Biomarkers of Oxidative Stress in COVID-19 Patients
Abstract
:1. Introduction
2. Results
2.1. Clinical Data (Figure 1)
- -
- The number of WBCs in the healthy controls was approximately 70% compared to the established control levels, whereas in the infected individuals, it was 30% higher.
- -
- The number of LYMs was decreased more than two times in the infected patients in comparison to the healthy individuals.
- -
- The most informative and sensitive parameter for inflammation processes in the body is CRP. This was raised to more than 2200% in the COVID-19 patients. Its level in the healthy control was about 4% compared to the highest control levels.
- -
- The ESR was also much higher in the tested COVID-19 patients, by more than 320%; it was calculated to be about 35% in the healthy subjects, in comparison to the established highest control levels.
2.2. Thiobarbituric Acid-Reactive Substances (TBARSs) (Figure 2)
2.3. Antioxidant Capacity (AOC) (Figure 3)
2.4. Activity of Super Oxide Dismutase (SOD) (Figure 4)
2.5. Catalase (CAT) Activity (Figure 5)
2.6. Glutathione Reductase Activity (GRA) (Figure 6)
- -
- Early adaptive response: During the initial infection stages, increased SOD and CAT activities mitigate ROS accumulation, protecting cellular components from oxidative damage
- -
- Progressive exhaustion: As the infection persists, antioxidant systems like GRA become depleted due to sustained ROS production and inflammation. This exhaustion phase reduces the cellular resilience against oxidative stress, potentially contributing to complications such as organ failure or severe systemic inflammation.
2.7. Correlation of Clinical and Experimental Biomarkers Between Healthy and Infected Subjects
- -
- Protease inhibitors that target host proteases like TMPRSS2 and cathepsins, blocking the virus’s entry;
- -
- Antiviral agents—drugs inhibiting the viral RNA replication by various mechanisms;
- -
- Immunomodulators, such as JAK inhibitors, reducing the inflammatory response;
- -
- Plasma therapy—the application of antibodies from recovered patients to stimulate the immune response;
- -
- Monoclonal antibodies—engineered antibodies targeting viral proteins, e.g., the spike protein;
- -
- Vaccines, which are more effective against SARS-CoV-2 and its variants;
- -
- Antioxidants—a supportive therapy against the inflammation and oxidative stress in the organism [43].
3. Materials and Methods
3.1. Human Subjects
3.2. Clinical Data
3.3. Reagents
- TBARS Assay Kit, Cat. # 10009055
- SuperOxide Dismutase Assay Kit, Cat. # 706002
- Catalase Assay Kit Cat. # 707002
- Glutathione Reductase Assay Kit, Cat. # 703202,
- Antioxidant Assay Kit, Cat. # 709001
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus Disease of 2019 |
TBARSs | Thiobarbituric Acid-Reactive Substances |
SOD | Super Oxide Dismutase |
CAT | Catalase |
GRA | Glutathione Reductase Activity |
AOC | Antioxidant Capacity |
WBCs | White Blood Cells |
LYMs | Lymphocytes |
CRP | C-Reactive Protein |
ESR | Erythrocyte Sedimentation Rate |
SARS-CoV-2 | Severe Acute Respiratory Syndrome-Related Coronavirus 2 |
ROS | Reactive Oxygen Species |
GPx | Glutathione-Peroxidase |
GR | Glutathione-Reductase |
MDA | Malondialdehyde |
GSSG | Oxidized Glutathione |
GSH | Glutathione |
References
- Sies, H. Oxidative Stress; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Tumpey, T.M.; García-Sastre, A.; Taubenberger, J.K.; Palese, P.; Swayne, D.E.; Pantin-Jackwood, M.J.; Schultz-Cherry, S.; Solórzano, A.; Van Rooijen, N.; Katz, J.M.; et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: Functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 2005, 79, 14933–14944. [Google Scholar] [CrossRef]
- Yilmaz, N.; Eren, E.; Kalayci, Z.; Saribek, F.; Oz, C. COVID-19 may be acting like a trojan horse: Novel target hemoglobin and free iron. In Proceedings of the GETAT 2020 3rd International Traditional and Complementary Medicine Congress: GETAT Congress 2020, Istanbul, Turkey, 1–3 April 2020; Available online: https://www.researchgate.net/publication/340540096_Covid-19_may_be_acting_like_a_Trojan_Horse_Novel_target_hemoglobin_and_free_iron_Trojan_Horse_and_Covid_-19 (accessed on 9 August 2023).
