S., Jin, S., Singh, S., & Mahnke, K. (2025). Extracellular Vesicles and Their Role in Skin Inflammatory Diseases: From Pathogenesis to Therapy. International Journal of Molecular Sciences, 26(8), 3827. https://doi.org/10.3390/ijms26083827