Plasma Levels of MicroRNA Let-7c-5p May Predict Risk of Acute Chest Syndrome in Patients with Sickle Cell Disease
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Subjects Used for RNA Sequencing
2.2. MicroRNA Contents of Small EVs in Subjects with SCD
2.3. Characteristics of Subjects Used for RT-qPCR of Let-7c-5p (Replication Cohort)
2.4. Let-7c-5p Levels in Subjects with SCD
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Isolation of Platelet-Free Plasma
4.3. Small RNA Isolation and Its Sequencing in Discovery Cohort
4.4. Sequencing Data Analysis
4.5. MicroRNA Extraction and RT-qPCR in Replication Cohort
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCD | Sickle cell disease |
ACS | Acute chest syndrome |
RT-qPCR | Quantitative reverse transcription polymerase chain reaction |
EV | Extracellular vesicle |
NS | Not Significant |
sPLA2 | Secretory phospholipase A2 |
References
- Hoppe, C.C. Inflammatory mediators of endothelial injury in sickle cell disease. Hematol. Oncol. Clin. N. Am. 2014, 28, 265–286. [Google Scholar] [CrossRef] [PubMed]
- Sundd, P.; Gladwin, M.T.; Novelli, E.M. Pathophysiology of sickle cell disease. Annu. Rev. Pathol. 2019, 14, 263–292. [Google Scholar] [CrossRef]
- Gladwin, M.T.; Vichinsky, E. Pulmonary complications of sickle cell disease. N. Engl. J. Med. 2008, 359, 2254–2265. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.T. How I treat acute chest syndrome in children with sickle cell disease. Blood 2011, 117, 5297–5305. [Google Scholar] [CrossRef]
- Howard, J.; Hart, N.; Roberts-Harewood, M.; Cummins, M.; Awogbade, M.; Davis, B. BCSH Committee guideline on the management of acute chest syndrome in sickle cell disease. Br. J. Haematol. 2015, 169, 492–505. [Google Scholar] [CrossRef]
- DeBaun, M.R.; Rodeghier, M.; Cohen, R.; Kirkham, F.J.; Rosen, C.L.; Roberts, I.; Cooper, B.; Stocks, J.; Wilkey, O.; Inusa, B.; et al. Factors predicting future ACS episodes in children with sickle cell anemia. Am. J. Hematol. 2014, 89, E212–E217. [Google Scholar] [CrossRef] [PubMed]
- Hebbel, R.P.; Key, N.S. Microparticles in sickle cell anaemia: Promise and pitfalls. Br. J. Haematol. 2016, 174, 16–29. [Google Scholar] [CrossRef]
- Ridger, V.C.; Boulanger, C.M.; Angelillo-Scherrer, A.; Badimon, L.; Blanc-Brude, O.; Bochaton-Piallat, M.-L.; Boilard, E.; Buzas, E.I.; Caporali, A.; Dignat-George, F.; et al. Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb. Haemost. 2017, 117, 1296–1316. [Google Scholar] [CrossRef]
- Oggero, S.; Austin-Williams, S.; Norling, L.V. The contrasting role of extracellular vesicles in vascular inflammation and tissue repair. Front. Pharmacol. 2019, 10, 1479. [Google Scholar] [CrossRef]
- Lapping-Carr, G.; Gemel, J.; Mao, Y.; Beyer, E.C. Circulating extracellular vesicles and endothelial damage in sickle cell disease. Front. Physiol. 2020, 11, 1063. [Google Scholar] [CrossRef]
- Khalyfa, A.; Khalyfa, A.A.; Akbarpour, M.; Connes, P.; Romana, M.; Lapping-Carr, G.; Zhang, C.; Andrade, J.; Gozal, D. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes. Br. J. Haematol. 2016, 174, 786–798. [Google Scholar] [CrossRef]