- Delgado-Roche, L.; Mesta, F. Oxidative stress as key player in severe acute respiratory syndrome Coronavirus (SARS-CoV) infection. Arch. Med. Res. 2020, 51, 384–387. [Google Scholar] [CrossRef]
- Peterhans, E. Reactive oxygen species and nitric oxide in viral diseases. Biol. Trace Elem. Res. 1997, 56, 107–116. [Google Scholar] [CrossRef]
- Uchide, N.; Toyoda, H. Current status of monocyte differentiation-inducing (MDI) factors derived from human fetal membrane chorion cells undergoing apoptosis after influenza virus infection. Gene Regul. Syst. Biol. 2007, 1, GRSB.S374-4. [Google Scholar] [CrossRef]
- Akaike, T.; Suga, M.; Maeda, H. Free radicals in viral pathogenesis: Molecular mechanisms involving superoxide and NO. Exp. Biol. Med. 1998, 217, 64–73. [Google Scholar] [CrossRef]
- Halliwell, B. Free radicals. antioxidants. and human disease: Curiosity. cause. or consequence? Lancet 1994, 344, 721–724. [Google Scholar] [CrossRef]
- Fitero, A.; Bungau, S.G.; Tit, D.M.; Endres, L.; Khan, S.A.; Bungau, A.F.; Romanul, I.; Vesa, C.M.; Radu, A.-F.; Tarce, A.G.; et al. Comorbidities, Associated Diseases, and Risk Assessment in COVID-19—A Systematic Review. Int. J. Clin. Pr. 2022, 2022, 1571826. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants. antioxidants. and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef]
- Blumberg, J. Use of biomarkers of oxidative stress in research studies. J. Nutr. 2004, 134, 3188S–3189S. [Google Scholar] [CrossRef]
- Cerne, D.; Lukac-Bajalo, J. Oxidative stress assays for disease risk stratification. PubMed 2006, 56, 1–17. [Google Scholar]
- Halliwell, B. Oxidative stress. nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free. Radic. Res. 1996, 25, 57–74. [Google Scholar] [CrossRef]
- Liu, T.Z.; Stern, A. Assessment of the role oxidative stress in human diseases. J. Biomed. Lab. Sci. 1998, 10, 12–18. [Google Scholar]
- Oda, T.; Akaike, T.; Hamamoto, T.; Suzuki, F.; Hirano, T.; Maeda, H. Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 1989, 244, 974–976. [Google Scholar] [CrossRef]
- Pavlova, E.L.; Lilova, M.; Savov, V. Oxidative stress in children with kidney disease. Pediatr. Nephrol. 2005, 20, 1599–1604. [Google Scholar] [CrossRef]
- Ioannides, C. Cytochromes P450: Metabolic and Toxicological Aspects; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Pavlova, E.L.; Savov, V. Chemiluminescent in vitro estimation of the inhibitory constants of antioxidants ascorbic and uric acids in Fenton’s reaction in urine. Biokhimiya 2006, 71, 861–863. [Google Scholar] [CrossRef]
- Rice-Evans, C. Free Radicals, Oxidant Stress and Drug Action; Richelieu Press: London, UK, 1987; ISSN 0961-0308. [Google Scholar]
- Savov, V.M.; Galabov, A.S.; Tantcheva, L.P.; Mileva, M.M.; Pavlova, E.L.; Stoeva, E.S.; Braykova, A.A. Effects of rutin and quercetin on monooxygenase activities in experimental influenza virus infection. Exp. Toxicol. Pathol. 2006, 58, 59–64. [Google Scholar] [CrossRef]
- Janero, D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 1990, 9, 515–540. [Google Scholar] [CrossRef]
- Maier, C.M.; Chan, P.H. Book Review: Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist 2002, 8, 323–334. [Google Scholar] [CrossRef]
- Liu, D. The roles of free radicals in amyotrophic lateral sclerosis. J. Mol. Neurosci. 1996, 7, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Malstrom, B.; Andreasson, L.; Reinhammer, B. The Enzymes; Boyer, P., Ed.; XIIB; Academic Press: New York, NY, USA, 1975; p. 533. [Google Scholar]
- Stýblo, M.; Walton, F.S.; Harmon, A.W.; Sheridan, P.A.; Beck, M.A. Activation of superoxide dismutase in selenium-deficient mice infected with influenza virus. J. Trace Elem. Med. Biol. 2007, 21, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Sidwell, R.W.; Huffman, J.H.; Bailey, K.W.; Wong, M.H.; Nimrod, A.; Panet, A. Inhibitory effects of recombinant manganese superoxide dismutase on influenza virus infections in mice. Antimicrob. Agents Chemother. 1996, 40, 2626–2631. [Google Scholar] [CrossRef]
- Serkedjieva, J.; Roeva, I.; Angelova, M.; Dolashka, P.; Voelter, W.G. Combined protective effect of a fungal Cu/Zn-containing superoxide dismutase and rimantadine hydrochloride in experimental murine influenza virus infection. PubMed 2003, 47, 53–56. [Google Scholar]
- Akaike, T.; Ando, M.; Oda, T.; Doi, T.; Ijiri, S.; Araki, S.; Maeda, H. Dependence on O2− generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J. Clin. Investig. 1990, 85, 739–745. [Google Scholar] [CrossRef]
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef]
- Goodsell, D. PDB101: Molecule of the Month: Catalase [Internet]. RCSB: PDB-101. 2004. Available online: https://pdb101.rcsb.org/motm/57 (accessed on 9 August 2023).
- Catalase Structure Tutorial Text [Internet]. earth.callutheran.edu. Available online: https://earth.callutheran.edu/Academic_Programs/Departments/BioDev/omm/catalase/frames/cattx.htm#intro (accessed on 9 August 2023).