- Lapping-Carr, G.; Khalyfa, A.; Rangel, S.; Darlington, W.; Beyer, E.C.; Peddinti, R.; Cunningham, J.M.; Gozal, D. Exosomes contribute to endothelial integrity and acute chest syndrome risk: Preliminary findings. Pediatr. Pulmonol. 2017, 52, 1478–1485. [Google Scholar] [CrossRef]
- Lapping-Carr, G.; Gemel, J.; Mao, Y.; Sparks, G.; Harrington, M.; Peddinti, R.; Beyer, E.C. Circulating extracellular vesicles from patients with acute chest syndrome disrupt adherens junctions between endothelial cells. Pediatr. Res. 2021, 89, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Gemel, J.; Mao, Y.; Lapping-Carr, G.; Beyer, E.C. Gap junctions between endothelial cells are disrupted by circulating extracellular vesicles from sickle cell patients with acute chest syndrome. Int. J. Mol. Sci. 2020, 21, 884. [Google Scholar] [CrossRef] [PubMed]
- Gemel, J.; Zhang, J.; Mao, Y.; Lapping-Carr, G.; Beyer, E.C. Circulating small extracellular vesicles may contribute to vaso-occlusive crises in sickle cell disease. J. Clin. Med. 2022, 11, 816. [Google Scholar] [CrossRef] [PubMed]
- Roush, S.; Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 2008, 18, 505–516. [Google Scholar] [CrossRef]
- Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000, 403, 901–906. [Google Scholar] [CrossRef]
- Thornton, J.E.; Gregory, R.I. How does Lin28 let-7 control development and disease? Trends Cell Biol. 2012, 22, 474–482. [Google Scholar] [CrossRef]
- Rybak, A.; Fuchs, H.; Smirnova, L.; Brandt, C.; Pohl, E.E.; Nitsch, R.; Wulczyn, F.G. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 2008, 10, 987–993. [Google Scholar] [CrossRef]
- Viswanathan, S.R.; Daley, G.Q.; Gregory, R.I. Selective blockade of microRNA processing by Lin28. Science 2008, 320, 97–100. [Google Scholar] [CrossRef]
- Jiang, S. Recent findings regarding let-7 in immunity. Cancer Lett. 2018, 434, 130–131. [Google Scholar] [CrossRef] [PubMed]
- Letafati, A.; Najafi, S.; Mottahedi, M.; Karimzadeh, M.; Shahini, A.; Garousi, S.; Abbasi-Kolli, M.; Sadri Nahand, J.; Tamehri Zadeh, S.S.; Hamblin, M.R.; et al. MicroRNA let-7 and viral infections: Focus on mechanisms of action. Cell. Mol. Biol. Lett. 2022, 27, 14. [Google Scholar] [CrossRef]
- Han, J.; Cui, X.; Yuan, T.; Yang, Z.; Liu, Y.; Ren, Y.; Wu, C.; Bian, Y. Plasma-derived exosomal let-7c-5p, miR-335-3p, and miR-652-3p as potential diagnostic biomarkers for stable coronary artery disease. Front. Physiol. 2023, 14, 1161612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, S.; Zhu, W.; Niu, T.; Wang, J.; Yang, M.; Liu, E.; Wang, J.; Li, S.; Zhang, H. Exosomal miR-let-7c-5p is involved in the cognitive function of type 2 diabetes mellitus patients by interleukin 10: A cross-sectional study. J. Diabetes 2023, 15, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Law, Y.-Y.; Lee, W.-F.; Hsu, C.-J.; Lin, Y.-Y.; Tsai, C.-H.; Huang, C.-C.; Wu, M.-H.; Tang, C.-H.; Liu, J.-F. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts. Aging 2021, 13, 17227–17236. [Google Scholar] [CrossRef]
- Ni, J.; Wang, X.; Chen, S.; Liu, H.; Wang, Y.; Xu, X.; Cheng, J.; Jia, J.; Zhen, X. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav. Immun. 2015, 49, 75–85. [Google Scholar] [CrossRef]
- Kostiniuk, D.; Marttila, S.; Raitoharju, E. Circulatory miRNAs in essential hypertension. Atherosclerosis 2024, 401, 119069. [Google Scholar] [CrossRef]