- Carlberg, I.; Mannervik, B. Glutathione reductase. In Glutamate, Glutamine, Glutathione, and Related Compounds. Methods in Enzymology; Meister, A., Ed.; Academic Press: Cambridge, MA, USA; Volume 113, pp. 484–490.
- Matés, J.M.; Pérez-Gómez, C.; Núñez de Castro, I. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Y.; Seth, S.; Furukawa, S.; Compans, R.W.; Jones, D.P. Inhibition of influenza infection by glutathione. Free Radic. Biol. Med. 2003, 34, 928–936. [Google Scholar] [CrossRef]
- Golabi, S.; Ghasemi, S.; Adelipour, M.; Bagheri, R.; Suzuki, K.; Wong, A.; Seyedtabib, M.; Naghashpour, M. Oxidative stress and inflammatory status in COVID-19 outpatients: A health center-based analytical cross-sectional study. Antioxidants 2022, 11, 606. [Google Scholar] [CrossRef]
- Weber, A.A.P.; Bulegon, J.S.; de Souza, M.D.; Vendrame, S.A.; Venturini, L.; Mombaque Dos Santos, W.; Gonçalves, T.L. Clinical, demographic and oxidative profile of patients with COVID-19 and disease severity. Diagn. Microbiol. Infect. Dis. 2023, 105, 115886. [Google Scholar] [CrossRef]
- Yaghoubi, N.; Youssefi, M.; Jabbari Azad, F.; Farzad, F.; Yavari, Z.; Zahedi Avval, F. Total antioxidant capacity as a marker of severity of COVID-19 infection: Possible prognostic and therapeutic clinical application. J. Med Virol. 2021, 94, 1558–1565. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, H.T.; Goncalves, J.; Xiao, Y.; Wang, M.; Guo, Y.; Sun, C.; Tang, X.; Jing, L.; Zhang, M.; et al. An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2020, 2, 283–288. [Google Scholar] [CrossRef]
- Tsermpini, E.E.; Glamočlija, U.; Ulucan-Karnak, F.; Redenšek Trampuž, S.; Dolžan, V. Molecular mechanisms related to responses to oxidative stress and antioxidative therapies in COVID-19: A systematic review. Antioxidants 2022, 11, 1609. [Google Scholar] [CrossRef]
- Muhammad, Y.; Kani, Y.A.; Iliya, S.; Muhammad, J.B.; Binji, A.; El-Fulaty Ahmad, A.; Kabir, M.B.; Umar Bindawa, K.; Ahmed, A. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021, 9, 2050312121991246. [Google Scholar] [CrossRef]
- Karakasis, P.; Nasoufidou, A.; Sagris, M.; Fragakis, N.; Tsioufis, K. Vascular alterations following COVID-19 infection: A comprehensive literature review. Life 2024, 14, 545. [Google Scholar] [CrossRef]
- Kabir, M.T.; Uddin, M.S.; Hossain, M.F.; Abdulhakim, J.A.; Alam, M.A.; Ashraf, G.M.; Bungau, S.G.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Aleya, L. nCOVID-19 pandemic: From molecular pathogenesis to potential investigational therapeutics. Front. Cell Dev. Biol. 2020, 8, 616. [Google Scholar] [CrossRef]
- Mehri, F.; Rahbar, A.H.; Ghane, E.T.; Souri, B.; Esfahani, M. Changes in oxidative markers in COVID-19 patients. Arch. Med Res. 2021, 52, 843–849. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Kasahara, K. The emerging role of oxidative stress in complications of COVID-19 and potential therapeutic approach to diminish oxidative stress. Respir. Med. 2021, 187, 106605. [Google Scholar] [CrossRef]
Reference Ranges | UMHATEM “N. I. Pirogov” Lab | Diagen Lab |
---|---|---|
WBCs [×109] | 4.1–11 | 3.5–10.5 |
LYMs | 0.6–4.1 [×109] | 20–40% |
CRP | 0.0–0.5 [mg/dL] | 0.00–10.00 [mg/L] |
ESR [mm/h] | 0–15 | 2–20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlova, E.; Atanasov, P.; Ivanov, I.; Dyankov, G. Biomarkers of Oxidative Stress in COVID-19 Patients. Int. J. Mol. Sci. 2025, 26, 3869. https://doi.org/10.3390/ijms26083869
Pavlova E, Atanasov P, Ivanov I, Dyankov G. Biomarkers of Oxidative Stress in COVID-19 Patients. International Journal of Molecular Sciences. 2025; 26(8):3869. https://doi.org/10.3390/ijms26083869
Chicago/Turabian StylePavlova, Elitsa, Petar Atanasov, Ivaylo Ivanov, and Georgi Dyankov. 2025. "Biomarkers of Oxidative Stress in COVID-19 Patients" International Journal of Molecular Sciences 26, no. 8: 3869. https://doi.org/10.3390/ijms26083869
APA StylePavlova, E., Atanasov, P., Ivanov, I., & Dyankov, G. (2025). Biomarkers of Oxidative Stress in COVID-19 Patients. International Journal of Molecular Sciences, 26(8), 3869. https://doi.org/10.3390/ijms26083869