- Naprawa, J.T.; Bonsu, B.K.; Goodman, D.G.; Ranalli, M.A. Serum biomarkers for identifying acute chest syndrome among patients who have sickle cell disease and present to the emergency department. Pediatrics 2005, 116, e420–e425. [Google Scholar] [CrossRef]
- Styles, L.A.; Schalkwijk, C.G.; Aarsman, A.J.; Vichinsky, E.P.; Lubin, B.H.; Kuypers, F.A. Phospholipase A2 levels in acute chest syndrome of sickle cell disease. Blood 1996, 87, 2573–2578. [Google Scholar] [CrossRef]
- Alsabri, M.; Elsnhory, A.B.; Alattar, O.; Ahmed, N.; Ashraf, S.; Alassri, R. Secretory Phospholipase A2 as a promising biomarker for predicting acute chest syndrome in children with sickle cell disease: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e69053. [Google Scholar] [CrossRef]
- Hammerman, S.I.; Kourembanas, S.; Conca, T.J.; Tucci, M.; Brauer, M.; Farber, H.W. Endothelin-1 production during the acute chest syndrome in sickle cell disease. Am. J. Respir. Crit. Care Med. 1997, 156, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Graido-Gonzalez, E.; Doherty, J.C.; Bergreen, E.W.; Organ, G.; Telfer, M.; McMillen, M.A. Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood 1998, 92, 2551–2555. [Google Scholar] [CrossRef] [PubMed]
- Sharan, K.; Surrey, S.; Ballas, S.; Borowski, M.; Devoto, M.; Wang, K.F.; Sandler, E.; Keller, M. Association of T-786C eNOS gene polymorphism with increased susceptibility to acute chest syndrome in females with sickle cell disease. Br. J. Haematol. 2004, 124, 240–243. [Google Scholar] [CrossRef]
- Chaar, V.; Tarer, V.; Etienne-Julan, M.; Diara, J.P.; Elion, J.; Romana, M. ET-1 and ecNOS gene polymorphisms and susceptibility to acute chest syndrome and painful vaso-occlusive crises in children with sickle cell anemia. Haematologica 2006, 91, 1277–1278. [Google Scholar] [PubMed]
- Schaefer, E.; Anderson-Crannage, M.; Hochberg, J.; Kanarfogel, T.; Ktena, Y.P.; Herrick, J.; Thatcher, E.; Shi, Q.; Hochberg, B.; Chu, Y.; et al. A Phase II Study to Evaluate the Safety and Efficacy of Defibrotide and Changes in Plasma Biomarkers in Sickle Cell Disease-Related Acute Chest Syndrome (IND 127812). Blood 2023, 142, 2520. [Google Scholar] [CrossRef]
- Babraham Bioinformatics-FastQC a Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 March 2025).
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Picard Tools-By Broad Institute. Available online: https://broadinstitute.github.io/picard/ (accessed on 1 March 2025).
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Bioconductor-DESeq2. Available online: https://bioconductor.org/packages/3.8/bioc/html/DESeq2.html (accessed on 1 March 2025).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Roberts, T.C.; Coenen-Stass, A.M.L.; Wood, M.J.A. Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS ONE 2014, 9, e89237. [Google Scholar] [CrossRef]
No History of ACS (n = 12) | History of ACS (n = 17) | p-Value | |
---|---|---|---|
Demographics | |||
Age (years), median (range) | 14 (3–18) | 14 (5–20) | NS |
Sex, n (%) | NS | ||
Male | 7 (58) | 11 (65) | |
Female | 5 (42) | 6 (35) | |
Hematologic Values | Median (25%, 75%) | Median (25%, 75%) | |
White blood cell count (×103/µL) | 9.2 (8.4, 14.3) | 11.8 (10.7, 14.6) | NS |
Hemoglobin (g/dL) | 8.4 (8.1, 9.1) | 9.3 (7.8, 10.7) | NS |
MCV (fL) | 84.2 (77.3, 93.8) | 95.2 (88.3, 101) | <0.05 |
Reticulocyte (×103/µL) | 266 (212, 384) | 249(161, 303) | NS |
Platelet (×103/µL) | 404 (291, 462) | 414 (400, 458) | NS |
Bilirubin (mg/dL) | 3.0 (2.0, 4.6) | 2.9 (1.8, 6.3) | NS |
Hemoglobin Genotype, n (%) | |||
SS | 11 (92) | 15 (88) | |
Sβ0Thal | 0 | 1 (6) | |
SC | 1 (8) | 1 (6) | |
Clinical Characteristics | |||
Rate of ACS (n/year) | 0 | 0.17 (0.08, 0.23) | <0.05 |
Absolute ACS, n | 0 | 1 (1, 3.5) | <0.005 |
Rate of pain (n/year) | 0 (0, 0.23) | 0.18 (0.08, 0.65) | NS |
Absolute pain, n | 0 (0, 3.5) | 2 (1, 9) | NS |
Hydroxyurea, n (%) | 3 (25) | 12 (71) | <0.05 |
Asthma, n (%) | 0 | 5 (29) | <0.05 |
Obstructive sleep apnea (%) | 6 (50) | 4 (24) | NS |
Splenectomy, n (%) | 3 (25) | 4 (24) | NS |
Cholecystectomy, n (%) | 1 (8) | 4 (24) | NS |
No History of ACS (n = 6) | History of ACS (n = 10) | p-Value | |
---|---|---|---|
Demographics | |||
Age (years), median (range) | 4 (4–8) | 8 (4–9) | NS |
Sex, n (%) | NS | ||
Male | 3 (50) | 3 (30) | |
Female | 3 (50) | 7 (70) | |
Hematologic Values | Median (25%, 75%) | Median (25%, 75%) | |
White blood cell count (×103/µL) | 12.3 (10.6, 13.2) | 10.9 (9.9, 12.4) | NS |
Hemoglobin (g/dL) | 8.3 (8.2, 8.7) | 9.2 (8.0, 9.7) | NS |
MCV (fL) | 88.6 (84.1, 92.4) | 93.5 (91.4, 98.0) | NS |
Reticulocyte (×103/µL) | 258 (217, 298) | 231 (203, 259) | NS |
Platelet (×103/µL) | 402 (282, 509) | 429 (383, 459) | NS |
Bilirubin (mg/dL) | 1.9 (1.9, 2.6) | 3.1 (2.1, 4.7) | NS |
Hemoglobin Genotype, n (%) | |||
SS | 5 (83) | 10 (100) | |
Sβ0Thal | 1 (14) | 0 (0) | |
Clinical Characteristics | |||
Rate of ACS (n/year) | 0 | 0.25 (0.20, 0.25) | <0.005 |
Absolute ACS, n | 0 | 1.00 (1.00, 2.75) | <0.005 |
Rate of pain (n/year) | 0.6 (0, 0.2) | 0.5 (0.1, 0.8) | NS |
Absolute pain, n | 0.5 (0, 1.0) | 2.0 (1.0, 7.0) | NS |
Hydroxyurea, n (%) | 1 (12) | 6 (60) | <0.05 |
Asthma, n (%) | 1 (12) | 3 (30) | NS |
Obstructive sleep apnea (%) | 0 | 4 (40) | <0.05 |
Splenectomy, n (%) | 1 (12) | 2 (20) | NS |
Cholecystectomy, n (%) | 0 | 1 (10) | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Gemel, J.; Beyer, E.C.; Lapping-Carr, G. Plasma Levels of MicroRNA Let-7c-5p May Predict Risk of Acute Chest Syndrome in Patients with Sickle Cell Disease. Int. J. Mol. Sci. 2025, 26, 3831. https://doi.org/10.3390/ijms26083831
Fan J, Gemel J, Beyer EC, Lapping-Carr G. Plasma Levels of MicroRNA Let-7c-5p May Predict Risk of Acute Chest Syndrome in Patients with Sickle Cell Disease. International Journal of Molecular Sciences. 2025; 26(8):3831. https://doi.org/10.3390/ijms26083831
Chicago/Turabian StyleFan, James, Joanna Gemel, Eric C. Beyer, and Gabrielle Lapping-Carr. 2025. "Plasma Levels of MicroRNA Let-7c-5p May Predict Risk of Acute Chest Syndrome in Patients with Sickle Cell Disease" International Journal of Molecular Sciences 26, no. 8: 3831. https://doi.org/10.3390/ijms26083831
APA StyleFan, J., Gemel, J., Beyer, E. C., & Lapping-Carr, G. (2025). Plasma Levels of MicroRNA Let-7c-5p May Predict Risk of Acute Chest Syndrome in Patients with Sickle Cell Disease. International Journal of Molecular Sciences, 26(8), 3831. https://doi.org/10.3390/ijms26083831